Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T12:54:25.569Z Has data issue: false hasContentIssue false

25 - Structural Studies of Creativity Measured by Divergent Thinking

from Part VII - Individual Differences

Published online by Cambridge University Press:  19 January 2018

Rex E. Jung
Affiliation:
University of New Mexico
Oshin Vartanian
Affiliation:
University of Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry – The methods. NeuroImage, 11, 805821.CrossRefGoogle ScholarPubMed
Ashby, F. G., & Isen, A. M. (1999). A neuropsychological theory of positive affect and its influence on cognition. Psychological Review, 106, 529550.CrossRefGoogle ScholarPubMed
Beaulieu, C. (2002). The basis of anisotropic water diffusion in the nervous system – A technical review. NMR in Biomedicine, 15, 435455.CrossRefGoogle ScholarPubMed
Betjemann, R. S., Johnson, E. P., Barnard, H., Boada, R., Filley, C. M., Filipek, P. A., … Pennington, B. F. (2010). Genetic covariation between brain volumes and IQ, reading performance, and processing speed. Behavior Genetics, 40, 135145.CrossRefGoogle ScholarPubMed
Bódi, N., Kéri, S., Nagy, H., Moustafa, A., Myers, C. E., Daw, N., … Gluck, M. A. (2009). Reward-learning and the novelty-seeking personality: A between-and within-subjects study of the effects of dopamine agonists on young Parkinson’s patients. Brain, 132, 23852395.CrossRefGoogle ScholarPubMed
Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S., & Munafò, M. R. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews: Neuroscience, 14, 365376.CrossRefGoogle ScholarPubMed
Carson, S. H., Peterson, J. B., & Higgins, D. M. (2003). Decreased latent inhibition is associated with increased creative achievement in high-functioning individuals. Journal of Personality and social psychology, 85, 499506.CrossRefGoogle ScholarPubMed
Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: A review of its functional anatomy and behavioural correlates. Brain, 129, 564583.CrossRefGoogle ScholarPubMed
Chavez-Eakle, R. A., del Carmen Lara, M., & Cruz-Fuentes, C. (2006). Personality: A possible bridge between creativity and psychopathology? Creativity Research Journal, 18, 2738.CrossRefGoogle Scholar
Chen, Q.-L., Xu, T., Yang, W.-J., Li, Y.-D., Sun, J.-Z., Wang, K.-C., … Qiu, J. (2015). Individual differences in verbal creative thinking are reflected in the precuneus. Neuropsychologia, 75, 441449.CrossRefGoogle ScholarPubMed
Cooper, S. H. (1998). Changing notions of defense within psychoanalytic theory. Journal of Personality, 66, 947964.CrossRefGoogle Scholar
Cousijn, J., Koolschijn, P. C. M., Zanolie, K., Kleibeuker, S. W., & Crone, E. A. (2014). The relation between gray matter morphology and divergent thinking in adolescents and young adults. PLoS ONE, 9, e114619.CrossRefGoogle ScholarPubMed
Depue, R. A., & Collins, P. F. (1999). Neurobiology of the structure of personality: Dopamine, facilitation of incentive motivation, and extraversion. Behavioral and Brain Sciences, 22, 491517.CrossRefGoogle ScholarPubMed
Desmurget, M., & Sirigu, A. (2012). Conscious motor intention emerges in the inferior parietal lobule. Current Opinion in Neurobiology, 22, 10041011.CrossRefGoogle ScholarPubMed
Drago, V., Foster, P., Skidmore, F., & Heilman, K. (2009). Creativity in Parkinson’s disease as a function of right versus left hemibody onset. Journal of the Neurological Sciences, 276, 179183.CrossRefGoogle ScholarPubMed
Ellenbroek, B. A., Budde, S., & Cools, A. R. (1996). Prepulse inhibition and latent inhibition: The role of dopamine in the medial prefrontal cortex. Neuroscience, 75, 535542.CrossRefGoogle ScholarPubMed
Ettinger, U., Joober, R., De Guzman, R., & O’Driscoll, G. A. (2006). Schizotypy, attention deficit hyperactivity disorder, and dopamine genes. Psychiatry and Clinical Neurosciences, 60, 764767.CrossRefGoogle ScholarPubMed
Eysenck, H. J., & Furnham, A. (1993). Personality and the Barron–Welsh Art Scale. Perceptual and Motor Skills, 76, 837838.CrossRefGoogle ScholarPubMed
Fink, A., Koschutnig, K., Hutterer, L., Steiner, E., Benedek, M., Weber, B., … Weiss, E. M. (2014). Gray matter density in relation to different facets of verbal creativity. Brain Structure and Function, 219, 12631269.CrossRefGoogle ScholarPubMed
Flaherty, A. W. (2005). Frontotemporal and dopaminergic control of idea generation and creative drive. The Journal of Comparative Neurology, 493, 147153.CrossRefGoogle ScholarPubMed
Folley, B. S., Doop, M. L., & Park, S. (2003). Psychoses and creativity: Is the missing link a biological mechanism related to phospholipids turnover? Prostaglandins, Leukotrienes & Essential Fatty Acids, 69, 467476.CrossRefGoogle Scholar
Gansler, D. A., Moore, D. W., Susmaras, T. M., Jerram, M. W., Sousa, J., & Heilman, K. M. (2011). Cortical morphology of visual creativity. Neuropsychologia, 49, 25272532.CrossRefGoogle ScholarPubMed
Greenstein, B., & Greenstein, A. (2000). Color atlas of neuroscience: Neuroanatomy and neurophysiology. New York, NY: George Thieme Verlag.Google Scholar
Guilford, J. P. (1967). The nature of human intelligence. New York, NY: McGraw-Hill Companies.Google Scholar
Heilman, K. M., Nadeau, S. E., & Beversdorf, D. O. (2003). Creative innovation: Possible brain mechanisms. Neurocase, 9, 369379.CrossRefGoogle ScholarPubMed
James, W. (1890). The principles of psychology. New York, NY: Holt.Google Scholar
Jauk, E., Neubauer, A. C., Dunst, B., Fink, A., & Benedek, M. (2015). Gray matter correlates of creative potential: A latent variable voxel-based morphometry study. NeuroImage, 111, 312320.CrossRefGoogle ScholarPubMed
Jung, R. E., Grazioplene, R., Caprihan, A., Chavez, R. S., & Haier, R. J. (2010). White matter integrity, creativity, and psychopathology: Disentangling constructs with diffusion tensor imaging. PLoS ONE, 5, e9818.CrossRefGoogle ScholarPubMed
Jung, R. E., & Haier, R. J. (2007). The parieto-frontal integration theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral and Brain Sciences, 30, 135154.CrossRefGoogle ScholarPubMed
Jung, R. E., Segall, J. M., Jeremy Bockholt, H., Flores, R. A., Smith, S. M., Chavez, R. S., & Haier, R. J. (2010). Neuroanatomy of creativity. Human Brain Mapping, 31, 398409.CrossRefGoogle ScholarPubMed
Kaasinen, V., Aalto, S., Någren, K., & Rinne, J. O. (2004). Insular dopamine D2 receptors and novelty seeking personality in Parkinson’s disease. Movement Disorders, 19, 13481351.CrossRefGoogle ScholarPubMed
Kaplan, F., & Oudeyer, P.-Y. (2007). In search of the neural circuits of intrinsic motivation. Frontiers in Neuroscience, 1, 225236.CrossRefGoogle ScholarPubMed
Kim, K. H. (2008). Meta-analyses of the relationship of creative achievement to both IQ and divergent thinking test scores. The Journal of Creative Behavior, 42, 106130.CrossRefGoogle Scholar
King, L. A., Walker, L. M., & Broyles, S. J. (1996). Creativity and the five-factor model. Journal of Research in Personality, 30, 189203.CrossRefGoogle Scholar
Kirrane, R. M., & Siever, L. J. (2000). New perspectives on schizotypal personality disorder. Current Psychiatry Reports, 2, 6266.CrossRefGoogle ScholarPubMed
Kline, P., & Cooper, C. (1986). Psychoticism and creativity. The Journal of Genetic Psychology, 147, 183188.CrossRefGoogle ScholarPubMed
Koutsouleris, N., Meisenzahl, E. M., Davatzikos, C., Bottlender, R., Frodl, T., Scheuerecker, J., … Reiser, M. (2009). Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition. Archives of General Psychiatry, 66, 700712.CrossRefGoogle ScholarPubMed
Kühn, S., Ritter, S. M., Müller, B. C., Baaren, , Brass, R. B., , M., & Dijksterhuis, A. (2014). The importance of the default mode network in creativity – A structural MRI study. The Journal of Creative Behavior, 48, 152163.CrossRefGoogle Scholar
Kulisevsky, J., Pagonabarraga, J., & Martinez-Corral, M. (2009). Changes in artistic style and behaviour in Parkinson’s disease: dopamine and creativity. Journal of Neurology, 256, 816819.CrossRefGoogle ScholarPubMed
LeBoutillier, N., & Marks, D. F. (2003). Mental imagery and creativity: A meta-analytic review study. British Journal of Psychology, 94, 2944.CrossRefGoogle ScholarPubMed
Lindvall, O., & Björklund, A. (1979). Dopaminergic innervation of the globus pallidus by collaterals from the nigrostriatal pathway. Brain Research, 172, 169173.CrossRefGoogle ScholarPubMed
Macaluso, E., Frith, C. D., & Driver, J. (2000). Modulation of human visual cortex by crossmodal spatial attention. Science, 289, 12061208.CrossRefGoogle ScholarPubMed
May, A., & Gaser, C. (2006). Magnetic resonance-based morphometry: A window into structural plasticity of the brain. Current Opinion in Neurology, 19, 407411.CrossRefGoogle ScholarPubMed
Mayseless, N., Uzefovsky, F., Shalev, I., Ebstein, R. P., & Shamay-Tsoory, S. G. (2013). The association between creativity and 7R polymorphism in the dopamine receptor D4 gene (DRD4). Frontiers in Human Neuroscience, 7, 502.CrossRefGoogle ScholarPubMed
Moore, D. W., Bhadelia, R. A., Billings, R. L., Fulwiler, C., Heilman, K. M., Rood, K. M. J., & Gansler, D. A. (2009). Hemispheric connectivity and the visual–spatial divergent-thinking component of creativity. Brain and Cognition, 70, 267272.CrossRefGoogle ScholarPubMed
O’Reilly, T., Dunbar, R., & Bentall, R. (2001). Schizotypy and creativity: An evolutionary connection? Personality and Individual Differences, 31, 10671078.CrossRefGoogle Scholar
Posthuma, D., Baaré, W. F., Pol, , Hilleke, H., Kahn, E., Boomsma, R. S., , D. I., & De Geus, E. J. (2003). Genetic correlations between brain volumes and the WAIS-III dimensions of verbal comprehension, working memory, perceptual organization, and processing speed. Twin Research, 6, 131139.CrossRefGoogle ScholarPubMed
Prabhu, V., Sutton, C., & Sauser, W. (2008). Creativity and certain personality traits: Understanding the mediating effect of intrinsic motivation. Creativity Research Journal, 20, 5366.CrossRefGoogle Scholar
Preckel, F., Wermer, C., & Spinath, F. M. (2011). The interrelationship between speeded and unspeeded divergent thinking and reasoning, and the role of mental speed. Intelligence, 39, 378388.CrossRefGoogle Scholar
Sagi, Y., Tavor, I., Hofstetter, S., Tzur-Moryosef, S., Blumenfeld-Katzir, T., & Assaf, Y. (2012). Learning in the fast lane: New insights into neuroplasticity. Neuron, 73, 11951203.CrossRefGoogle ScholarPubMed
Schinka, J., Letsch, E., & Crawford, F. (2002). DRD4 and novelty seeking: Results of meta-analyses. American Journal of Medical Genetics, 114, 643648.CrossRefGoogle ScholarPubMed
Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., … Giedd, J. (2006). Intellectual ability and cortical development in children and adolescents. Nature, 440, 676679.CrossRefGoogle ScholarPubMed
Silver, M., Montana, G., & Nichols, T. E. (2012). False positives in neuroimaging genetics using voxel-based morphometry data. NeuroImage, 54, 9921000.CrossRefGoogle Scholar
Simonton, D. K. (2014). Can creative productivity be both positively and negatively correlated with psychopathology? Yes! Frontiers in psychology, 5, Article 455.CrossRefGoogle ScholarPubMed
Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage, 44, 8398.CrossRefGoogle ScholarPubMed
Suhara, T., Yasuno, F., Sudo, Y., Yamamoto, M., Inoue, M., Okubo, Y., & Suzuki, K. (2001). Dopamine D2 receptors in the insular cortex and the personality trait of novelty seeking. NeuroImage, 13, 891895.CrossRefGoogle ScholarPubMed
Swerdlow, N. R., Stephany, N., Wasserman, L. C., Talledo, J., Sharp, R., & Auerbach, P. P. (2003). Dopamine agonists disrupt visual latent inhibition in normal males using a within-subject paradigm. Psychopharmacology, 169, 314320.CrossRefGoogle ScholarPubMed
Takeuchi, H., Sekiguchi, A., Taki, Y., Yokoyama, S., Yomogida, Y., Komuro, N., … Kawashima, R. (2010). Training of Working Memory Impacts Structural Connectivity. Journal of Neuroscience, 30, 32973303.CrossRefGoogle ScholarPubMed
Takeuchi, H., Taki, Y., Hashizume, H., Asano, K., Asano, M., Sassa, Y., … Kawashima, R. (2016). Impact of videogame play on the brain’s microstructural properties: Cross-sectional and longitudinal analyses. Molecular Psychiatry, 21, 17811789.CrossRefGoogle ScholarPubMed
Takeuchi, H., Taki, Y., Nouchi, R., Sekiguchi, A., Kotozaki, Y., Miyauchi, C., … Nakagawa, S. (2014). Regional gray matter density is associated with achievement motivation: Evidence from voxel-based morphometry. Brain Structure and Function, 219, 7183.CrossRefGoogle ScholarPubMed
Takeuchi, H., Taki, Y., Nouchi, R., Yokoyama, R., Kotozaki, Y., Nakagawa, S., … Kawashima, R. (2017). Creative females have larger white matter structures: Evidence from a large sample study. Human Brain Mapping, 38, 414430.CrossRefGoogle ScholarPubMed
Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., & Kawashima, R. (2010a). Regional gray matter volume of dopaminergic system associate with creativity: Evidence from voxel-based morphometry. NeuroImage, 51, 578585.CrossRefGoogle ScholarPubMed
Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., & Kawashima, R. (2010b). White matter structures associated with creativity: Evidence from diffusion tensor imaging. NeuroImage, 51, 1118.CrossRefGoogle ScholarPubMed
Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., & Kawashima, R. (2011). Verbal working memory performance correlates with regional white matter structures in the frontoparietal regions. Neuropsychologia, 49, 34663473CrossRefGoogle ScholarPubMed
Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., & Kawashima, R. (2014). Regional gray matter volume is associated with empathizing and systemizing in young adults. PLoS ONE, 9, e84782.CrossRefGoogle ScholarPubMed
Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Nagase, T., … Kawashima, R. (2013). White matter structures associated with empathizing and systemizing in young adults. NeuroImage, 77, 222236.CrossRefGoogle ScholarPubMed
Takeuchi, H., Taki, Y., Sekiguchi, A., Nouchi, R., Kotozaki, Y., Nakagawa, S., … Shinada, T. (2016). Mean diffusivity of basal ganglia and thalamus specifically associated with motivational states among mood states. Brain Structure and Function, Epub ahead of publication.Google ScholarPubMed
Takeuchi, H., Taki, Y., Sekuguchi, A., Hashizume, H., Nouchi, R., Sassa, Y., … Kawashima, R. (2015). Mean diffusivity of globus pallidus associated with verbal creativity measured by divergent thinking and creativity-related temperaments in young healthy adults. Human Brain Mapping, 36, 18081827.CrossRefGoogle ScholarPubMed
Tomer, R., & Aharon-Peretz, J. (2004). Novelty seeking and harm avoidance in Parkinson’s disease: Effects of asymmetric dopamine deficiency. Journal of Neurology, Neurosurgery and Psychiatry, 75, 972975.CrossRefGoogle ScholarPubMed
Wierenga, L. M., Langen, M., Oranje, B., & Durston, S. (2014). Unique developmental trajectories of cortical thickness and surface area. NeuroImage, 87, 120126.CrossRefGoogle ScholarPubMed
Woody, E., & Claridge, G. (1977). Psychoticism and thinking. British Journal of Social and Clinical Psychology, 16, 241248.CrossRefGoogle ScholarPubMed
Yomogida, Y., Sugiura, M., Watanabe, J., Akitsuki, Y., Sassa, Y., Sato, T., … Kawashima, R. (2004). Mental visual synthesis is originated in the frontotemporal network of the left hemisphere. Cerebral Cortex, 14, 13761383.CrossRefGoogle ScholarPubMed
Zhu, F., Zhang, Q., & Qiu, J. (2013). Relating inter-individual differences in verbal creative thinking to cerebral structures: An optimal voxel-based morphometry study. PLoS ONE, 8(11), e79272.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×