Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T04:52:09.242Z Has data issue: false hasContentIssue false

5 - Severi–Brauer varieties

Published online by Cambridge University Press:  07 August 2017

Philippe Gille
Affiliation:
Institut Camille Jordan, Lyon
Tamás Szamuely
Affiliation:
Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest
Get access

Summary

In Chapter 1 we associated with each quaternion algebra a conic with the property that the conic has a k-point if and only if the algebra splits over k. We now generalize this correspondence to arbitrary dimension: with each central simple algebra A of degree n over an arbitrary field k we associate a projective k-variety X of dimension n − 1 which has a k-point if and only if A splits. Both objects will correspond to a class in H1(G,PGLn(K)), where K is a Galois splitting field for A with group G. The varieties X arising in this way are called Severi–Brauer varieties; they are characterized by the property that they become isomorphic to some projective space over the algebraic closure. This interpretation will enable us to give another, geometric construction of the Brauer group. Another central result of this chapter is a theorem of Amitsur which states that for a Severi–Brauer variety X with function field k(X) the kernel of the natural map Br (k) Br (k(X)) is a cyclic group generated by the class of X. This seemingly technical statement (which generalizes Witt's theorem proven in Chapter 1) has very fruitful algebraic applications. At the end of the chapter we shall present one such application, due to Saltman, which shows that all central simple algebras of fixed degree n over a field k containing the n-th roots of unity can be made cyclic via base change to some large field extension of k.

Severi–Brauer varieties were introduced in the pioneering paper of Châtelet [1], under the name ‘variétés de Brauer’. Practically all results in the first half of the present chapter stem from this work. The term ‘Severi–Brauer variety’ was coined by Beniamino Segre in his note [1], who expressed his discontent that Châtelet had ignored previous work by Severi in the area. Indeed, in the paper of Severi [1] Severi–Brauer varieties are studied in a classical geometric context, and what is known today as Châtelet's theorem is proven in some cases. As an amusing feature, we may mention that Severi calls the varieties in question ‘varietà di Segre’, but beware, this does not refer to Beniamino but to his second uncle Corrado Segre.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×