Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Print publication year: 2014
  • Online publication date: July 2014

9 - Cuttlefish camouflage: vision and cognition

from Part II - Cognition and the environment

References

Adelson, E. and Bergen, J. (1991). The plenoptic function and elements of early vision. In Computational models of visual processingM. Landy and J. A. Movshon (Eds.). Cambridge, MA: MIT Press.
Allen, J. J., Mäthger, L. M., Barbosa, A., Buresch, K. C., Sogin, E., Schwartz, J., Chubb, C. and Hanlon, R. T. (2010). Cuttlefish dynamic camouflage: responses to substrate choice and integration of multiple visual cues. Proceedings of the Royal Society. B: Biological Sciences, 277(1684): 1031–1039.
Allen, J. J., Mäthger, L. M., Barbosa, A. and Hanlon, R. T. (2009). Cuttlefish use visual cues to control three-dimensional skin papillae for camouflage. Journal of Comparative Physiology A, 195(6): 547–555.
Barbosa, A., Allen, J. J., Mäthger, L. M. and Hanlon, R. T. (2012). Cuttlefish use visual cues to determine arm postures for camouflage. Proceedings of the Royal Society. B: Biological Sciences, 279: 84–90.
Barbosa, A., Mäthger, L. M., Buresch, K. C., Kelly, J., Chubb, C., Chiao, C.-C. and Hanlon, R. T. (2008). Cuttlefish camouflage: the effects of substrate contrast and size in evoking Uniform, Mottle or Disruptive body patterns. Vision Research, 48(10): 1242–1253.
Bennett, A. T. (1996). Do animals have cognitive maps?Journal of Experimental Biology, 199(1): 219–224.
Brooks, R. (1991). Intelligence without representation. Artificial Intelligence, 47: 139–159.
Bruce, V., Green, P. R. and Georgeson, M. A. (1996). Visual perception: physiology, psychology and ecology (3rd edn). Hove, UK: Psychology Press.
Budelmann, B. U. (1994). Cephalopod sense organs, nerves and the brain: adaptations for high performance and life style. Marine and Freshwater Behaviour and Physiology, 25(1–3): 13–33.
Buresch, K., Mäthger, L., Allen, J., Bennice, C., Smith, N., Schram, J., Chiao, C.-C., Chubb, C. and Hanlon, R. (2011). The use of background matching vs. masquerade for camouflage in cuttlefish Sepia officinalis. Vision Research, 51(23–24): 2362–2368.
Burgess, N. (2006). Spatial memory: how egocentric and allocentric combine. Trends in Cognitive Sciences, 10(12): 551–557.
Byrne, R. W. and Bates, L. A. (2006). Why are animals cognitive? Current Biology, 16(12): R445–448.
Campbell, F. W. and Robson, J. G. (1968). Application of Fourier analysis to the visibility of gratings. Journal of Physiology, 197: 551–566.
Cavanagh, P. (2011). Visual cognition. Vision Research, 51: 408–416.
Chiao, C.-C., Chubb, C., Buresch, K. C., Barbosa, A., Allen, J. J., Mäthger, L. M. and Hanlon, R. T. (2010). Mottle camouflage patterns in cuttlefish: quantitative characterization and visual background stimuli that evoke them. Journal of Experimental Biology, 213(2): 187–199.
Chiao, C.-C., Chubb, C., Buresch, K. C. and Siemann, L. (2009). The scaling effects of substrate texture on camouflage patterning in cuttlefish. Vision Research, 49: 1647–1656.
Chiao, C.-C., Chubb, C. and Hanlon, R. T. (2007). Interactive effects of size, contrast, intensity and configuration of background objects in evoking Disruptive camouflage in cuttlefish. Vision Research, 47: 2223–2235.
Chiao, C.-C. and Hanlon, R. T. (2001a). Cuttlefish camouflage: visual perception of size, contrast and number of white squares on artificial chequerboard substrata initiates Disruptive coloration. Journal of Experimental Biology, 204(12): 2119–2125.
Chiao, C.-C. and Hanlon, R. T. (2001b). Cuttlefish cue visually on area- not shape or aspect ratio -of light objects in the substrate to produce Disruptive body patterns for camouflage. The Biological Bulletin, 201(2): 269–270.
Chiao, C.-C., Kelman, E. J. and Hanlon, R. T. (2005). Disruptive body patterning of cuttlefish (Sepia officinalis) requires visual information regarding edges and contrast of objects in natural substrate backgrounds. The Biological Bulletin, 208(1): 7–11.
Collett, T. S. and Collett, M. (2002). Memory use in insect visual navigation. Nature reviews. Neuroscience, 3(7): 542–552.
Cott, H. B. (1940). Adaptive colouration in animals. London, UK: Methuen Publishing.
Crook, A. C., Baddeley, R. and Osorio, D. (2002). Identifying the structure in cuttlefish visual signals. Philosophical Transactions of the Royal Society B, 357(1427): 1617–1624.
Gibson, J. J. (1979). The ecological approach to visual perception. Boston, MA: Houghton Mifflin.
Gregory, R. L. (1997). Knowledge in perception and illusion. Philosophical Transactions of the Royal Society B, 352(1358): 1121–1127.
Halko, M. A., Mingolla, E. and Somers, D. C. (2008). Multiple mechanisms of illusory contour perception. Journal of Vision, 8(11): 1–17.
Hanlon, R. T. (2007). Cephalopod dynamic camouflage. Current Biology, 17(11): R400–R404.
Hanlon, R. T., Forsythe, J. W. and Joneschild, D. E. (1999). Crypsis, conspicuousness, mimicry and polyphenism as antipredator defences of foraging octopuses on Indo-Pacific coral reefs, with a method of quantifying crypsis from video tapes. Biological Journal of the Linnean Society, 66: 1–22.
Hanlon, R. T. and Messenger, J. B. (1988). Adaptive coloration in young cuttlefish (Sepia officinalis L) – the morphology and development of body patterns and their relation to behavior. Philosophical Transactions of the Royal Society B, 320(1200): 437–487.
Hanlon, R. T. and Messenger, J. B. (1996). Cephalopod behaviour. New York, NY: Cambridge University Press.
Jolliffe, I. T. (1986). Principal component analysis. New York, NY: Springer-Verlag.
Julesz, B. (1981). Textons, the elements of texture perception, and their interactions. Nature, 290(5802): 91–97.
Julesz, B. and Schumer, R. A. (1981). Early visual perception. Annual Review of Psychology, 32: 575–627.
Kelman, E. J., Baddeley, R. J., Shohet, A. J. and Osorio, D. (2007). Perception of visual texture and the expression of Disruptive camouflage by the cuttlefish Sepia officinalis. Proceedings of the Royal Society. B: Biological Sciences, 274: 1369–1375.
Kelman, E. J., Osorio, D. and Baddeley, R. J. (2008). A review of cuttlefish camouflage and object recognition and evidence for depth perception. Journal of Experimental Biology, 211(11): 1757–1763.
Kelman, E. J., Tiptus, P. and Osorio, D. (2006). Juvenile plaice (Pleuronectes platessa) produce camouflage by flexibly combining two separate patterns. Journal of Experimental Biology, 209: 3288–3292.
Krapp, H. G. and Hengstenberg, R. (1997). Estimation of self-motion by optic flow processing in single visual interneurons. Nature, 384: 463–466.
Lamme, V. A. F. and Roelfsema, P. R. (2000). The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neurosciences, 23: 571–579.
Land, M. F. and Nilsson, D.-E. (2002). Animal eyes. Oxford, UK: Oxford University Press.
Landy, M. S. and Graham, N. (2004). Visual perception of texture. In The visual neurosciencesL. M. Chalupa & J. S. Werner (Eds.). Cambridge, MA: MIT Press.
Langridge, K. V., Broom, M. and Osorio, D. (2007). Selective signalling by cuttlefish to predators. Current Biology, 17(24): R1044–R1045.
Mackintosh, N. J. (1974). Psychology of animal learning. Oxford, UK: Academic Press.
Manly, B. F. J. (1994). Multivariate statistical methods – a primer (2nd edn). London, UK: Chapman and Hall.
Marr, D. (1982). Vision: a computational investigation into the human representation and processing of visual information. New York, NY: Henry Holt and Co.
Marr, D. and Hildreth, E. (1980). Theory of edge detection. Proceedings of the Royal Society. B: Biological Sciences, 207(1167): 187–217.
Marshall, N. J. and Messenger, J. B. (1996). Colour-blind camouflage. Nature, 382: 408–409.
Mäthger, L. M., Barbosa, A., Miner, S. and Hanlon, R. T. (2006). Color blindness and contrast perception in cuttlefish (Sepia officinalis) determined by a visual sensorimotor assay. Vision Research, 46(11): 1746–1753.
Mäthger, L. M., Chiao, C. C., Barbosa, A., Buresch, K. C., Kaye, S. and Hanlon, R. T. (2007). Disruptive coloration elicited on controlled natural substrates in cuttlefish, Sepia officinalis. Journal of Experimental Biology, 210(15): 2657–2666.
Mäthger, L. M. and Hanlon, R. T. (2007). Malleable skin coloration in cephalopods: selective reflectance, transmission and absorbance of light by chromatophores and iridophores. Cell and Tissue Research, 329(1): 179–186.
Messenger, J. B. (2001). Cephalopod chromatophores: neurobiology and natural history. Biological Reviews, 76: 473–528.
Morrone, M. C. and Burr, D. C. (1988). Feature detection in human vision: a phase-dependent energy model. Proceedings of the Royal Society. B: Biological Sciences, 235: 221–245.
Packard, A. (1972). Cephalopods and fish: the limits of convergence. Biological Reviews, 47(2): 241–307.
Packard, A. and Hochberg, F. G. (1977). Skin patterning in Octopus and other genera. Symposium of the Zoological Society of London, 38: 191–231.
Packard, A. and Sanders, G. D. (1971). Body patterns of Octopus vulgaris and maturation of the response to disturbance. Animal Behaviour, 19(4): 780–790.
Pessoa, L., Thompson, E. and Noë, A. (1998). Finding out about filling-in: a guide to perceptual completion for visual science and the philosophy of perception. Behavioral and Brain Sciences, 21(6): 723–802.
Peterhans, E. and von der Heydt, R. (1989). Mechanisms of contour perception in monkey visual cortex. II. Contours bridging gaps. Journal of Neuroscience, 9(5): 1749–1763.
Peterhans, E. and von der Heydt, R. (1991). Subjective contours-bridging the gap between psychophysics and physiology. Trends in Neurosciences, 14(3): 112–119.
Portilla, J. and Simoncelli, E. P. (2000). A parametric texture model based on joint statistics of complex wavelet coefficients. International Journal of Computer Vision, 40(1): 49–71.
Ramachandran, V. S., Tyler, C. W., Gregory, R. L., Rogers-Ramachandran, D., Duensing, S., Pillsbury, C. and Ramachandran, C. (1996). Rapid adaptive camouflage in tropical flounders. Nature, 379: 815–818.
Real, L. A. (1993). Toward a cognitive ecology. Trends in Ecology and Evolution, 8(11): 413–417.
Saidel, W. M., Shashar, N., Schmolesky, M. T. and Hanlon, R. T. (2005). Discriminative responses of squid (Loligo pealeii) photoreceptors to polarized light. Comparative Biochemistry and Physiology A, 142: 340–346.
Shettleworth, S. (2001). Animal cognition and animal behaviour. Animal Behaviour, 61(2): 277–286.
Shettleworth, S. (2010). Cognition, evolution, and behavior (2nd edn). Oxford, UK: Oxford University Press.
Shohet, A. J., Baddeley, R. J., Anderson, J. C., Kelman, E. J. and Osorio, D. (2006). Cuttlefish responses to visual orientation, water flow and a model of motion camouflage. Journal of Experimental Biology, 209: 4717–4723.
Shohet, A., Baddeley, R. J., Anderson, J. C. and Osorio, D. (2007). Cuttlefish camouflage: a quantitative study of patterning. Biological Journal of the Linnean Society, 92(2): 335–345.
Snowden, R. J., Thompson, P. and Troscianko, T. (2006). Basic vision: an introduction to visual perception. Oxford, UK: Oxford University Press.
Srinivasan, M. V. and Venkatesh, S. (1997). Living eyes to seeing machines. Oxford, UK: Oxford University Press.
Stevens, M. (2007). Predator perception and the interrelation between different forms of protective coloration. Proceedings of the Royal Society. B: Biological Sciences, 274: 1457–1464.
Stuart-Fox, D. and Moussalli, A. (2009). Camouflage, communication and thermoregulation: lessons from colour changing organisms. Philosophical Transactions of the Royal Society B, 364(1516): 463–470.
Stuart-Fox, D., Whiting, M. J. and Moussalli, A. (2006). Camouflage and colour change: antipredator responses to bird and snake predators across multiple populations in a dwarf chameleon. Biological Journal of the Linnean Society, 88: 437–446.
Temple, S. E., Pignatelli, V., Cook, T., How, M. J., Chiou, T. H., Roberts, N. W. and Marshall, N. J. (2012). High-resolution polarisation vision in a cuttlefish. Current Biology, 22(4): R121–R122.
Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55: 189–208.
Wang, R. F. and Spelke, E. S. (2002). Human spatial representation: insights from animals. Trends in Cognitive Sciences, 6(9): 376–382.
Williamson, R. and Chrachri, A. (2004). Cephalopod neural networks. Neurosignals, 13(1–2): 87–98.
Young, R. E., Vecchione, M. and Donovan, D. T. (1998). The evolution of coleoid cephalopods and their present biodiversity and ecology. South African Journal of Marine Science, 20(1): 393–420.
Zipser, K., Lamme, V. A. F. and Schiller, P. H. (1996). Contextual modulation in primary visual cortex. Journal of Neuroscience, 16(22): 7376–7389.
Zylinski, S., Darmaillacq, A.-S. and Shashar, N. (2012). Visual interpolation for contour completion by the European cuttlefish (Sepia officinalis) and its use in dynamic camouflage. Proceedings of the Royal Society. B: Biological Sciences, 279(1737): 2386–2390.
Zylinski, S., How, M. J., Osorio, D., Hanlon, R. T. and Marshall, N. J. (2011). To be seen or to hide: visual characteristics of body patterns for camouflage and communication in the Australian giant cuttlefish Sepia apama. The American Naturalist, 177(5): 681–690.
Zylinski, S. and Osorio, D. (2011). What can camouflage tell us about non-human visual perception? A case study of multiple cue use in the cuttlefishSepia officinalis. In Animal camouflage: mechanisms and functionM. Stevens & S. Merilaita (Eds.). Cambridge, UK: Cambridge University Press.
Zylinski, S., Osorio, D. and Shohet, A. J. (2009a). Cuttlefish camouflage: context-dependent body pattern use during motion. Proceedings of the Royal Society. B: Biological Sciences, 276(1675): 3963–3969.
Zylinski, S., Osorio, D. and Shohet, A. J. (2009b). Edge detection and texture classification by cuttlefish. Journal of Vision, 9(13): 1–10.
Zylinski, S., Osorio, D. and Shohet, A. J. (2009c). Perception of edges and visual texture in the camouflage of the common cuttlefish, Sepia officinalis. Philosophical Transactions of the Royal Society B, 364(1516): 439–448.