Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 15
  • Print publication year: 2010
  • Online publication date: July 2014

5 - The influence of character correlations on phylogenetic analyses: a case study of the carnivoran cranium



Character independence is a major assumption in many morphology-based phylogenetic analyses (Felsenstein, 1973; Emerson and Hastings, 1998). However, the fact that most studies of modularity and morphological integration have found significant correlations among many phenotypic traits worryingly calls into question the validity of this assumption. Because gathering data on character correlations for every character in every taxon of interest is unrealistic, studies of modularity are more tractable for assessing the impact of character non-independence on phylogenetic analyses in a real system because modules summarise broad patterns of trait correlations. In this study, we use empirically derived data on cranial modularity and morphological integration in the carnivoran skull to assess the impact of trait correlations on phylogenetic analyses of Carnivora.

Carnivorans are a speciose clade of over 270 living species, with an extremely broad range of morphological and dietary diversity, from social insectivores to folivores to hypercarnivores (Nowak, 1999; Myers, 2000). This diversity offers many opportunities to isolate various potential influences on morphology, and, in this case, to study the effects of trait correlations on cranial morphology. Carnivorans also have an excellent fossil record, providing the opportunity to examine morphologies not represented in extant species, such as in the sabre-toothed cat Smilodon. Perhaps most importantly, several recent molecular and morphological studies of carnivoran phylogeny (Hunt and Tedford, 1993; Wyss and Flynn, 1993; Tedford et al., 1995; Flynn and Nedbal, 1998; Flynn et al., 2000, 2005; Flynn and Wesley-Hunt, 2005; Wesley-Hunt and Flynn, 2005; Flynn et al., this volume) provide the necessary resolution to assess the influence of character correlations on morphology-based phylogenetic analyses.

Ackermann, R. R. and Cheverud, J. M. (2000). Phenotypic covariance structure in tamarins (genus Saguinus): a comparison of variation patterns using matrix correlation and common principal components analysis. American Journal of Physical Anthropology, 111, 489–501.
Ackermann, R. R. and Cheverud, J. M. (2004). Morphological integration in primate evolution. In Phenotypic Integration, ed. Pigliucci, M. and Preston, K.. Oxford: Oxford University Press, pp. 302–19.
Atchley, W. R. and Hall, B. K. (1991). A model for development and evolution of complex morphological structures. Biological Reviews, 66, 101–57.
Atchley, W. R., Rutledge, J. J. and Cowley, D. E. (1982). A multivariate statistical analysis of direct and correlated response to selection in the rat. Evolution, 36, 677–98.
Badyaev, A. V. and Foresman, K. R. (2000). Extreme environmental change and evolution: stress-induced morphological variation is strongly concordant with patterns of evolutionary divergence in shrew mandibles. Proceedings of the Royal Society of London Biological Sciences Series B, 267, 371–77.
Badyaev, A. V. and Foresman, K. R. (2004). Evolution of morphological integration. I. Functional units channel stress-induced variation in shrew mandibles. American Naturalist, 163, 868–79.
Bolker, J. A. (2000). Modularity in development and why it matters to evo-devo. American Zoologist, 40, 770–76.
Chernoff, B. and Magwene, P. M. (1999). Afterword. In Morphological Integration, ed. Olson, E. C. and Miller, R. L.. Chicago, IL: University of Chicago Press, pp. 319–48.
Cheverud, J. M. (1982). Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution, 36, 499–516.
Cheverud, J. M. (1988). Spatial-analysis in morphology illustrated by rhesus macaque cranial growth and integration. American Journal of Physical Anthropology, 75, 195–96.
Cheverud, J. M. (1989). A comparative analysis of morphological variation patterns in the papionines. Evolution, 43, 1737–47.
Cheverud, J. M. (1995). Morphological integration in the saddle-back tamarin (Saguinus fuscicollis) cranium. American Naturalist, 145, 63–89.
Cheverud, J. M. (1996a). Quantitative genetic analysis of cranial morphology in the cotton-top (Saguinus oedipus) and saddle-back (S. fuscicollis) tamarins. Journal of Evolutionary Biology, 9, 5–42.
Cheverud, J. M. (1996b). Developmental integration and the evolution of pleiotropy. American Zoologist, 36, 44–50.
Eble, G. (2004). The macroevolution of phenotypic integration. In Phenotypic Integration, ed. Pigliucci, M. and Preston, K.. Oxford: Oxford University Press, pp. 253–73.
Emerson, S. B. and Hastings, P. A. (1998). Morphological correlations in evolution: Consequences for phylogenetic analysis. The Quarterly Review of Biology, 73, 141–62.
Felsenstein, J. (1973). Maximum likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Systematic Zoology, 22, 240–49.
Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist, 125, 1–15.
Flynn, J. J. and Nedbal, M. A. (1998). Phylogeny of the carnivora (mammalia): Congruence versus incompatability among multiple data sets. Molecular Phylogenetics and Evolution, 9, 414–26.
Flynn, J. J. and Wesley-Hunt, G. D. (2005). Carnivora. In The Rise of Placental Mammals: Origins and Relationships of the Major Extant Clades, ed. Archibald, D. and Rose, K.. Baltimore, MD: Johns Hopkins University Press, pp. 175–98.
Flynn, J. J., Nedbal, M. A., Dragoo, J. W. and Honeycutt, R. L. (2000). Whence the red panda?Molecular Phylogenetics and Evolution, 17, 190–99.
Flynn, J. J., Finarelli, J. A., Zehr, S., Hsu, J. and Nedbal, M. A. (2005). Molecular phylogeny of the Carnivora (Mammalia): assessing the impact of increased sampling on resolving enigmatic relationships. Systematic Biology, 54, 317–37.
Gilbert, S. F., Opitz, J. M. and Raff, R. A. (1996). Resynthesizing evolutionary and developmental biology. Developmental Biology, 173, 357–72.
Gonzáles-José, R., Escapa, I., Neves, W. A., Cúneo, R. and Pucciarelli, H. M. (2008). Cladistical analysis of continuous modularized traits provides phylogenetic signal in Homo evolution. Nature, 453, 775–78.
Goswami, A. (2006a). Cranial modularity shifts during mammalian evolution. American Naturalist, 168, 270–80.
Goswami, A. (2006b). Morphological integration in the carnivoran skull. Evolution, 60, 169–83.
Goswami, A. (2007a). Cranial integration, phylogeny, and diet in australodelphian marsupials. PLoS One, 2, e995.
Goswami, A. (2007b). Cranial modularity and sequence heterochrony in mammals. Evolution & Development, 9, 290–98.
Goswami, A. and Polly, P. D. (2010). The influence of modularity on cranial morphological disparity in carnivora and primates (Mammalia). PLoS One, 5, e9517.
Gower, J. C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53, 325–38.
Harris, S. R., Gower, D. J. and Wilkinson, M. (2003). Intraorganismal homology, character construction, and the phylogeny of aetosaurian archosaurs (Reptilia, Diapsida). Systematic Biology, 52, 239–52.
Huelsenbeck, J. P. and Nielsen, R. (1999). Effect of nonindependence substitution on phylogenetic accuracy. Systematic Biology, 48, 317–28.
Hunt, R. M. J. and Tedford, R. H. (1993). Phylogenetic relationships within aeluroid Carnivora and implications of their temporal and geographic distribution. In Mammal Phylogeny ed. Szalay, F. S., Novacek, M. J. and McKenna, M. C.. New York, NY: Springer, pp. 53–73.
Kangas, A. T., Evans, A. R., Thesleff, I. and Jernvall, J. (2004). Non-independence of mammalian dental characters. Nature, 432, 211–14.
Kluge, A. G. (1989). A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Systematic Zoology, 38, 7–25.
Kluge, A. G. and Farris, J. S. (1969). Quantitative phyletics and evolution of anurans. Systematic Zoology, 18, 1–32.
Kluge, A. G. and Wolf, A. J. (1993). Cladistics: what's in a word?Cladistics – The International Journal of the Willi Hennig Society, 9, 183–99.
Maddison, W. P. (2000). Testing character correlation using pairwise comparisons on a phylogeny. Journal of Theoretical Biology, 202, 195–204.
Marroig, G. and Cheverud, J. M. (2001). A comparison of phenotypic variation and covariation patterns and the role of phylogeny, ecology, and ontogeny during cranial evolution of New World monkeys. Evolution, 55, 2576–600.
Marroig, G., Vivo, M. and Cheverud, J. M. (2004). Cranial evolution in Sakis (Pithecia, Platyrrhini) ii: evolutionary processes and morphological integration. Journal of Evolutionary Biology, 17, 144–55.
Moss, M. O. and Young, R. W. (1960). A functional approach to craniology. American Journal of Physical Anthropology, 18, 281–91.
Myers, P. (2000). Carnivora (on-line), animal diversity web. .
Naylor, G. J. P. and Adams, D. C. (2001). Are the fossil data really at odds with the molecular data? Morphological evidence for Cetartiodactyla phylogeny reexamined. Systematic Biology, 50, 444–53.
Nowak, R. M. (1999). Walker's Mammals of the World, 6th ed. Baltimore, MD: Johns Hopkins University Press.
O'Keefe, F. R. and Wagner, P. J. (2001). Inferring and testing hypotheses of cladistic character dependence by using character compatibility. Systematic Biology, 50, 657–75.
Olson, E. C. and Miller, R. L. (1951). A mathematical model applied to the evolution of species. Evolution, 5, 325–38.
Olson, E. C. and Miller, R. L. (1958). Morphological Integration. Chicago, IL: University of Chicago Press.
Otto, S. P. and Day, T. (2007). A Biologist's Guide to Mathematical Modeling in Ecology and Evolution. Princeton, NJ: Princeton University Press.
Pigliucci, M. and Preston, K. (2004). Phenotypic Integration. Oxford: Oxford University Press.
Polly, P. D. (2005). Development and phenotypic correlations: the evolution of tooth shape in Sorex araneus. Evolution & Development, 7, 29–41.
Polly, P. D., Head, J. J. and Cohn, M. J. (2001). Testing modularity and dissociation: the evolution of regional proportions in snakes. In Beyond Heterochrony: The Evolution of Development, ed. Zelditch, M. L.. New York, NY: Wiley-Liss, pp. 305–35.
Read, A. F. and Nee, S. (1995). Inference from binary comparative data. Journal of Theoretical Biology, 173, 99–108.
Rieppel, O. and Kearney, M. (2002). Similarity. Biological Journal of the Linnean Society, 75, 59–82.
Sadleir, R. W. and Makovicky, P. J. (2008). Cranial shape and correlated characters in crocodile evolution. Journal of Evolutionary Biology, 21, 1578–96.
Sanchez-Villagra, M. R. and Williams, B. (1998). Levels of homoplasy in the evolution of the mammalian skeleton. Journal of Mammalian Evolution, 5, 113–26.
Schlosser, G. and Wagner, G. P. (2004). Modularity in Development and Evolution. Chicago, IL: University of Chicago Press.
Schwenk, K. (2001). Functional units and their evolution. In The Character Concept in Evolutionary Biology, ed. Wagner, G. P.. San Diego, CA: Academic Press, pp. 165–98.
Shubin, N. and Davis, M. C. (2004). Modularity in the evolution of vertebrate appendages. In Modularity in Development and Evolution, ed. Schlosser, G. and Wagner, G. P.. Chicago, IL: University of Chicago Press, pp. 429–40.
Steppan, S. J. (1997). Phylogenetic analysis of phenotypic covariance structure. II. Reconstructing matrix evolution. Evolution, 51, 587–94.
Strait, D. S. (2001). Integration, phylogeny, and the hominid cranial base. American Journal of Physical Anthropology, 114, 273–97.
Tedford, R. H., Taylor, B. E. and Wang, X. (1995). Phylogeny of the Canidae (Carnivora: Canidae): the living taxa. American Museum Novitates, 3146, 1–37.
Thorogood, P. (1993). Differentiation and morphogenesis of cranial skeletal tissues. In The Skull, ed. Hanken, J. and Hall, B. K.. Chicago, IL: University of Chicago Press, pp. 112–52.
Van Der Klaauw, C. J. (1948–1952). Size and position of the functional components of the skull. Archives Neerlandaises de Zoologie, 9, 1–559.
Vermeij, G. J. (1973). Adaptation, versatility, and evolution. Systematic Zoology, 22, 466–77.
Wagner, G. P. (1995). Adaptation and the modular design of organisms. Advances in Artificial Life, 929, 317–28.
Wagner, G. P. (1996). Homologues, natural kinds and the evolution of modularity. American Zoologist, 36, 36–43.
Wagner, G. P. and Altenberg, L. (1996). Perspective: complex adaptations and the evolution of evolvability. Evolution, 50, 967–76.
Wagner, P. J. (1998). A likelihood approach for evaluating estimates of phylogenetic relationships among fossil taxa. Palaeobiology, 24, 430–49.
Wesley-Hunt, G. D. and Flynn, J. J. (2005). Phylogeny of the Carnivora: basal relationships among the carnivoramorphans, and assessment of the position of ‘Miacoidea’ relative to crown-clade Carnivora. Journal of Systematic Palaeontology, 3, 1–28.
Williams, B. (2007). Comparing levels of homoplasy in the primate skeleton. Journal of Human Evolution, 52, 480–89.
Wyss, A. R. and Flynn, J. J. (1993). A phylogenetic analysis and definition of the carnivora. In Mammal Phylogeny, ed. Szalay, F. S., Novacek, M. J. and McKenna, M. C.. New York, NY: Springer, pp. 32–52.
Yoder, A. D., Burns, M. M., Zehr, S., et al. (2003). Single origin of Malagasy Carnivora from an African ancestor. Nature, 421, 734–37.
Zelditch, M. L. (1988). Ontogenetic variation in patterns of phenotypic integration in the laboratory rat. Evolution, 42, 28–41.
Zelditch, M. L. and Carmichael, A. C. (1989a). Growth and intensity of integration through postnatal growth in the skull of Sigmodon fulviventer. Journal of Mammalogy, 70, 477–84.
Zelditch, M. L. and Carmichael, A. C. (1989b). Ontogenetic variation in patterns of developmental and functional integration in skulls of Sigmodon fuliviventer. Evolution, 43, 814–24.
Zelditch, M. L., Sheets, H. D. and Fink, W. L. (2001). The spatial complexity and evolutionary dynamics of growth. In Beyond Heterochrony: The Evolution of Development, ed. Zelditch, M. L.. New York, NY: Wiley-Liss, pp. 145–94.