Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T16:08:18.286Z Has data issue: false hasContentIssue false

Chapter 11 - Hypoxic–ischemic encephalopathy, cardiac arrest, and cardiac encephalopathy

from Part II - Stroke syndromes

Published online by Cambridge University Press:  05 August 2016

Louis R. Caplan
Affiliation:
Department of Neurology, Beth Israel Deaconess Medical Center, Massachusetts
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Caplan's Stroke
A Clinical Approach
, pp. 364 - 385
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hansen, AJ. Effect of anoxia on ion distribution in the brain. Physiol Rev. 1985;65(1):101148.Google Scholar
Choi, DW. Calcium-mediated neurotoxicity: Relationship to specific channel types and role in ischemic damage. Trends Neurosci. 1988;11(10):465469.Google Scholar
Hossmann, KA. Pathophysiological basis of translational stroke research. Folia Neuropathol. 2009;47(3):213227.Google Scholar
Kristian, T, Siesjo, BK. Calcium in ischemic cell death. Stroke. 1998;29(3):705718.CrossRefGoogle ScholarPubMed
Starkov, AA, Chinopoulos, C, Fiskum, G. Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury. Cell Calcium. 2004;36(3–4):257264.Google Scholar
Sanderson, TH, Reynolds, CA, Kumar, R, Przyklenk, K, Huttemann, M. Molecular mechanisms of ischemia-reperfusion injury in brain: Pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol. 2013;47(1):923.CrossRefGoogle ScholarPubMed
Wang, Q, Tang, XN, Yenari, MA. The inflammatory response in stroke. J Neuroimmunol. 2007;184(1–2): 5368.Google Scholar
Ames, A 3rd, Wright, RL, Kowada, M, Thurston, JM, Majno, G. Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol. 1968;52(2):437453.Google Scholar
Fischer, EG, Ames, A 3rd, Hedley-Whyte, ET, O’Gorman, S. Reassessment of cerebral capillary changes in acute global ischemia and their relationship to the “no-reflow phenomenon”. Stroke. 1977;8(1):3639.Google Scholar
Singhal, AB, Topcuoglu, MA, Koroshetz, WJ. Diffusion MRI in three types of anoxic encephalopathy. J Neurol Sci. 2002; 196 (1–2): 3740.CrossRefGoogle ScholarPubMed
Brierley, JB. Experimental hypoxic brain damage. J Clin Pathol Suppl (R Coll Pathol). 1977;11:181187.Google Scholar
Nichol, G, Thomas, E, Callaway, CW, et al. Regional variation in out-of-hospital cardiac arrest incidence and outcome. JAMA. 2008;300(12):14231431.CrossRefGoogle ScholarPubMed
Morrison, LJ, Neumar, RW, Zimmerman, JL, et al. Strategies for improving survival after in-hospital cardiac arrest in the United States: 2013 consensus recommendations: A consensus statement from the American Heart Association. Circulation. 2013;127(14):15381563.Google Scholar
Chang, WT, Ma, MH, Chien, KL, et al. Postresuscitation myocardial dysfunction: Correlated factors and prognostic implications. Intensive Care Med. 2007;33(1):8895.CrossRefGoogle ScholarPubMed
Ruiz-Bailen, M, Aguayo de Hoyos, E, Ruiz-Navarro, S, et al. Reversible myocardial dysfunction after cardiopulmonary resuscitation. Resuscitation. 2005;66(2):175181.Google Scholar
Adrie, C, Adib-Conquy, M, Laurent, I, et al. Successful cardiopulmonary resuscitation after cardiac arrest as a “sepsis-like” syndrome. Circulation. 2002;106(5):562568.Google Scholar
Nolan, JP, Neumar, RW, Adrie, C, et al. Post-cardiac arrest syndrome: Epidemiology, pathophysiology, treatment, and prognostication. A Scientific Statement from the International Liaison Committee on Resuscitation; the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; the Council on Stroke. Resuscitation. 2008;79(3):350379.Google Scholar
Teodorescu, C, Reinier, K, Dervan, C, et al. Factors associated with pulseless electric activity versus ventricular fibrillation: The Oregon sudden unexpected death study. Circulation. 2010;122(21):21162122.Google Scholar
Cobb, LA, Fahrenbruch, CE, Olsufka, M, Copass, MK. Changing incidence of out-of-hospital ventricular fibrillation, 1980–2000. JAMA. 2002;288(23):30083013.Google Scholar
Youngquist, ST, Kaji, AH, Niemann, JT. Beta-blocker use and the changing epidemiology of out-of-hospital cardiac arrest rhythms. Resuscitation. 2008;76(3):376380.CrossRefGoogle ScholarPubMed
Cummins, RO, Ornato, JP, Thies, WH, Pepe, PE. Improving survival from sudden cardiac arrest: The “chain of survival” concept. A statement for health professionals from the Advanced Cardiac Life Support Subcommittee and the Emergency Cardiac Care Committee, American Heart Association. Circulation. 1991;83(5):18321847.Google Scholar
Huikuri, HV, Castellanos, A, Myerburg, RJ. Sudden death due to cardiac arrhythmias. N Engl J Med. 2001;345(20):14731482.Google Scholar
Berdowski, J, Berg, RA, Tijssen, JG, Koster, RW. Global incidences of out-of-hospital cardiac arrest and survival rates: Systematic review of 67 prospective studies. Resuscitation. 2010;81(11):14791487.Google Scholar
Rubart, M, Zipes, DP. Mechanisms of sudden cardiac death. J Clin Invest. 2005;115(9):23052315.Google Scholar
Go, AS, Mozaffarian, D, Roger, VL, et al. Heart disease and stroke statistics – 2013 update: A report from the American Heart Association. Circulation. 2013;127(1):e6e245.Google Scholar
Hollenberg, J, Herlitz, J, Lindqvist, J, et al. Improved survival after out-of-hospital cardiac arrest is associated with an increase in proportion of emergency crew–witnessed cases and bystander cardiopulmonary resuscitation. Circulation. 2008;118(4):389396.Google Scholar
Adielsson, A, Hollenberg, J, Karlsson, T, et al. Increase in survival and bystander CPR in out-of-hospital shockable arrhythmia: Bystander CPR and female gender are predictors of improved outcome. Experiences from Sweden in an 18-year perspective. Heart. 2011;97(17):13911396.CrossRefGoogle Scholar
Chan, PS, Spertus, JA, Krumholz, HM, et al. A validated prediction tool for initial survivors of in-hospital cardiac arrest. Arch Intern Med. 2012;172(12):947953.CrossRefGoogle ScholarPubMed
Merchant, RM, Yang, L, Becker, LB, et al. Incidence of treated cardiac arrest in hospitalized patients in the United States. Crit Care Med. 2011;39(11):24012406.CrossRefGoogle ScholarPubMed
Field, JM, Hazinski, MF, Sayre, MR, et al. Part 1: Executive summary: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2010;122(18 Suppl 3): S640656.Google Scholar
Spaulding, CM, Joly, LM, Rosenberg, A, et al. Immediate coronary angiography in survivors of out-of-hospital cardiac arrest. N Engl J Med. 1997;336(23):16291633.Google Scholar
Radsel, P, Knafelj, R, Kocjancic, S, Noc, M. Angiographic characteristics of coronary disease and postresuscitation electrocardiograms in patients with aborted cardiac arrest outside a hospital. Am J Cardiol. 2011;108(5):634638.Google Scholar
Nolan, JP, Lyon, RM, Sasson, C, et al. Advances in the hospital management of patients following an out of hospital cardiac arrest. Heart. 2012;98(16):12011206.Google Scholar
Sideris, G, Voicu, S, Dillinger, JG, et al. Value of post-resuscitation electrocardiogram in the diagnosis of acute myocardial infarction in out-of-hospital cardiac arrest patients. Resuscitation. 2011;82(9):11481153.Google Scholar
Busto, R, Dietrich, WD, Globus, MY, Ginsberg, MD. Postischemic moderate hypothermia inhibits CA1 hippocampal ischemic neuronal injury. Neurosci Lett. 1989;101(3):299304.Google Scholar
Buchan, A, Pulsinelli, WA. Hypothermia but not the N-methyl-D-aspartate antagonist, MK-801, attenuates neuronal damage in gerbils subjected to transient global ischemia. J Neurosci. 1990;10(1):311316.CrossRefGoogle Scholar
Colbourne, F, Grooms, SY, Zukin, RS, Buchan, AM, Bennett, MV. Hypothermia rescues hippocampal CA1 neurons and attenuates down-regulation of the AMPA receptor GluR2 subunit after forebrain ischemia. Proc Natl Acad Sci USA. 2003;100(5):29062910.CrossRefGoogle ScholarPubMed
Chopp, M, Chen, H, Dereski, MO, Garcia, JH. Mild hypothermic intervention after graded ischemic stress in rats. Stroke. 1991;22(1):3743.Google Scholar
Leonov, Y, Sterz, F, Safar, P, et al. Mild cerebral hypothermia during and after cardiac arrest improves neurologic outcome in dogs. J Cereb Blood Flow Metab. 1990;10(1):5770.Google Scholar
Sterz, F, Safar, P, Tisherman, S, Radovsky, A, Kuboyama, K, Oku, K. Mild hypothermic cardiopulmonary resuscitation improves outcome after prolonged cardiac arrest in dogs. Crit Care Med. 1991;19(3):379389.Google Scholar
Nozari, A, Safar, P, Stezoski, SW, et al. Mild hypothermia during prolonged cardiopulmonary cerebral resuscitation increases conscious survival in dogs. Crit Care Med. 2004;32(10):21102116.CrossRefGoogle ScholarPubMed
Sick, TJ, Xu, G, Perez-Pinzon, MA. Mild hypothermia improves recovery of cortical extracellular potassium ion activity and excitability after middle cerebral artery occlusion in the rat. Stroke. 1999;30(11):24162421; discussion 2422.Google Scholar
Erecinska, M, Thoresen, M, Silver, IA. Effects of hypothermia on energy metabolism in Mammalian central nervous system. J Cereb Blood Flow Metab. 2003;23(5):513530.CrossRefGoogle ScholarPubMed
Busto, R, Globus, MY, Dietrich, WD, Martinez, E, Valdes, I, Ginsberg, MD. Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain. Stroke. 1989;20(7):904910.Google Scholar
Harada, K, Maekawa, T, Tsuruta, R, et al. Hypothermia inhibits translocation of CaM kinase II and PKC-alpha, beta, gamma isoforms and fodrin proteolysis in rat brain synaptosome during ischemia-reperfusion. J Neurosci Res. 2002;67(5):664669.Google Scholar
Globus, MY, Alonso, O, Dietrich, WD, Busto, R, Ginsberg, MD. Glutamate release and free radical production following brain injury: Effects of posttraumatic hypothermia. J Neurochem. 1995;65(4):17041711.Google Scholar
Zheng, Z, Yenari, MA. Post-ischemic inflammation: Molecular mechanisms and therapeutic implications. Neurol Res. 2004;26(8):884892.Google Scholar
Fukuda, H, Tomimatsu, T, Watanabe, N, et al. Post-ischemic hypothermia blocks caspase-3 activation in the newborn rat brain after hypoxia-ischemia. Brain Res. 2001;910(1–2):187191.Google Scholar
Hamann, GF, Burggraf, D, Martens, HK, et al. Mild to moderate hypothermia prevents microvascular basal lamina antigen loss in experimental focal cerebral ischemia. Stroke. 2004;35(3):764769.Google Scholar
Group. HaCAS. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346(8):549556.CrossRefGoogle Scholar
Bernard, SA, Gray, TW, Buist, MD, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346(8):557563.Google Scholar
Peberdy, MA, Callaway, CW, Neumar, RW, et al. Part 9: Post-cardiac arrest care: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2010;122(18 Suppl 3): S768786.CrossRefGoogle ScholarPubMed
Nielsen, N, Wetterslev, J, Cronberg, T, et al. Targeted temperature management at 33° C versus 36° C after cardiac arrest. N Engl J Med. 2013;369(23):21972206.Google Scholar
Castren, M, Nordberg, P, Svensson, L, et al. Intra-arrest transnasal evaporative cooling: A randomized, prehospital, multicenter study (PRINCE: Pre-ROSC IntraNasal Cooling Effectiveness). Circulation. 2010;122(7):729736.Google Scholar
Laurent, I, Monchi, M, Chiche, JD, et al. Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. J Am Coll Cardiol. 2002;40(12):21102116.Google Scholar
Kilgannon, JH, Roberts, BW, Reihl, LR, et al. Early arterial hypotension is common in the post-cardiac arrest syndrome and associated with increased in-hospital mortality. Resuscitation. 2008;79(3):410416.Google Scholar
Spivey, WH AN, Safar, P, et al. Correlation of blood pressure with mortality and neurologic recovery in comatose postresuscitation patients (abstract). Ann Emerg Med. 1991;20:453.Google Scholar
Martin, DR PD, Brown, CG, et al. Relation between initial post-resuscitation systolic blood pressure and neurologic outcome following cardiac arrest (abstract). Ann Emerg Med. 1993;22:206.Google Scholar
Mullner, M SF, Binder, M, Hellwagner, K, Meron, G, Herkner, H, Laggner, A. Arterial blood pressure after human cardiac arrest and neurologic recovery. Stroke. 1996;27:5962.Google Scholar
Beylin, ME, Perman, SM, Abella, BS, et al. Higher mean arterial pressure with or without vasoactive agents is associated with increased survival and better neurological outcomes in comatose survivors of cardiac arrest. Intensive Care Med. 2013;39(11):19811988.Google Scholar
Nishizawa, H, Kudoh, I. Cerebral autoregulation is impaired in patients resuscitated after cardiac arrest. Acta Anaesthesiol Scan. 1996;40:11491153.Google Scholar
Sundgreen, C LF, Herzog, TM, Knudsen, GM, Boesgaard, S, Aldershvie, J. Autoregulation of cerebral blood flow in patients resuscitated from cardiac arrest. Stroke. 2001;32:128132.Google Scholar
Sterz, F, Leonov, Y, Safar, P, Radovsky, A, Tisherman, S, Oku, K. Hypertension with or without hemodilution after cardiac arrest in dogs. Stroke. 1990;21:11781184.Google Scholar
Safar, P, Xiao, F, Radovsky, A, et al. Improved cerebral resuscitation from cardiac arrest in dogs with mild hypothermia plus blood flow promotion. Stroke. 1996. 1996;27:105113.Google Scholar
Dellinger, RP, Carlet, JM, Masur, H, et al. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med. 2004;32(3):858873.Google Scholar
Sunde, K, Dunlop, O, Rostrup, M, Sandberg, M, Sjoholm, H, Jacobsen, D. Determination of prognosis after cardiac arrest may be more difficult after introduction of therapeutic hypothermia. Resuscitation. 2006;69(1):2932.Google Scholar
Gaieski, DF, Band, RA, Abella, BS, et al. Early goal-directed hemodynamic optimization combined with therapeutic hypothermia in comatose survivors of out-of-hospital cardiac arrest. Resuscitation. 2009;80(4):418424.Google Scholar
Tagami, T, Hirata, K, Takeshige, T, et al. Implementation of the fifth link of the chain of survival concept for out-of-hospital cardiac arrest. Circulation. 2012;126(5):589597.CrossRefGoogle ScholarPubMed
Caplan, LR. Cardiac arrest and other hypoxic ischemic insults. In Caplan, LR, Hurst, JW, Chimowitz, M, eds. Clinical Neurocardiology. New York: Marcel Dekker; 1999, 134.Google Scholar
Adams, JH, Brierley, JB, Connor, RC, Treip, CS. The effects of systemic hypotension upon the human brain. Clinical and neuropathological observations in 11 cases. Brain. 1966;89(2):235268.Google Scholar
Smith, ML, Auer, RN, Siesjo, BK. The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia. Acta Neuropathol. 1984;64(4):319332.Google Scholar
Takemoto, O, Tomimoto, H, Yanagihara, T. Induction of c-fos and c-jun gene products and heat shock protein after brief and prolonged cerebral ischemia in gerbils. Stroke. 1995;26(9):16391648.Google Scholar
Bottiger, BW, Schmitz, B, Wiessner, C, Vogel, P, Hossmann, KA. Neuronal stress response and neuronal cell damage after cardiocirculatory arrest in rats. J Cereb Blood Flow Metab. 1998;18(10):10771087.Google Scholar
Steriade, M, Glenn, LL. Neocortical and caudate projections of intralaminar thalamic neurons and their synaptic excitation from midbrain reticular core. J Neurophysiol. 1982;48(2):352371.Google Scholar
Parvizi, J, Damasio, A. Consciousness and the brainstem. Cognition. 2001;79(1–2):135160.Google Scholar
Berridge, CW. Noradrenergic modulation of arousal. Brain Res Rev. 2008;58(1):117.Google Scholar
Vogt, BA, Hof, PR, Friedman, DP, Sikes, RW, Vogt, LJ. Norepinephrinergic afferents and cytology of the macaque monkey midline, mediodorsal, and intralaminar thalamic nuclei. Brain Struct Funct. 2008;212(6):465479.Google Scholar
Fisher, CM. The neurological examination of the comatose patient. Acta Neurol Scand. 1969;45:Suppl 36:3156.Google Scholar
Dooling, EC, Richardson, EP Jr. Delayed encephalopathy after strangling. Arch Neurol. 1976;33(3):196199.Google Scholar
Jennett, B, Plum, F. Persistent vegetative state after brain damage. A syndrome in search of a name. Lancet. 1972;1(7753):734737.Google Scholar
Adams, JH, Graham, DI, Jennett, B. The neuropathology of the vegetative state after an acute brain insult. Brain. 2000;123(Pt 7):13271338.Google Scholar
Dougherty, JH Jr., Rawlinson, DG, Levy, DE, Plum, F. Hypoxic-ischemic brain injury and the vegetative state: Clinical and neuropathologic correlation. Neurology. 1981;31(8):991997.CrossRefGoogle ScholarPubMed
Jennett, B, Plum, F. Persistent vegetative state after brain damage. RN. 1972;35(10):ICU14.Google Scholar
Multi-Society Task Force on PVS. Medical aspects of the persistent vegetative state (2). N Engl J Med. 1994;330(22):15721579.CrossRefGoogle Scholar
Giacino, JT, Kalmar, K. Diagnostic and prognostic guidelines for the vegetative and minimally conscious states. Neuropsychol Rehabil. 2005;15(3–4):166174.Google Scholar
Laureys, S, Celesia, GG, Cohadon, F, et al. Unresponsive wakefulness syndrome: A new name for the vegetative state or apallic syndrome. BMC Med. 2010;8:68.Google Scholar
Bardin, JC, Fins, JJ, Katz, DI, et al. Dissociations between behavioural and functional magnetic resonance imaging-based evaluations of cognitive function after brain injury. Brain. 2011;134(3):769782.Google Scholar
Monti, MM, Vanhaudenhuyse, A, Coleman, MR, et al. Willful modulation of brain activity in disorders of consciousness. N Engl J Med. 2010;362(7):579589.Google Scholar
Giacino, JT, Ashwal, S, Childs, N, et al. The minimally conscious state: Definition and diagnostic criteria. Neurology. 2002;58(3):349353.Google Scholar
Luaute, J, Maucort-Boulch, D, Tell, L, et al. Long-term outcomes of chronic minimally conscious and vegetative states. Neurology. 2010;75(3):246252.Google Scholar
Jennett, B, Adams, JH, Murray, LS, Graham, DI. Neuropathology in vegetative and severely disabled patients after head injury. Neurology. 2001;56(4):486490.Google Scholar
Given, CA 2nd, Burdette, JH, Elster, AD, Williams, DW 3rd. Pseudo-subarachnoid hemorrhage: A potential imaging pitfall associated with diffuse cerebral edema. AJNR Am J Neuroradiol. 2003;24(2):254256.Google Scholar
Phan, TG, Wijdicks, EF, Worrell, GA, Fulgham, JR. False subarachnoid hemorrhage in anoxic encephalopathy with brain swelling. J Neuroimaging. 2000;10(4):236238.Google Scholar
Han, BK, Towbin, RB, De Courten-Myers, G, McLaurin, RL, Ball, WS Jr. Reversal sign on CT: Effect of anoxic/ischemic cerebral injury in children. AJNR Am J Neuroradiol. 1989;10(6):11911198.Google Scholar
Lovblad, KO, Wetzel, SG, Somon, T, et al. Diffusion-weighted MRI in cortical ischaemia. Neuroradiology. 2004;46(3):175182.Google Scholar
Siskas, N, Lefkopoulos, A, Ioannidis, I, Charitandi, A, Dimitriadis, AS. Cortical laminar necrosis in brain infarcts: Serial MRI. Neuroradiology. 2003;45(5):283288.Google Scholar
Komiyama, M, Nakajima, H, Nishikawa, M, Yasui, T. Serial MR observation of cortical laminar necrosis caused by brain infarction. Neuroradiology. 1998;40(12):771777.Google Scholar
Wanko, M, Garavelli, M, Bernardi, F, Niehaus, TA, Frauenheim, T, Elstner, M. A global investigation of excited state surfaces within time-dependent density-functional response theory. J Chem Phys. 2004;120(4):16741692.Google Scholar
Mlynash, M, Campbell, DM, Leproust, EM, et al. Temporal and spatial profile of brain diffusion-weighted MRI after cardiac arrest. Stroke. 2010;41(8):16651672.Google Scholar
Levy, DE, Caronna, JJ, Singer, BH, Lapinski, RH, Frydman, H, Plum, F. Predicting outcome from hypoxic-ischemic coma. JAMA. 1985;253(10):14201426.Google Scholar
Wijdicks, EF, Hijdra, A, Young, GB, Bassetti, CL, Wiebe, S. Practice parameter: Prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review): Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2006;67(2):203210.Google Scholar
De Georgia, M, Raad, M. Prognosis of coma after cardiac arrest in the era of hypothermia. Continuum (Minneap Minn). 2012;18(3):515531.Google Scholar
Randomized clinical study of thiopental loading in comatose survivors of cardiac arrest. Brain Resuscitation Clinical Trial I Study Group. N Engl J Med. 1986;314(7):397403.Google Scholar
Zandbergen, EG, Hijdra, A, Koelman, JH, et al. Prediction of poor outcome within the first 3 days of postanoxic coma. Neurology. 2006;66(1):6268.Google Scholar
Al Thenayan, E, Savard, M, Sharpe, M, Norton, L, Young, B. Predictors of poor neurologic outcome after induced mild hypothermia following cardiac arrest. Neurology. 2008;71(19):15351537.Google Scholar
Cronberg, T, Rundgren, M, Westhall, E, et al. Neuron-specific enolase correlates with other prognostic markers after cardiac arrest. Neurology. 2011;77(7):623630.Google Scholar
Rossetti, AO, Oddo, M, Logroscino, G, Kaplan, PW. Prognostication after cardiac arrest and hypothermia: A prospective study. Ann Neurol. 2010;67(3):301307.Google Scholar
Samaniego, EA, Mlynash, M, Caulfield, AF, Eyngorn, I, Wijman, CA. Sedation confounds outcome prediction in cardiac arrest survivors treated with hypothermia. Neurocrit Care. 2011;15(1):113119.Google Scholar
Edgren, E, Hedstrand, U, Kelsey, S, Sutton-Tyrrell, K, Safar, P. Assessment of neurological prognosis in comatose survivors of cardiac arrest. BRCT I Study Group. Lancet. 1994;343(8905):10551059.Google Scholar
Lee, YC, Phan, TG, Jolley, DJ, Castley, HC, Ingram, DA, Reutens, DC. Accuracy of clinical signs, SEP, and EEG in predicting outcome of hypoxic coma: A meta-analysis. Neurology. 2010;74(7):572580.Google Scholar
Schefold, JC, Storm, C, Kruger, A, Ploner, CJ, Hasper, D. The Glasgow Coma Score is a predictor of good outcome in cardiac arrest patients treated with therapeutic hypothermia. Resuscitation. 2009;80(6):658661.Google Scholar
Young, GB, Gilbert, JJ, Zochodne, DW. The significance of myoclonic status epilepticus in postanoxic coma. Neurology. 1990;40(12):18431848.Google Scholar
Lance, JW, Adams, RD. The syndrome of intention or action myoclonus as a sequel to hypoxic encephalopathy. Brain. 1963;86:111136.Google Scholar
Celesia, GG, Grigg, MM, Ross, E. Generalized status myoclonicus in acute anoxic and toxic-metabolic encephalopathies. Arch Neurol. 1988;45(7):781784.Google Scholar
Young, GB. The EEG in coma. J Clin Neurophysiol. 2000;17(5):473485.Google Scholar
Scollo-Lavizzari, G, Bassetti, C. Prognostic value of EEG in post-anoxic coma after cardiac arrest. Eur Neurol. 1987;26(3):161170.Google Scholar
Snyder, BD, Hauser, WA, Loewenson, RB, Leppik, IE, Ramirez-Lassepas, M, Gumnit, RJ. Neurologic prognosis after cardiopulmonary arrest: III. Seizure activity. Neurology. 1980;30(12):12921297.Google Scholar
Rossetti, AO, Urbano, LA, Delodder, F, Kaplan, PW, Oddo, M. Prognostic value of continuous EEG monitoring during therapeutic hypothermia after cardiac arrest. Crit Care. 2010;14(5):R173.Google Scholar
Wijdicks, EF, Parisi, JE, Sharbrough, FW. Prognostic value of myoclonus status in comatose survivors of cardiac arrest. Ann Neurol. 1994;35(2):239243.Google Scholar
Rossetti, AO, Logroscino, G, Liaudet, L, et al. Status epilepticus: An independent outcome predictor after cerebral anoxia. Neurology. 2007;69(3):255260.Google Scholar
Rossetti, AO, Oddo, M, Liaudet, L, Kaplan, PW. Predictors of awakening from postanoxic status epilepticus after therapeutic hypothermia. Neurology. 2009;72(8):744749.Google Scholar
Rundgren, M, Westhall, E, Cronberg, T, Rosen, I, Friberg, H. Continuous amplitude-integrated electroencephalogram predicts outcome in hypothermia-treated cardiac arrest patients. Crit Care Med. 2010;38(9):18381844.Google Scholar
Abend, NS, Topjian, A, Ichord, R, et al. Electroencephalographic monitoring during hypothermia after pediatric cardiac arrest. Neurology. 2009;72(22):19311940.Google Scholar
Legriel, S, Bruneel, F, Sediri, H, et al. Early EEG monitoring for detecting postanoxic status epilepticus during therapeutic hypothermia: A pilot study. Neurocrit Care. 2009;11(3):338344.Google Scholar
Robinson, LR, Micklesen, PJ, Tirschwell, DL, Lew, HL. Predictive value of somatosensory evoked potentials for awakening from coma. Crit Care Med. 2003;31(3):960967.Google Scholar
Bouwes, A, Binnekade, JM, Zandstra, DF, et al. Somatosensory evoked potentials during mild hypothermia after cardiopulmonary resuscitation. Neurology. 2009;73(18):14571461.Google Scholar
Leithner, C, Ploner, CJ, Hasper, D, Storm, C. Does hypothermia influence the predictive value of bilateral absent N20 after cardiac arrest? Neurology. 2010;74(12):965969.Google Scholar
Kane, NM, Butler, SR, Simpson, T. Coma outcome prediction using event-related potentials: P(3) and mismatch negativity. Audiol Neurootol. 2000; 5(3–4):186191.CrossRefGoogle ScholarPubMed
Young, GB, Wang, JT, Connolly, JF. Prognostic determination in anoxic–ischemic and traumatic encephalopathies. J Clin Neurophysiol. 2004;21(5):379390.Google Scholar
Rundgren, M, Karlsson, T, Nielsen, N, Cronberg, T, Johnsson, P, Friberg, H. Neuron specific enolase and S-100B as predictors of outcome after cardiac arrest and induced hypothermia. Resuscitation. 2009;80(7):784789.Google Scholar
Shinozaki, K, Oda, S, Sadahiro, T, et al. Serum S-100B is superior to neuron-specific enolase as an early prognostic biomarker for neurological outcome following cardiopulmonary resuscitation. Resuscitation. 2009;80(8):870875.Google Scholar
Oksanen, T, Tiainen, M, Skrifvars, MB, et al. Predictive power of serum NSE and OHCA score regarding 6-month neurologic outcome after out-of-hospital ventricular fibrillation and therapeutic hypothermia. Resuscitation. 2009;80(2):165170.Google Scholar
Fugate, JE, Wijdicks, EF, Mandrekar, J, et al. Predictors of neurologic outcome in hypothermia after cardiac arrest. Ann Neurol. 2010;68(6):907914.Google Scholar
Steffen, IG, Hasper, D, Ploner, CJ, et al. Mild therapeutic hypothermia alters neuron specific enolase as an outcome predictor after resuscitation: 97 prospective hypothermia patients compared to 133 historical non-hypothermia patients. Crit Care. 2010;14(2):R69.Google Scholar
Randall, J, Mortberg, E, Provuncher, GK, et al. Tau proteins in serum predict neurological outcome after hypoxic brain injury from cardiac arrest: Results of a pilot study. Resuscitation. 2013;84(3):351356.Google Scholar
Torbey, MT, Selim, M, Knorr, J, Bigelow, C, Recht, L. Quantitative analysis of the loss of distinction between gray and white matter in comatose patients after cardiac arrest. Stroke. 2000;31(9):21632167.Google Scholar
Inamasu, J, Miyatake, S, Suzuki, M, et al. Early CT signs in out-of-hospital cardiac arrest survivors: Temporal profile and prognostic significance. Resuscitation. 2010;81(5):534538.Google Scholar
Wijdicks, EF, Campeau, NG, Miller, GM. MR imaging in comatose survivors of cardiac resuscitation. AJNR Am J Neuroradiol. 2001;22(8):15611565.Google Scholar
Jarnum, H, Knutsson, L, Rundgren, M, et al. Diffusion and perfusion MRI of the brain in comatose patients treated with mild hypothermia after cardiac arrest: A prospective observational study. Resuscitation. 2009;80(4):425430.Google Scholar
Els, T, Kassubek, J, Kubalek, R, Klisch, J. Diffusion-weighted MRI during early global cerebral hypoxia: A predictor for clinical outcome? Acta Neurol Scand. 2004;110(6):361367.Google Scholar
Wijman, CA, Mlynash, M, Caulfield, AF, et al. Prognostic value of brain diffusion-weighted imaging after cardiac arrest. Ann Neurol. 2009;65(4):394402.Google Scholar
Luyt, CE, Galanaud, D, Perlbarg, V, et al. Diffusion tensor imaging to predict long-term outcome after cardiac arrest: A bicentric pilot study. Anesthesiology. 2012;117(6):13111321.Google Scholar
Bogousslavsky, J, Regli, F. Unilateral watershed cerebral infarcts. Neurology. 1986;36(3):373377.Google Scholar
Chaves, CJ, Silver, B, Schlaug, G, Dashe, J, Caplan, LR, Warach, S. Diffusion- and perfusion-weighted MRI patterns in borderzone infarcts. Stroke. 2000;31(5):10901096.Google Scholar
Adams, JH, Brierley, JB, Connor, RC, Treip, CS. The effects of systemic hypotension upon the human brain. Clinical and neuropathological observations in 11 cases. Brain. 1966;89(2):235268.Google Scholar
Howard, R, Trend, P, Russell, RW. Clinical features of ischemia in cerebral arterial border zones after periods of reduced cerebral blood flow. Arch Neurol. 1987;44(9):934940.Google Scholar
Brierley, JB, Excell, BJ. The effects of profound systemic hypotension upon the brain of M. rhesus: Physiological and pathological observations. Brain. 1966;89(2):269298.Google Scholar
Rabinstein, A, Resnick, A. Hypoxic-ischemic brain damage. In Rabinstein, A, Resnick, A, eds. Practical Neuroimaging in Stroke: A Case-Based Approach. Philadelphia: Saunders Elsevier; 2009, 117.Google Scholar
Caplan, LR, Hennerici, M. Impaired clearance of emboli (washout) is an important link between hypoperfusion, embolism, and ischemic stroke. Arch Neurol. 1998;55(11):14751482.CrossRefGoogle ScholarPubMed
Moustafa, RR, Izquierdo-Garcia, D, Jones, PS, et al. Watershed infarcts in transient ischemic attack/minor stroke with > or = 50% carotid stenosis: Hemodynamic or embolic? Stroke. 2010;41(7):14101416.Google Scholar
Mohr, JP. Neurological complications of cardiac valvular disease and cardiac surgery including systemic hypotension. In Vinken, PJ, Bruyn, GW, eds. Handbook of Clinical Neurology, vol 38. Neurological Manifestations of Systemic Disease. Amsterdam: North Holland Publishing; 1979, 143171.Google Scholar
Balint, R. Seelenlahmung des Schauens, optische Ataxie, raumliche Storung der Aufmerksamheit. Z Psychiatr Neurol 1909;25:5181.Google Scholar
Tyler, HR. Cerebral Disturbance of Vision in Neuro-Ophthalmology, Vol 4. St. Louis: Mosby, 1968.Google Scholar
Hecaen, H, De Ajuriaguerra, J. Balint’s syndrome (psychic paralysis of visual fixation) and its minor forms. Brain. 1954;77(3):373400.Google Scholar
Benson, DF, Davis, RJ, Snyder, BD. Posterior cortical atrophy. Arch Neurol. 1988;45(7):789793.Google Scholar
Caronna, JJ, Finklestein, S. Neurological syndromes after cardiac arrest. Stroke. 1978;9(5):517520.Google Scholar
Volpe, BT, Hirst, W. The characterization of an amnesic syndrome following hypoxic ischemic injury. Arch Neurol. 1983;40(7):436440.Google Scholar
Cummings, JL, Tomiyasu, U, Read, S, Benson, DF. Amnesia with hippocampal lesions after cardiopulmonary arrest. Neurology. 1984;34(5):679681.Google Scholar
Petito, CK, Feldmann, E, Pulsinelli, WA, Plum, F. Delayed hippocampal damage in humans following cardiorespiratory arrest. Neurology. 1987;37(8):12811286.Google Scholar
Zulch, K. On the circulatory disturbances in the borderline zones of the cerebral and spinal vessels Paper presented at: Proceedings of the Second International Congress on Neuropathology 1955; Amsterdam.Google Scholar
Romanul, F, Abramowicz, A. Changes in brain and pial vessels in arterial border zones. Arch Neurol 1974;11:4065.Google Scholar
Sage, JI, Van Uitert, RL. Man-in-the-barrel syndrome. Neurology. 1986;36(8):11021103.Google Scholar
Silver, JR, Buxton, PH. Spinal stroke. Brain. 1974;97(3):539550.Google Scholar
Karch, DL, Logan, J, McDaniel, D, Parks, S, Pate, lN. Surveillance for violent deaths – National Violent Death Reporting System, 16 States, 2009. MMWR Surveill Summ. 2012;61:143.Google Scholar
Clement, R, Redpath, M, Sauvageau, A. Mechanism of death in hanging: A historical review of the evolution of pathophysiological hypotheses. J Forensic Sci. 2010;55(5):12681271.Google Scholar
Miyamoto, O, Auer, RN. Hypoxia, hyperoxia, ischemia, and brain necrosis. Neurology. 2000;54(2):362371.Google Scholar
Ames, A 3rd, Nesbett, FB. Pathophysiology of ischemic cell death: I. Time of onset of irreversible damage; importance of the different components of the ischemic insult. Stroke. 1983;14(2):219226.Google Scholar
Matsuyama, T, Okuchi, K, Seki, T, Murao, Y. Prognostic factors in hanging injuries. Am J Emerg Med. 2004;22(3):207210.Google Scholar
Hanna, SJ. A study of 13 cases of near-hanging presenting to an accident and emergency department. Injury. 2004;35(3):253256.Google Scholar
Vander Krol, L, Wolfe, R. The emergency department management of near-hanging victims. J Emerg Med. 1994;12(3):285292.Google Scholar
Salim, A, Martin, M, Sangthong, B, Brown, C, Rhee, P, Demetriades, D. Near-hanging injuries: A 10-year experience. Injury. 2006;37(5):435439.Google Scholar
Hald, JK, Brunberg, JA, Dublin, AB, Wootton-Gorges, SL. Delayed diffusion-weighted MR abnormality in a patient with an extensive acute cerebral hypoxic injury. Acta Radiol. 2003;44(3):343346.Google Scholar
Borgquist, O, Friberg, H. Therapeutic hypothermia for comatose survivors after near-hanging-a retrospective analysis. Resuscitation. 2009;80(2):210212.Google Scholar
Legriel, S, Bouyon, A, Nekhili, N, et al. Therapeutic hypothermia for coma after cardiorespiratory arrest caused by hanging. Resuscitation. 2005;67(1):143144.Google Scholar
Baldursdottir, S, Sigvaldason, K, Karason, S, Valsson, F, Sigurdsson, GH. Induced hypothermia in comatose survivors of asphyxia: A case series of 14 consecutive cases. Acta Anaesthesiol Scand. 2010;54(7):821826.Google Scholar
Centers for Disease Control and Prevention. Available from http://www.cdc.gov/injury/wisqars. Accessed (cited 2014, June 16).Google Scholar
DeNicola, LK, Falk, JL, Swanson, ME, Gayle, MO, Kissoon, N. Submersion injuries in children and adults. Crit Care Clin. 1997;13(3):477502.Google Scholar
van Beeck, EF, Branche, CM, Szpilman, D, Modell, JH, Bierens, JJ. A new definition of drowning: Towards documentation and prevention of a global public health problem. Bull World Health Organ. 2005;83(11):853856.Google Scholar
Orlowski, JP, Abulleil, MM, Phillips, JM. The hemodynamic and cardiovascular effects of near-drowning in hypotonic, isotonic, or hypertonic solutions. Ann Emerg Med. 1989;18(10):10441049.Google Scholar
Tipton, MJ, Golden, FS. A proposed decision-making guide for the search, rescue and resuscitation of submersion (head under) victims based on expert opinion. Resuscitation. 2011;82(7):819824.Google Scholar
Handley, AJ. Drowning. BMJ. 2014;348:g1734.Google Scholar
Vanden Hoek, TL, Morrison, LJ, Shuster, M, et al. Part 12: Cardiac arrest in special situations: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2010;122(18 Suppl 3):S829861.Google Scholar
Szpilman, D. Near-drowning and drowning classification: A proposal to stratify mortality based on the analysis of 1,831 cases. Chest. 1997;112(3):660665.Google Scholar
Manolios, N, Mackie, I. Drowning and near-drowning on Australian beaches patrolled by life-savers: A 10-year study, 1973–1983. Med J Aust. 1988;148(4):165167, 170161.Google Scholar
Chochinov, AH, Baydock, BM, Bristow, GK, Giesbrecht, GG. Recovery of a 62-year-old man from prolonged cold water submersion. Ann Emerg Med. 1998;31(1):127131.Google Scholar
Siebke, H, Rod, T, Breivik, H, Link, B. Survival after 40 minutes; submersion without cerebral sequelae. Lancet. 1975;1(7919):12751277.Google Scholar
Guenther, U, Varelmann, D, Putensen, C, Wrigge, H. Extended therapeutic hypothermia for several days during extracorporeal membrane-oxygenation after drowning and cardiac arrest. Two cases of survival with no neurological sequelae. Resuscitation. 2009;80(3):379381.Google Scholar
Kilgannon, JH, Jones, AE, Parrillo, JE, et al. Relationship between supranormal oxygen tension and outcome after resuscitation from cardiac arrest. Circulation. 2011;123(23):27172722.Google Scholar
Christophe, C, Fonteyne, C, Ziereisen, F, et al. Value of MR imaging of the brain in children with hypoxic coma. AJNR Am J Neuroradiol. 2002;23(4):716723.Google Scholar
Topjian, AA, Berg, RA, Bierens, JJ, et al. Brain resuscitation in the drowning victim. Neurocrit Care. 2012;17(3):441467.Google Scholar
Eggink, WF, Bruining, HA. Respiratory distress syndrome caused by near- or secondary drowning and treatment by positive end-expiratory pressure ventilation. Neth J Med. 1977;20(4–5):162167.Google Scholar
Weaver, LK. Carbon monoxide poisoning. Crit Care Clin. 1999;15(2):297317.Google Scholar
Hardy, KR, Thom, SR. Pathophysiology and treatment of carbon monoxide poisoning. J Toxicol Clin Toxicol. 1994;32(6):613629.Google Scholar
Miro, O, Casademont, J, Barrientos, A, Urbano-Marquez, A, Cardellach, F. Mitochondrial cytochrome c oxidase inhibition during acute carbon monoxide poisoning. Pharmacol Toxicol. 1998;82(4):199202.Google Scholar
Thom, SR. Carbon monoxide-mediated brain lipid peroxidation in the rat. J Appl Physiol. 1990;68(3):9971003.Google Scholar
Kalay, N, Ozdogru, I, Cetinkaya, Y, et al. Cardiovascular effects of carbon monoxide poisoning. Am J Cardiol. 2007;99(3):322324.Google Scholar
Lou, M, Jing, CH, Selim, MH, Caplan, LR, Ding, MP. Delayed substantia nigra damage and leukoencephalopathy after hypoxic-ischemic injury. J Neurol Sci. 2009;277(1–2):147149.Google Scholar
Scott, BL, Jankovic, J. Delayed-onset progressive movement disorders after static brain lesions. Neurology. 1996;46(1):6874.Google Scholar
Plum, F, Posner, JB, Hain, RF. Delayed neurological deterioration after anoxia. Arch Intern Med. 1962;110:1825.Google Scholar
Weinberger, LM, Schmidley, JW, Schafer, IA, Raghavan, S. Delayed postanoxic demyelination and arylsulfatase-A pseudodeficiency. Neurology. 1994;44(1):152154.Google Scholar
Gottfried, JA, Mayer, SA, Shungu, DC, Chang, Y, Duyn, JH. Delayed posthypoxic demyelination. Association with arylsulfatase A deficiency and lactic acidosis on proton MR spectroscopy. Neurology. 1997;49(5):14001404.Google Scholar
Kriegstein, AR, Shungu, DC, Millar, WS, et al. Leukoencephalopathy and raised brain lactate from heroin vapor inhalation (”chasing the dragon”). Neurology. 1999;53(8):17651773.Google Scholar
Parkinson, RB, Hopkins, RO, Cleavinger, HB, et al. White matter hyperintensities and neuropsychological outcome following carbon monoxide poisoning. Neurology. 2002;58(10):15251532.Google Scholar
Gale, SD, Hopkins, RO, Weaver, LK, Bigler, ED, Booth, EJ, Blatter, DD. MRI, quantitative MRI, SPECT, and neuropsychological findings following carbon monoxide poisoning. Brain Inj. 1999;13(4):229243.Google Scholar
Min, SK. A brain syndrome associated with delayed neuropsychiatric sequelae following acute carbon monoxide intoxication. Acta Psychiatr Scand. 1986;73(1):8086.Google Scholar
Ferrier, D, Wallace, CJ, Fletcher, WA, Fong, TC. Magnetic resonance features in carbon monoxide poisoning. Can Assoc Radiol J. 1994;45(6):466468.Google Scholar
Tuchman, RF, Moser, FG, Moshe, SL. Carbon monoxide poisoning: Bilateral lesions in the thalamus on MR imaging of the brain. Pediatr Radiol. 1990;20(6):478479.Google Scholar
Kawanami, T, Kato, T, Kurita, K, Sasaki, H. The pallidoreticular pattern of brain damage on MRI in a patient with carbon monoxide poisoning. J Neurol Neurosurg Psychiatry. 1998;64(2):282.Google Scholar
Mascalchi, M, Petruzzi, P, Zampa, V. MRI of cerebellar white matter damage due to carbon monoxide poisoning: Case report. Neuroradiology. 1996;38 Suppl 1:S73S74.Google Scholar
O’Donnell, P, Buxton, PJ, Pitkin, A, Jarvis, LJ. The magnetic resonance imaging appearances of the brain in acute carbon monoxide poisoning. Clin Radiol. 2000;55(4):273280.Google Scholar
Vieregge, P, Klostermann, W, Blumm, RG, Borgis, KJ. Carbon monoxide poisoning: Clinical, neurophysiological, and brain imaging observations in acute disease and follow-up. J Neurol. 1989;236(8):478481.Google Scholar
Pracyk, JB, Stolp, BW, Fife, CE, Gray, L, Piantadosi, CA. Brain computerized tomography after hyperbaric oxygen therapy for carbon monoxide poisoning. Undersea Hyperb Med. 1995;22(1):17.Google Scholar
Porter, SS, Hopkins, RO, Weaver, LK, Bigler, ED, Blatter, DD. Corpus callosum atrophy and neuropsychological outcome following carbon monoxide poisoning. Arch Clin Neuropsychol. 2002;17(2):195204.Google Scholar
Kesler, SR, Hopkins, RO, Blatter, DD, Edge-Booth, H, Bigler, ED. Verbal memory deficits associated with fornix atrophy in carbon monoxide poisoning. J Int Neuropsychol Soc. 2001;7(5):640646.Google Scholar
Prockop, LD, Chichkova, RI. Carbon monoxide intoxication: An updated review. J Neurol Sci. 2007;262(1–2):122130.Google Scholar
Stoller, KP. Hyperbaric oxygen and carbon monoxide poisoning: A critical review. Neurol Res. 2007;29(2):146155.Google Scholar
Sunde, K, Pytte, M, Jacobsen, D, et al. Implementation of a standardised treatment protocol for post resuscitation care after out-of-hospital cardiac arrest. Resuscitation. 2007;73(1):2939.Google Scholar
Rittenberger, JC, Guyette, FX, Tisherman, SA, DeVita, MA, Alvarez, RJ, Callaway, CW. Outcomes of a hospital-wide plan to improve care of comatose survivors of cardiac arrest. Resuscitation. 2008;79(2):198204.Google Scholar
Oba, Y, Salzman, GA. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury. N Engl J Med. 2000;343(11):813; author reply 813814.Google Scholar
Kress, JP, Pohlman, AS, O’Connor, MF, Hall, JB. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med. 2000;342(20):14711477.Google Scholar
Girard, TD, Kress, JP, Fuchs, BD, et al. Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled trial): A randomised controlled trial. Lancet. 2008;371(9607):126134.Google Scholar
Barr, J, Fraser, GL, Puntillo, K, et al. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med. 2013;41(1):263306.Google Scholar
Ruokonen, E, Parviainen, I, Jakob, SM, et al. Dexmedetomidine versus propofol/midazolam for long-term sedation during mechanical ventilation. Intensive Care Med. 2009;35(2):282290.Google Scholar
Rovlias, A, Kotsou, S. The influence of hyperglycemia on neurological outcome in patients with severe head injury. Neurosurgery. 2000;46(2):335342; discussion 342333.Google Scholar
Charpentier, C, Audibert, G, Guillemin, F, et al. Multivariate analysis of predictors of cerebral vasospasm occurrence after aneurysmal subarachnoid hemorrhage. Stroke. 1999;30(7):14021408.CrossRefGoogle ScholarPubMed
Badjatia, N, Topcuoglu, MA, Buonanno, FS, et al. Relationship between hyperglycemia and symptomatic vasospasm after subarachnoid hemorrhage. Crit Care Med. 2005;33(7):16031609.Google Scholar
Dorhout Mees, SM, van Dijk, GW, Algra, A, Kempink, DR, Rinkel, GJ. Glucose levels and outcome after subarachnoid hemorrhage. Neurology. 2003;61(8):11321133.Google Scholar
van den Berghe, G, Wouters, P, Weekers, F, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345(19):13591367.Google Scholar
Van den Berghe, G, Schoonheydt, K, Becx, P, Bruyninckx, F, Wouters, PJ. Insulin therapy protects the central and peripheral nervous system of intensive care patients. Neurology. 2005;64(8):13481353.Google Scholar
Vespa, P, Boonyaputthikul, R, McArthur, DL, et al. Intensive insulin therapy reduces microdialysis glucose values without altering glucose utilization or improving the lactate/pyruvate ratio after traumatic brain injury. Crit Care Med. 2006;34(3):850856.Google Scholar
Wiener, RS, Wiener, DC, Larson, RJ. Benefits and risks of tight glucose control in critically ill adults: A meta-analysis. JAMA. 2008;300(8):933944.Google Scholar
Oddo, M, Schmidt, JM, Carrera, E, et al. Impact of tight glycemic control on cerebral glucose metabolism after severe brain injury: A microdialysis study. Crit Care Med. 2008;36(12):32333238.Google Scholar
Zetterling, M, Hillered, L, Enblad, P, Karlsson, T, Ronne-Engstrom, E. Relation between brain interstitial and systemic glucose concentrations after subarachnoid hemorrhage. J Neurosurg. 2011;115(1):6674.Google Scholar
Hajat, C, Hajat, S, Sharma, P. Effects of poststroke pyrexia on stroke outcome: A meta-analysis of studies in patients. Stroke. 2000;31(2):410414.Google Scholar
Guyatt, GH, Akl, EA, Crowther, M, Gutterman, DD, Schuunemann, HJ. Executive summary: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):7S47S.Google Scholar
Claassen, J, Silbergleit, R, Weingart, SD, Smith, WS. Emergency neurological life support: Status epilepticus. Neurocrit Care. 2012;17 Suppl 1:S73S78.Google Scholar
Frucht, S, Fahn, S. The clinical spectrum of posthypoxic myoclonus. Mov Disord. 2000;15 Suppl 1:27.Google Scholar
Wheless, JW, Sankar, R. Treatment strategies for myoclonic seizures and epilepsy syndromes with myoclonic seizures. Epilepsia. 2003;44 Suppl 11:2737.Google Scholar
Dijk, JM, Tijssen, MA. Management of patients with myoclonus: Available therapies and the need for an evidence-based approach. Lancet Neurol. 2010;9(10):10281036.Google Scholar
Muslu, B, Kiklci, O, Horasani, E, Dikmen, B. Dramatic effect of leveracetam on posthypoxic myoclonus: Difficult weaning from mechanical ventilation. Clin Neuropharmacol. 2009;32(4):236.Google Scholar
Goldstein, LB. Common drugs may influence motor recovery after stroke. The Sygen In Acute Stroke Study Investigators. Neurology. 1995;45(5):865871.Google Scholar
Meythaler, JM, Brunner, RC, Johnson, A, Novack, TA. Amantadine to improve neurorecovery in traumatic brain injury-associated diffuse axonal injury: A pilot double-blind randomized trial. J Head Trauma Rehabil. 2002;17(4):300313.Google Scholar
Giacino, JT, Whyte, J, Bagiella, E, et al. Placebo-controlled trial of amantadine for severe traumatic brain injury. N Engl J Med. 2012;366(9):819826.Google Scholar
Pariente, J, Loubinoux, I, Carel, C, et al. Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke. Ann Neurol. 2001;50(6):718729.Google Scholar
Clauss, RP, van der Merwe, CE, Nel, HW. Arousal from a semi-comatose state on zolpidem. S Afr Med J. 2001;91(10):788789.Google Scholar
Brefel-Courbon, C, Payoux, P, Ory, F, et al. Clinical and imaging evidence of zolpidem effect in hypoxic encephalopathy. Ann Neurol. 2007;62(1):102105.Google Scholar
Schiff, ND, Posner, JB. Another “Awakenings”. Ann Neurol. 2007;62(1):57.Google Scholar
Schiff, ND, Fins, JJ. Deep brain stimulation and cognition: Moving from animal to patient. Curr Opin Neurol. 2007;20(6):638642.Google Scholar
Schiff, ND. Central thalamic deep-brain stimulation in the severely injured brain: Rationale and proposed mechanisms of action. Ann N Y Acad Sci. 2009;1157:101116.Google Scholar
Heidenreich, PA, Albert, NM, Allen, LA, et al. Forecasting the impact of heart failure in the United States: A policy statement from the American Heart Association. Circ Heart Fail. 2013;6(3):606619.Google Scholar
Choi, BR, Kim, JS, Yang, YJ, et al. Factors associated with decreased cerebral blood flow in congestive heart failure secondary to idiopathic dilated cardiomyopathy. Am J Cardiol. 2006;97(9):13651369.Google Scholar
Caplan, LR. Cardiac encephalopathy and congestive heart failure: A hypothesis about the relationship. Neurology. 2006;66(1):99101.Google Scholar
Caplan, LR. Encephalopathies and neurological effects of drugs used in cardiac patients. In Caplan, LR, Hurst, JW, Chimowitz, MI, eds. Clinical Neurocardiology. New York: Marcel Dekker; 1999, 186225.Google Scholar
Cohn, JN, Levine, TB, Olivari, MT, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984;311(13):819823.Google Scholar
Woo, MA, Kumar, R, Macey, PM, Fonarow, GC, Harper, RM. Brain injury in autonomic, emotional, and cognitive regulatory areas in patients with heart failure. J Card Fail. 2009;15(3):214223.Google Scholar
Garcia, CA, Tweedy, JR, Blass, JP. Underdiagnosis of cognitive impairment in a rehabilitation setting. J Am Geriatr Soc. 1984;32(5):339342.Google Scholar
Schall, RR, Petrucci, RJ, Brozena, SC, Cavarocchi, NC, Jessup, M. Cognitive function in patients with symptomatic dilated cardiomyopathy before and after cardiac transplantation. J Am Coll Cardiol. 1989;14(7):16661672.Google Scholar
Bornstein, RA, Starling, RC, Myerowitz, PD, Haas, GJ. Neuropsychological function in patients with end-stage heart failure before and after cardiac transplantation. Acta Neurol Scand. 1995;91(4):260265.Google Scholar
Friedmann, E, Thomas, SA, Liu, F, Morton, PG, Chapa, D, Gottlieb, SS. Relationship of depression, anxiety, and social isolation to chronic heart failure outpatient mortality. Am Heart J. 2006;152(5):940948.Google Scholar
Jiang, W, Alexander, J, Christopher, E, et al. Relationship of depression to increased risk of mortality and rehospitalization in patients with congestive heart failure. Arch Intern Med. 2001;161(15):18491856.Google Scholar
Koenig, HG. Depression in hospitalized older patients with congestive heart failure. Gen Hosp Psychiatry. 1998;20(1):2943.Google Scholar
Havranek, EP, Ware, MG, Lowes, BD. Prevalence of depression in congestive heart failure. Am J Cardiol. 1999;84(3):348350.Google Scholar
Freedland, KE, Rich, MW, Skala, JA, Carney, RM, Davila-Roman, VG, Jaffe, AS. Prevalence of depression in hospitalized patients with congestive heart failure. Psychosom Med. 2003;65(1):119128.Google Scholar
Zuccala, G, Cattel, C, Manes-Gravina, E, Di Niro, MG, Cocchi, A, Bernabei, R. Left ventricular dysfunction: A clue to cognitive impairment in older patients with heart failure. J Neurol Neurosurg Psychiatry. 1997;63(4):509512.Google Scholar
Kumar, R, Woo, MA, Macey, PM, Fonarow, GC, Hamilton, MA, Harper, RM. Brain axonal and myelin evaluation in heart failure. J Neurol Sci. 2011;307(1–2):106113.Google Scholar
Vogels, RL, van der Flier, WM, van Harten, B, et al. Brain magnetic resonance imaging abnormalities in patients with heart failure. Eur J Heart Fail. 2007;9(10):10031009.Google Scholar
Siachos, T, Vanbakel, A, Feldman, DS, Uber, W, Simpson, KN, Pereira, NL. Silent strokes in patients with heart failure. J Card Fail. 2005;11(7):485489.Google Scholar
Russo, C, Jin, Z, Homma, S, et al. Subclinical left ventricular dysfunction and silent cerebrovascular disease: The Cardiovascular Abnormalities and Brain Lesions (CABL) Study. Circulation. 2013;128(10):11051111.Google Scholar
Fazekas, F, Kleinert, R, Offenbacher, H, et al. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology. 1993;43(9):16831689.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×