Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T23:24:08.592Z Has data issue: false hasContentIssue false

5 - Carbon nanotube equilibrium properties

Published online by Cambridge University Press:  05 June 2012

H.-S. Philip Wong
Affiliation:
Stanford University
Deji Akinwande
Affiliation:
University of Texas, Austin
Get access

Summary

Introduction

This chapter explores the equilibrium and thermodynamic electronic properties of single-wall CNTs. Equilibrium refers to the state of a system in the absence of external forces, and thermodynamics accounts for the evolution of the macroscopic properties of the system with temperature. The system we are referring to here is of course CNTs, and the properties of interest include the DOS, group velocity, effective mass, and charge carrier density. These properties are of central importance for understanding and predicting the electrical, optical, and thermal behavior of CNTs. Our learning path will utilize the development of analytical expressions of these properties to provide insight and understanding regarding the inherent solid-state behavior. Additionally, analytical expressions are especially desirable for compact modeling of nanotube devices.

In order to be comfortable with the discussion of the equilibrium properties, the reader should be familiar with the band structure of CNTs developed in the previous chapter. In fact, it will be worthwhile to have in hand a copy of all the band structure figures shown in Chapter 4 as one goes through this chapter. The equilibrium properties will be employed repeatedly in subsequent chapters to describe transport in CNTs under the quasi-equilibrium assumption applicable at low energies. We begin by discussing the DOS of the free-electron gas in 1D space. This provides perspective, allowing us to appreciate and relate to the actual DOS in CNTs which are quasi-1D solids. In general, the DOS is of fundamental importance in understanding crystalline solids, and many of the other equilibrium properties can be derived from this important parameter.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×