Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2009
  • Online publication date: May 2010

2 - Synthesis I: arc- and laser-vaporization, and heat treatment methods

Summary

As we saw in the last chapter, the excitement surrounding carbon nanotubes was originally sparked by Iijima's production of highly perfect multiwalled tubes using arc-evaporation in 1991. Although the catalytic production of carbon tubules had been known for decades, the structures discovered by Iijima displayed a degree of perfection much greater than those seen in catalytic tubes. The first synthesis of single-walled nanotubes in 1993 also involved arc-evaporation, this time with metal-impregnated electrodes. Arc-evaporation remains an important method of nanotube synthesis, and will be discussed in detail in this chapter. The chapter begins with a description of the practical aspects of the arc synthesis of multiwalled nanotubes. A summary of the various models that have been put forward for the growth of multiwalled tubes in the arc is then given. This is followed by a discussion of the production of multiwalled nanotubes by high-temperature heat treatment of disordered carbon. The synthesis of single-walled carbon nanotubes by arc-evaporation and by laser-vaporization is then covered, and the possible mechanisms of nanotube formation in these processes summarized. Finally, the arc synthesis of double-walled nanotubes is described.

Production of multiwalled nanotubes by arc-evaporation

Early work

The original method used by Iijima to prepare nanotubes (2.1) differed slightly from the Krätschmer–Huffman technique for C60 production in that the graphite electrodes were held a short distance apart during arcing, rather than being kept in contact. Under these conditions, some of the carbon which evaporated from the anode recondensed as a hard cylindrical deposit on the cathodic rod. It was the central part of this deposit that Iijima found to contain both nanotubes and nanoparticles.

Related content

Powered by UNSILO