Skip to main content Accessibility help
  • Print publication year: 2006
  • Online publication date: December 2009

21 - Gadolinium-enhanced plaque imaging

from Functional plaque imaging


This chapter overviews clinically available and developmental contrast agents used in plaque imaging. The majority of plaque imaging experiments in humans has utilized small molecular weight gadolinium agents such as Gd-DTPA and Gd-DTPA-BMA. A target of molecular contrast agents in the investigation of atherosclerosis is factors influencing angiogenesis. A major alternative to gadolinium-based agents are ultrasmall particles of superparamagnetic iron oxides. Contrast-enhanced (CE)-magnetic resonance imaging (MRI) of atherosclerosis using gadolinium agents requires special considerations in the method of image acquisition. Although late phase enhancement has been shown to provide additional information for characterizing plaque composition, the major contributions of CE MRI were expected to be in quantification and identification of inflammation. Although standard gadolinium agents produce non-specific enhancement, they still provide considerable useful information for gauging atherosclerotic plaque. Contrast-enhanced T1-weighted images can serve as additional weightings in a comprehensive multicontrast evaluation of plaque composition.
Aoki, S., Aoki, K., Ohsawa, S., et al. (1999). Dynamic Magnetic resonance imaging of the carotid wall. Journal of Magnetic Resonance Imaging, 9, 420–7.
Audoly, S., Bellu, G., D'Angio, L., Saccomani, M. P. and Cobelli, C. (2001). Global identifiability of nonlinear models of biological systems. IEEE Transactions in Biomedical Engineering, 48, 55–65.
Barkhausen, J., Ebert, W., Heyer, C., Debatin, J. F. and Weinmann, H. J. (2003). Detection of atherosclerotic plaque with gadofluorine-enhanced magnetic resonance imaging. Circulation, 108, 605–9.
Cai, J., Hatsukami, T. S., Ferguson, M. S., et al. (2005). In vivo quantitative measurement of intact fibrous cap and lipid rich necrotic core size in atherosclerotic carotid plaque: a comparison of high resolution contrast enhanced Magnetic resonance imaging and histology. Circulation, 112, 3437–44.
Chambon, C., Clement, O., Blanche, A., Schouman-Claeys, E. and Frija, G. (1993). Superparamagnetic iron oxides as positive Magnetic resonance contrast agents: in vitro and in vivo evidence. Magnetic Resonance Imaging, 11, 509–19.
Chen, Y. X., Nakashima, Y., Tanaka, K., et al. (1999). Immunohistochemical expression of vascular endothelial growth factor/vascular permeability factor in atherosclerotic intimas of human coronary arteries. Arteriosclerosis, Thrombosis and Vascular Biology, 19, 131–9.
Corot, C., Violas, X., Robert, P., Gagneur, G. and Port, M. (2003). Comparison of different types of blood pool agents (P792, MS325, UltrasoundPIO) in a rabbit Magnetic resonance angiography-like protocol. Investigative Radiology, 38, 311–19.
deBoer, O. J., Wal, A. C., Teeling, P. and Becker, A. E. (1999). Leucocyte recruitment in rupture prone regions of lipid-rich plaques: a prominent role for neovascularization?Cardiovascular Research, 41, 443–9.
Flacke, S., Fischer, S., Scott, M. J., et al. (2001). Novel Magnetic resonance imaging contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation, 104, 1280–5.
Grist, T. M., Korosec, F. R., Peters, D. C., et al. (1998). Steady-state and dynamic Magnetic resonance angiography with MS-325: initial experience in humans. Radiology, 207, 539–44.
Kerwin, W. S., Cai, J. and Yuan, C. (2002). Noise and motion correction in dynamic contrast-enhanced Magnetic resonance imaging for analysis of atherosclerotic lesions. Magnetic Resonance in Medicine, 47, 1211–17.
Kerwin, W., Hooker, A., Spilker, M., et al. (2003). Quantitative magnetic resonance imaging analysis of neovasculature volume in carotid atherosclerotic plaque. Circulation, 107, 851–6.
Kerwin, W., O'Brien, K., Ferguson, M., Hatsukami, T. and Yuan, C. (2006). Inflammation in carotid atherosclerotic plaque is associated with elevated neovasculature and permeability: a dynamic contrast-enhanced Magnetic resonance imaging study. Radiology, in press.
Kooi, M. E., Cappendijk, V. C., Cleutjens, K. B., et al. (2003). Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation, 107, 2453–8.
Krause, M. H., Kwong, K. K. and Xiong, J. (2003). Magnetic resonance imaging of blood volume with MS 325 in experimental choroidal melanoma. Magnetic Resonance Imaging, 21, 725–32.
Lauffer, R. B. (1996). Magnetic resonance imaging contrast agents: basic principles. In Clinical Magnetic Resonance Imaging, ed. Edelman, R., Hesselink, J. and Zlatkin, M., Philadelphia, PA: W. B. Saunders Co., pp. 177–91.
Lauffer, R. B., Parmelee, D. J., Dunham, S. U., et al. (1998). MS-325: albumin-targeted contrast agent for Magnetic resonance angiography. Radiology, 207, 529–38.
Libby, P. (2002). Inflammation in atherosclerosis. Nature, 420, 868–74.
Lin, W., Abendschein, D. R. and Haacke, E. M. (1997). Contrast-enhanced magnetic resonance angiography of carotid arterial wall in pigs. Journal of Magnetic Resonance Imaging, 7, 183–90.
McCarthy, M. J., Loftus, I. M., Thompson, M. M., et al. (1999). Angiogenesis and the atherosclerotic carotid plaque: an association between symptomatology and plaque morphology. Journal of Vascular Surgery, 30, 261–8.
Moulton, K. S., Vakili, K. and Zurakowski, D. (2003). Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 100, 4736–41.
O'Brien, K. D., McDonald, T. O., Chait, A., Allen, M. D. and Alpers, C. E. (1996). Neovascular expression of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in human atherosclerosis and their relation to intimal leukocyte content. Circulation, 93, 672–82.
Patlak, C. S. (1983). Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Journal of Cerebral Blood Flow and Metabolism, 3, 1–7.
Pradel, C., Siauve, N., Bruneteau, G., et al. (2003). Reduced capillary perfusion and permeability in human tumour xenografts treated with the vegf signalling inhibitor zd4190: an in vivo assessment using dynamic Magnetic resonance imaging and macromolecular contrast media. Magnetic Resonance Imaging, 21, 845–51.
Ruehm, S. G., Corot, C., Vogt, P., Kolb, S. and Debatin, J. F. (2001). Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation, 103, 415–22.
Schmitz, S. A., Taupitz, T., Wagner, S., et al. (2001). Magnetic resonance imaging of atherosclerotic plaques using superparamagnetic iron oxide particles. Journal of Magnetic Resonance Imaging, 14, 355–61.
Stary, H. C., Chandler, A. B., Dinsmore, R. E., et al. (1995). A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the committee on vascular lesions of the council on arteriosclerosis, American Heart Association. Circulation, 92, 1355–74.
Tofts, P. S. and Kermode, A. G. (1991). Measurement of the blood-brain barrier permeability and leakage space using dynamic Magnetic resonance imaging. 1. Fundamental concepts. Magnetic Resonance in Medicine, 17, 357–67.
Tofts, P. S. (1997). Modeling tracer kinetics in dynamic Gd-DTPA Magnetic resonance imaging. Journal of Magnetic Resonance Imaging, 7, 91–101.
Tofts, P. S., Brix, G., Buckley, D. L., et al. (1999). Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted Magnetic resonance imaging of a diffusable tracer: standardized quantities and symbols. Journal of Magnetic Resonance Imaging, 10, 223–32.
Turetschek, K., Floyd, E., Helbich, , T., et al. (2001). Magnetic resonance imaging assessment of microvascular characteristics in experimental breast tumors using a new blood pool contrast agent (MS-325) with correlations to histopathology. Journal of Magnetic Resonance Imaging, 14, 237–42.
Virmani, R., Kolodgie, F. D., Burke, A. P., Farb, A. and Schwartz, S. M. (2000). Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arteriosclerosis, Thrombosis and Vascular Biology, 20, 1262–75.
Wasserman, B. A., Smith, W. I., Trout, H. H., et al. (2002). Carotid artery atherosclerosis: in vivo morphologic characterization with gadolinium-enhanced double-oblique Magnetic resonance imaging initial results. Radiology, 223, 566–73.
Weinmann, H. J., Ebert, , W., Misselwitz, B. and Schmitt-Willich, H. (2003). Tissue-specific Magnetic resonance contrast agents. European Journal of Radiology, 46, 33–44.
Weiss, C. R., Arai, A. E., Bui, M. N., et al. (2001). Arterial wall Magnetic resonance imaging characteristics are associated with elevated serum markers of inflammation in humans. Journal of Magnetic Resonance Imaging, 14, 698–704.
Winter, P. M., Caruthers, S. D., Yu, X., et al. (2003a). Improved molecular imaging contrast agent for detection of human thrombus. Magnetic Resonance in Medicine, 50, 411–16.
Winter, P. M., Morawski, A. M., Caruthers, S. D., et al. (2003b). Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation, 108, 2270–4.
Yarnykh, V. L. and Yuan, C. (2002). T1-insensitive flow suppression using quadruple inversion-recovery. Magnetic Resonance in Medicine, 48, 899–905.
Yuan, C., Kerwin, W. S., Ferguson, M. S., et al. (2002). Contrast enhanced high resolution Magnetic resonance imaging for atherosclerotic carotid artery tissue characterization. Journal of Magnetic Resonance Imaging, 15, 62–7.
Yuan, C. and Kerwin, W. S. (2004). Magnetic resonance imaging of atherosclerosis. Journal of Magnetic Resonance Imaging, 19, 710–19.