Skip to main content Accessibility help
×
×
Home
Catalan Numbers
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 23
  • Cited by
    This book has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Boldi, Paolo and Vigna, Sebastiano 2018. On the Lattice of Antichains of Finite Intervals. Order, Vol. 35, Issue. 1, p. 57.

    Morales, Alejandro H. Pak, Igor and Panova, Greta 2018. Why Is Pi Less Than Twice Phi?. The American Mathematical Monthly, Vol. 125, Issue. 8, p. 715.

    Adin, Ron M. Bagno, Eli and Roichman, Yuval 2018. Block decomposition of permutations and Schur-positivity. Journal of Algebraic Combinatorics, Vol. 47, Issue. 4, p. 603.

    Qi, Feng and Cerone, Pietro 2018. Some Properties of the Fuss–Catalan Numbers. Mathematics, Vol. 6, Issue. 12, p. 277.

    Márquez, Sebastián 2018. Compatible associative bialgebras. Communications in Algebra, Vol. 46, Issue. 9, p. 3810.

    Reiner, Victor and Sommers, Eric 2018. Weyl Group $${\varvec{q}}$$q-Kreweras Numbers and Cyclic Sieving. Annals of Combinatorics, Vol. 22, Issue. 4, p. 819.

    Qi, Feng and Guo, Bai-Ni 2018. Mathematical Analysis and Applications. p. 101.

    Liu, Lily Li and Mu, Lili 2018. Hankel determinants for generating functions of Catalan-like numbers. Linear and Multilinear Algebra, p. 1.

    Guo, Victor J. W. and Lian, Xiuguo 2018. Proofs of two conjectures on Catalan triangle numbers. Journal of Difference Equations and Applications, Vol. 24, Issue. 9, p. 1473.

    Randon-Furling, J and Redner, S 2018. Residence time near an absorbing set. Journal of Statistical Mechanics: Theory and Experiment, Vol. 2018, Issue. 10, p. 103205.

    Zhao, Jiao-Lian and Qi, Feng 2017. Two explicit formulas for the generalized Motzkin numbers. Journal of Inequalities and Applications, Vol. 2017, Issue. 1,

    Qi, Feng and Guo, Bai-Ni 2017. Integral Representations of the Catalan Numbers and Their Applications. Mathematics, Vol. 5, Issue. 3, p. 40.

    Ruiz-Vargas, Andres J. and Welzl, Emo 2017. A Journey Through Discrete Mathematics. p. 735.

    Dewji, R. Dimitrov, I. McCabe, A. Roth, M. Wehlau, D. and Wilson, J. 2017. Decomposing inversion sets of permutations and applications to faces of the Littlewood–Richardson cone. Journal of Algebraic Combinatorics, Vol. 45, Issue. 4, p. 1173.

    Tenner, Bridget Eileen 2017. Reduced word manipulation: patterns and enumeration. Journal of Algebraic Combinatorics, Vol. 46, Issue. 1, p. 189.

    Erdmenger, Johanna Fernández, Daniel Flory, Mario Megías, Eugenio Straub, Ann-Kathrin and Witkowski, Piotr 2017. Time evolution of entanglement for holographic steady state formation. Journal of High Energy Physics, Vol. 2017, Issue. 10,

    Zhou, Tianci and Luitz, David J. 2017. Operator entanglement entropy of the time evolution operator in chaotic systems. Physical Review B, Vol. 95, Issue. 9,

    Lücke, Philipp Schlicht, Philipp and Weinert, Thilo 2017. Choiceless Ramsey Theory of Linear Orders. Order, Vol. 34, Issue. 3, p. 369.

    Katz, Nicholas M. 2016. A NOTE ON RANDOM MATRIX INTEGRALS, MOMENT IDENTITIES, AND CATALAN NUMBERS. Mathematika, Vol. 62, Issue. 03, p. 811.

    Ardila, Federico 2016. Catalan Numbers. The Mathematical Intelligencer, Vol. 38, Issue. 2, p. 4.

    ×

Book description

Catalan numbers are probably the most ubiquitous sequence of numbers in mathematics. This book gives for the first time a comprehensive collection of their properties and applications to combinatorics, algebra, analysis, number theory, probability theory, geometry, topology, and other areas. Following an introduction to the basic properties of Catalan numbers, the book presents 214 different kinds of objects counted by them in the form of exercises with solutions. The reader can try solving the exercises or simply browse through them. Some 68 additional exercises with prescribed difficulty levels present various properties of Catalan numbers and related numbers, such as Fuss-Catalan numbers, Motzkin numbers, Schröder numbers, Narayana numbers, super Catalan numbers, q-Catalan numbers and (q,t)-Catalan numbers. The book ends with a history of Catalan numbers by Igor Pak and a glossary of key terms. Whether your interest in mathematics is recreation or research, you will find plenty of fascinating and stimulating facts here.

Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send
    ×

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×
Bibliography
[1] C., Aebi and G., Cairns, Catalan numbers, primes, and twin primes, Elem. Math. 63 (2008), 153–164.
[2] M., Aigner, Catalan and other numbers, in Algebraic Combinatorics and Computer Science, Springer, Berlin, 2001, 347–390.
[3] D., André, Solution directe du problème résolu par M. Bertrand, Comptes Rendus Acad. Sci. Paris 105 (1887), 436–437.
[4] G. E., Andrews, The Theory of Partitions, Addison-Wesley, Reading, MA, 1976.
[5] É., Barbier, Généralisation du problème résolu par M.J. Bertrand, Comptes Rendus Acad. Sci. Paris 105 (1887), 407.
[6] E. T., Bell, The iterated exponential integers, Annals of Math. 39 (1938), 539–557.
[7] J., Bertrand, Solution d'une problème, Comptes Rendus Acad. Sci. Paris 105 (1887), 369.
[8] M.J., Binet, Réflexions sur le problème dédeterminer le nombre de manières dont une figure rectiligne peut être partagées en triangles au moyen de ses diagonales, J. Math. Pures Appl. 4 (1839), 79–90.
[9] W. G., Brown, Historical note on a recurrent combinatorial problem, Amer. Math. Monthly 72 (1965), 973–979.
[10] B., Bru, Les leçons de calcul des probabilités de Joseph Bertrand, J. Électron. Hist. Probab. Stat. 2 (2006), no. 2, 44 pp.
[11] N. G., de Bruijn and B. J. M., Morselt, A note on plane trees, J. Combinatorial Theory 2 (1967), 27–34.
[12] R. S., Calinger, Leonhard Euler: life and thought, in Leonhard Euler: Life, Work and Legacy (R. E., Bradley and E., Sandifer, editors), Elsevier, Amsterdam, 2007.
[13] P. J., Cameron, LTCC course notes on Enumerative Combinatorics, Lecture 3: Catalan numbers (Autumn 2013); available at http://www.maths.qmul.ac.uk/~pjc/ec/.
[14] E. C., Catalan, Note sur une équation aux différences finies, J. Math. pure et appliquées 3 (1838), 508–516.
[15] E. C., Catalan, Solution nouvelle de cette question: un polygone étant donné, de combien de manières peut-on le partager en triangles au moyen de diagonales?, J. Math. Pures Appl. 4 (1839), 91–94.
[16] E., Catalan, Sur les nombres de Segner, Rend. Circ. Mat. Palermo 1 (1887), 190–201.
[17] A., Cayley, On the analytical forms called trees II, Philos. Mag. 18 (1859), 374–378.
[18] A., Cayley, On the partitions of a polygon, Proc. London Math. Soc. 22 (1891), 237–262.
[19] A., Dvoretzky and Th., Motzkin, A problem of arrangements, Duke Math. J. 14 (1947), 305–313.
[20] L., Euler, Summary of [61] in the same volume of Novi Commentarii, 13–15.
[21] E. A., Fellmann, Leonhard Euler, Birkhäuser, Basel, 2007.
[22] N., Fuss, Solutio quaestionis, quot modis polygonum n laterum in polygona m laterum, per diagonales resolvi queat, Novi Acta Acad. Sci. Petrop. 9 (1795), 243–251; available at [55].
[23] M., Gardner, Mathematical Games, Catalan numbers: an integer sequence that materializes in unexpected places, Scientific Amer. 234, no. 6 (June 1976), 120–125, 132.
[24] I. M., Gelfand, M. M., Kapranov, and A. V., Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Birkhäuser Boston, Cambridge, Massachusetts, 1994.
[25] H. W., Gould, Bell and Catalan Numbers: A Research Bibliography of Two Special Number Sequences, Revised 2007 edition; available at http://tinyurl.com/opknlh8.
[26] I. P., Goulden and D. M., Jackson, Combinatorial Enumeration, John Wiley, New York, 1983; reissued by Dover, New York, 2004.
[27] J.A.S., Growney, Finitely generated free groupoids, PhD thesis, University of Oklahoma, 1970.
[28] J. A., Grunert, Ueber die Bestimmung der Anzahl der verschiedenen Arten, auf welche sich ein neck durch Diagonales in lauter mecke zerlegen lässt, mit Bezug auf einige Abhandlungen der Herren Lamé, Rodrigues, Binet, Catalan und Duhamel in dem Journal de Mathématiques Pure et Appliquées, publié par Joseph Liouville, Vols. 3, 4, Arch. Math. Physik 1 (1841), 193–203.
[29] M., Hall, Combinatorial Theory, Blaisdell, Waltham, Massachusetts, 1967.
[30] K., Humphreys, A history and a survey of lattice path enumeration, J. Statist. Plann. Inference 140 (2010), 2237–2254.
[31] M., Kauers and P., Paule, The Concrete Tetrahedron, Springer, Vienna, 2011.
[32] D. A., Klarner, Correspondences between plane trees and binary sequences, J. Combinatorial Theory 9 (1970), 401–411.
[33] D. E., Knuth, The Art of Computer Programming, vol. 1, Fundamental Algorithms, Addison-Wesley, Reading, Massachusetts, 1968; second ed., 1973.
[34] D. E., Knuth, The Art of Computer Programming, vol. 3, 2nd ed., Addison-Wesley, Reading, Massachusetts, 1998.
[35] T., Koshy, Catalan Numbers with Applications, Oxford University Press, Oxford, 2009.
[36] H. S., Kim, Interview with Professor Stanley, Math Majors Magazine, vol. 1, no. 1 (December 2008), pp. 28–33; available at http://tinyurl.com/q423c6l.
[37] T. P., Kirkman, On the K-Partitions of the R-Gon and R-Ace, Phil. Trans. Royal Soc. 147 (1857), 217–272.
[38] S., Kotelnikow, Demonstatio seriei exhibitae in recensione VI. tomi VII. Commentariorum A. S. P., Novi Comment. Acad. Sci. Imp. Petropol. 10 (1766), 199–204; available at [55].
[39] G., Lamé, Extrait d'une lettre de M. Lamé à M. Liouville sur cette question: Un polygone convexe étant donné, de combien de manières peut-on le partager en triangles au moyen de diagonales?, Journal de Mathématiques pure et appliquées 3 (1838), 505–507.
[40] P. J., Larcombe, The 18th century Chinese discovery of the Catalan numbers, Math. Spectrum 32 (1999/2000), 5–7.
[41] P. J., Larcombe, On pre-Catalan Catalan numbers: Kotelnikow (1766), Math. Today 35 (1999), no. 1, 25.
[42] P. J., Larcombe and P.D.C., Wilson, On the trail of the Catalan sequence, Mathematics Today 34 (1998), 114–117.
[43] P. J., Larcombe and P.D.C., Wilson, On the generating function of the Catalan sequence, Congr. Numer. 149 (2001), 97–108.
[44] J., Liouville, Remarques sur un mémoire de N. Fuss, J. Math. Pures Appl. 8 (1843), 391–394.
[45] E., Lucas, Théorie des Nombres, Gauthier-Villard, Paris, 1891.
[46] J. J., Luo, Antu Ming, the first inventor of Catalan numbers in the world, Neimengu Daxue Xuebao 19 (1988), 239–245 (in Chinese).
[47] J., Luo, Ming Antu and his power series expansions, in Seki, founder of modern mathematics in Japan, Springer, Tokyo, 2013, 299–310.
[48] P. A., MacMahon, Combinatory Analysis, vols. 1 and 2, Cambridge University Press, 1916; reprinted by Chelsea, New York, 1960, and by Dover, New York, 2004.
[49] J., McCammond, Noncrossing partitions in surprising locations, Amer. Math. Monthly 113 (2006), 598–610.
[50] D., Mirimanoff, A propos de l'interprétation géométrique du problème du scrutin, L'Enseignement Math. 23 (1923), 187–189.
[51] S. G., Mohanty, Lattice Path Counting and Applications, Academic Press, New York, 1979.
[52] T. V., Narayana, Lattice Path Combinatorics with Statistical Applications, Mathe-matical Expositions no. 23, University of Toronto Press, Toronto, 1979.
[53] E., Netto, Lehrbuch der Combinatorik, Teubner, Leipzig, 1901.
[54] I., Pak, Who computed Catalan numbers? (February 20, 2013), Who named Catalan numbers? (February 5, 2014), blog posts on Igor Pak's blog; available at http://igorpak.wordpress.com/.
[55] I., Pak, Catalan Numbers website, http://www.math.ucla.edu/~pak/lectures/Cat/pakcat.htm.
[56] M., Renault, Lost (and found) in translation, Amer. Math. Monthly 115 (2008), 358–363.
[57] J., Riordan, Combinatorial Identities, John Wiley, New York, 1968.
[58] O., Rodrigues, Sur le nombre de manières de décomposer un polygone en triangles au moyen de diagonales, J. Math. Pures Appl. 3 (1838), 547–548.
[59] O., Rodrigues, Sur le nombre de manières d'effectuer un produit de n facteurs, J. Math. Pures Appl. 3 (1838), 549.
[60] E., Schröder, Vier combinatorische Probleme, Z. für Math. Phys. 15 (1870), 361–376.
[61] J. A., Segner, Enumeratio modorum quibus figurae planae rectilinae per diagonales dividuntur in triangula, Novi Comment. Acad. Sci. Imp. Petropol. 7 (dated 1758/59, published in 1761), 203–210; available at [55].
[62] N.J.A., Sloane, A Handbook of Integer Sequences, Academic Press, New York, 1973.
[63] N.J.A., Sloane and S., Plouffe, The Encyclopedia of Integer Sequences, Academic Press, New York, 1995.
[64] R., Stanley, Enumerative Combinatorics, vol. 1, 2nd ed., Cambridge University Press, Cambridge, 2012.
[65] R., Stanley, Enumerative Combinatorics, vol. 2, Cambridge University Press, New York/Cambridge, 1999.
[66] L., Takács, On the ballot theorems, in Advances in Combinatorial Methods and Applications to Probability and Statistics, Birkhäuser, Boston, Massachusetts, 1997, 97–114.
[67] U., Tamm, Olinde Rodrigues and combinatorics, in Mathematics and Social Utopias in France, Olinde Rodrigues and His Times (S., Altmann and E. L., Ortiz, eds.), American Mathematical Society and London Mathematical Society, Providence, Rhode Island, pp. 119–129.
[68] H. M., Taylor and R. C., Rowe, Note on a geometrical theorem, Proc. London Math. Soc. 13 (1882), 102–106.
[69] H.N.V., Temperley and E. H., Lieb, Relations between the ‘percolation’ and ‘colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ‘percolation’ problem, Proc. Royal Soc. London, Ser. A 322 (1971), 251–280.
[70] J. H., van Lint, Combinatorial Theory Seminar, Lecture Notes in Math. 382, Springer, Berlin, 1974, 131 pp.
[71] V. S., Varadarajan, Euler Through Time: A New Look at Old Themes, AMS, Providence, Rhode Island, 2006.
[72] W. A., Whitworth, Arrangements of m things of one sort and n things of another sort, under certain conditions of priority, Messenger of Math. 8 (1879), 105–114.
[73] B., Ycart, A case of mathematical eponymy: the Vandermonde determinant, Rev. Histoire Math. 19 (2013), 43–77.
[74] D., Zeilberger, Opinion 49 (Oct. 25, 2002); available at http://tinyurl.com/pzp8bvk.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed