Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 8
  • Print publication year: 2010
  • Online publication date: July 2014

8 - The biogeography of carnivore ecomorphology



Traditional studies of biodiversity are mainly concerned with patterns of taxonomic richness. In neontology, particularly conservation biology, the focus is generally at the species level (Reid, 1998; Mittermeier et al., 2005), while in paleontology, the genus and family levels are often used as proxies (Sepkoski, 1988; Bambach et al., 2004). However, there are of course other aspects to diversity, including genetic diversity (e.g. Petit et al., 2003) and phylogenetic diversity (Faith, 1992). A further type of diversity that has generated some interest over the past decade or so is morphological diversity, often referred to as disparity (Gould, 1991; Foote, 1997). This kind of diversity, which, importantly, does not necessarily covary with richness measures, takes as its study the variation in morphology or morphological types in a study group at a particular time or place. The focal level is generally a higher taxonomic category, such as a Family or Order, but can also be a non-monophyletic adaptive category such as carnivore or herbivore, as the object is not in the first instance to trace the evolution of a specific clade, but to investigate the range of adaptations realised by a group of organisms in a particular setting, or, in other words, the totality of their context-specific ecomorphology.

Such studies of ecomorphology can be used to investigate differences in ecological structure in time and space and help differentiate between processes such as selective or random extinctions. It leads to a much fuller depiction of biological diversity than richness alone. Ecomorphology and analysis of disparity has been used at various scales to study the diversification of vertebrates (Van Valkenburgh, 1989, 1994; Jernvall et al., 1996; Werdelin, 1996; Wesley-Hunt, 2005), invertebrates (Foote, 1994, 1997; Wills et al., 1994; Wills, 1998; Roy et al., 2001), and plants (Lupia, 1999) over their evolutionary history.

Antonovics, J. and van Tienderen, P. H. (1991). Ontoecogenophyloconstrains? The chaos of constraint terminology. Trends in Ecology and Evolution, 6, 166–68.
Bambach, R. K., Knoll, A. H. and Wang, S. C. (2004). Origination, extinction, and mass depletions of marine diversity. Paleobiology, 30, 522–42.
Baskin, J. A. (1982). Tertiary Procyoninae (Mammalia: Carnivora) of North America. Journal of Vertebrate Paleontology, 2, 71–93.
Benzécri, J.-P. and Benzécri, F. (1980). Pratique de L'Analyse des Données. 1. Analyse des Correspondances. Exposé Élémentaire. Paris: Dunod.
Crusafont Pairó, M. and Truyols Santonja, J. (1956). A biometric study of the evolution of fissiped carnivores. Evolution, 10, 314–32.
Crusafont Pairó, M. and Truyols Santonja, J. (1957). Estudios masterométricos en la evolución de los Fissipedos. Boletin del Instituto Geológico i Minero de España, 68, 1–140.
Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1–10.
Foote, M. (1992). Paleozoic record of morphological diversity in blastozoan echinoderms. Proceedings of the National Academy of Sciences, 89, 7325–29.
Foote, M. (1994). Morphological disparity in Ordovician–Devonian crinoids and the early saturation of morphological space. Paleobiology, 20, 320–44.
Foote, M. (1995). Morphological diversification of Paleozoic crinoids. Paleobiology, 21, 273–99.
Foote, M. (1997). The evolution of morphological diversity. Annual Review of Ecology and Systematics, 28, 129–52.
Gittleman, J. L. (1986). Carnivore life history patterns: allometric, phylogenetic, and ecological associations. American Naturalist, 127, 744–71.
Gould, S. J. (1991). The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: why we must strive to quantify morphospace. Paleobiology, 17, 411–23.
Hammer, Ø. and Harper, D. A. T. (2001). PAST: Palaeontological Statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 9.
Hamming, R. W. (1950). Error detecting and error detecting codes. Bell System Technical Journal, 26, 147–60.
Hill, M. O. and Gauch, H. G. J. (1980). Detrended correspondence analysis: an improved ordination technique. Vegetatio, 42, 47–58.
Holliday, J. A. and Steppan, S. J. (2004). Evolution of hypercarnivory: the effect of specialization on morphological and taxonomic diversity. Paleobiology, 30, 108–28.
Jernvall, J. (1995). Mammalian molar cusp patterns: developmental mechanisms of diversity. Acta Zoologica Fennica, 198, 1–61.
Jernvall, J., Hunter, J. P. and Fortelius, M. (1996). Molar tooth diversity, disparity, and ecology in Cenozoic ungulate radiations. Science, 274, 1489–92.
Legendre, P. and Legendre, L. (1998). Numerical Ecology. New York, NY: Elsevier.
Lucas, P. W. (1979). The dental–dietary adaptations of mammals. Neues Jahrbuch für Geologie, Paläontologie und Mineralogie, Monatshefte, 1979(8), 486–512.
Lucas, P. W. and Peters, C. R. (2000). Function of postcanine tooth crown shape in mammals. In Development, Function and Evolution of Teeth, ed. Teaford, M. F., Smith, M. M. and Ferguson, M. W. J.. Cambridge: Cambridge University Press, pp. 282–89.
Lupia, R. (1999). Discordant morphological disparity and taxonomic diversity during the Cretaceous angiosperm radiation: North American pollen record. Paleobiology, 25, 1–28.
Maynard Smith, J., Burian, R., Kauffman, S., et al. (1985). Developmental constraints and evolution. The Quarterly Review of Biology, 6, 265–87.
McNab, B. K. (1971). On the ecological significance of Bergmann's rule. Ecology, 52, 845–54.
McNab, B. K. (1989). Basal rate of metabolism, body size, and food habits in the order Carnivora. In Carnivore Behavior, Ecology, and Evolution, ed. Gittleman, J. L.. Ithaca, NY: Cornell University Press, pp. 335–54.
Mittermeier, R. A., Robles Gil, P., Hoffman, M., et al. (2005). Hotspots Revisited: Earth's Biologically Richest and Most Endangered Terrestrial Ecoregions. Arlington, VA: Conservation International.
Petit, R. J., Aguinagalde, I., de Beaulieu, J.-L., et al. (2003). Glacial refugia: hotspots but not melting pots of genetic diversity. Science, 300, 1563–65.
Reid, W. V. (1998). Biodiversity hotspots. Trends in Ecology and Evolution, 13, 275–80.
Roy, K., Balch, D. P. and Hellberg, M. E. (2001). Spatial patterns of morphological diversity across the Indo-Pacific: analyses using strombid gastropods. Proceedings of the Royal Society B, 268, 2503–08.
Sepkoski, J. J.. (1988). Alpha, beta, or gamma: where does all the diversity go?Paleobiology, 14, 221–34.
Van Valkenburgh, B. (1985). Locomotor diversity within past and present guilds of large predatory mammals. Paleobiology, 11, 406–28.
Van Valkenburgh, B. (1988). Trophic diversity in past and present guilds of large predatory mammals. Paleobiology, 14, 155–73.
Van Valkenburgh, B. (1989). Carnivore dental adaptations and diet: a study of trophic diversity within guilds. In Carnivore Behavior, Ecology, and Evolution, ed. Gittleman, J. L.. Ithaca, NY: Cornell University Press, pp. 410–36.
Van Valkenburgh, B. (1990). Skeletal and dental predictors of body mass in carnivores. In: BodySize in Mammalian Paleobiology: Estimation and Biological Implications, ed. Damuth, J. and MacFadden, B. J.. Cambridge: Cambridge University Press, pp. 181–205.
Van Valkenburgh, B. (1991). Iterative evolution of hypercarnivory in canids (Mammalia: Carnivora): evolutionary interactions among sympatric predators. Paleobiology, 17, 340–62.
Van Valkenburgh, B. (1994). Ecomorphological analysis of fossil vertebrates and their communities. In Ecomorphology, ed. Wainwright, P. C. and Reilly, S. M.. Chicago, IL: University of Chicago Press, pp. 140–66.
Van Valkenburgh, B. (1996). Feeding behavior in free-ranging large African carnivores. Journal of Mammalogy, 77, 240–54.
Wang, X. (1994). Phylogenetic systematics of the Hesperocyoninae (Carnivora: Canidae). Bulletin of the American Museum of Natural History, 221, 1–207.
Wang, X., Tedford, R. H. and Taylor, B. E. (1999). Phylogenetic systematics of the Borophaginae (Carnivora: Canidae). Bulletin of the American Museum of Natural History, 243, 1–391.
Werdelin, L. (1989). Constraint and adaptation in the bone-cracking canid Osteoborus (Mammalia: Canidae). Paleobiology, 15, 387–401.
Werdelin, L. (1996). Carnivoran ecomorphology: a phylogenetic perspective. In Carnivore Behavior, Ecology, and Evolution. Volume 2, ed. Gittleman, J. L.. Ithaca, NY, Cornell University Press, pp. 582–624.
Werdelin, L. (1999). Pachycrocuta (hyaenids) from the Pliocene of east Africa. Paläontologisches Zeitschrift, 73, 157–65.
Werdelin, L. and Lewis, M. E. (2005). Plio-Pleistocene Carnivora of eastern Africa: species richness and turnover patterns. Zoological Journal of the Linnean Society, 144, 121–44.
Werdelin, L. and Peigné, S. (2010). Carnivora. In Cenozoic Mammals of Africa, ed. Werdelin, L. and Sanders, W. J.. Berkeley, CA: University of California Press, pp. 609–30.
Werdelin, L. and Solounias, N. (1991). The Hyaenidae: taxonomy, systematics and evolution. Fossils and Strata, 30, 1–104.
Werdelin, L. and Solounias, N. (1996). The evolutionary history of hyaenas in Europe and western Asia during the Miocene. In The Evolution of Western Eurasian Neogene Mammal Faunas, ed. Bernor, R. L., Fahlbusch, V. and Mittmann, H.-W.. New York, NY: Columbia University Press, pp. 290–306.
Wesley-Hunt, G. D. (2005). The morphological diversification of carnivores in North America. Paleobiology, 31, 35–55.
Wills, M. A., Briggs, D. E. G. and Fortey, R. A. (1994). Disparity as an evolutionary index: a comparison of Cambrian and Recent arthropods. Paleobiology, 20, 93–130.
Wills, M. A. (1998). Crustacean disparity through the Phanerozoic: comparing morphological and stratigraphic data. Biological Journal of the Linnean Society, 65, 455–500.