Skip to main content Accessibility help
  • Print publication year: 2008
  • Online publication date: June 2012

Chapter 17 - Situating Rationality

from Part III - Empirical Developments


This chapter discusses the importance of dynamics to understanding cognition. The author turns to the issue of how dynamics have been integrated into various theories of cognition. The author describes strengths and weaknesses of three main contenders in cognitive science, in relation to their incorporation of time into their methods of model construction. The neural engineering framework (NEF) is a general theory of neurobiological systems. Neural dynamics are characterized by considering neural representations as control theoretic state variables. Thus, the dynamics of neurobiological systems can be analyzed using control theory. The model employs biologically realistic neurons to learn the relevant structural transformations appropriate for a given context, and it generalizes such transformations to novel contents with the same syntactic structure. The intent of the NEF is to provide a suggestion as to how we might take seriously many of the important insights generated from cognitive science.


Anderson, J. R. (1990). The adaptive character of thought. Hillsdale, NJ: Lawrence Erlbaum.
Anderson, J. R., & Lebeire, C. (1998). The atomic components of thought. Mahwah, NJ: Lawrence Erlbaum.
Ariely, D., & Levav, J. (2000). Sequential choice in group settings: Taking the road less traveled and less enjoyed. Journal of Consumer Research, 27(3), 279–290.
Bak, P. (1996). How nature works. New York: Springer-Verlag.
Barkow, J. H., Cosmides, L., & Tooby, J. (Eds.). (1992). The adapted mind: Evolutionary psychology and the generation of culture. New York: Oxford University Press.
Barrett, H. C. (2005). Adaptations to predators and prey. In D. M. Buss (Ed.). The handbook of evolutionary psychology (pp. 200–223). Hoboken, NJ: Wiley.
Brighton, H. (2006). Robust inference with simple cognitive models. In C. Lebiere & B. Wray (Eds.), Between a rock and a hard place: Cognitive science principles meet AI-hard problems (pp. 17–22). Menlo Park, CA: AAAI Press.
Bröder, A. (2000). Assessing the empirical validity of the “Take The Best” heuristic as a model of human probabilistic inference. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 1332–1346.
Bröder, A., & Schiffer, S. (2003). “Take The Best” versus simultaneous feature matching: Probabilistic inferences from memory and effects of representation format. Journal of Experimental Psychology: General, 132(2), 277–293.
Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence, 47, 139–160.
Browne, M. W. (2000). Cross-validation methods. Journal of Mathematical Psychology, 44, 108–132.
Brunswik, E. (1955). Representative design and probabilistic theory in a functional psychology. Psychological Review, 62, 193–217.
Buss, D. M. (Ed.). (2005). The handbook of evolutionary psychology. Hoboken, NJ: Wiley.
Chater, N. (1999). The search for simplicity: A fundamental cognitive principle? Quarterly Journal of Experimental Psychology, 52A(2), 273–302.
Chater, N., & Brown, G. D. A. (1999). Scale invariance as a unifying psychological principle. Cognition, 69, B17–B24.
Chater, N., Oaksford, M., Nakisa, R., & Redington, M. (2003). Fast, frugal and rational: How rational norms explain behavior. Organizational Behavior and Human Decision Processes, 90, 63–86.
Chater, N., & Vitányi, P. (2003). Simplicity: A unifying principle in cognitive science? Trends in Cognitive Sciences, 7, 19–22.
Chomsky, N. (1995). The minimalist program. Cambridge, MA: MIT Press.
Chomsky, N. (2000). New horizons in the study of language and mind. Cambridge: Cambridge University Press.
Clancey, W. J. (1997). Situated cognition: On human knowledge and computer representations. Cambridge: Cambridge University Press.
Clark, A. (1997). Being there: Putting brain, body, and world together again. Cambridge, MA: MIT Press.
Czerlinski, J., Gigerenzer, G., & Goldstein, D. G. (1999). How good are simple heuristics? In G. Gigerenzer, P. M. Todd, & the ABC Research Group (Eds.), Simple heuristics that make us smart (pp. 97–118). New York: Oxford University Press.
Edland, A. (1994). Time pressure and the applications of decision rules: Choices and judgements among multiattribute alternatives. Scandinavian Journal of Psychology, 35, 281–291.
Elman, J. L. (2003). Generalization from sparse input. In Proceedings of the 38th Annual Meeting of the Chicago Linguistic Society. Chicago: Chicago Linguistic Society.
Erev, I., & Barron, G. (2005). On adaptation, maximization, and reinforcement learning among cognitive strategies. Psychological Review, 112(4), 912–931.
Feldman, J. (2003). The simplicity principle in human concept learning. Current Directions in Psychological Science, 12(6), 227–232.
Gigerenzer, G., & Goldstein, D. G. (1996). Reasoning the fast and frugal way: Models of bounded rationality. Psychological Review, 103, 650–669.
Gigerenzer, G., & Selten, R. (Eds.). (2001). Bounded rationality: The adaptive toolbox. Cambridge, MA: MIT Press.
Gigerenzer, G., & Todd, P. M. (1999). Fast and frugal heuristics: The adaptive toolbox. In G. Gigerenzer, P. M. Todd, & the ABC Research Group (Eds.), Simple heuristics that make us smart (pp. 3–34). New York: Oxford University Press.
Gigerenzer, G., Todd, P. M., & the ABC Research Group (Eds.). (1999). Simple heuristics that make us smart. New York: Oxford University Press.
Goldstein, D. G., & Gigerenzer, G. (1999). The recognition heuristic: How ignorance makes us smart. In G. Gigerenzer, P. M. Todd, & the ABC Research Group (Eds.), Simple heuristics that make us smart (pp. 37–58). New York: Oxford University Press.
Goldstein, D. G., & Gigerenzer, G. (2002). Models of ecological rationality: The recognition heuristic. Psychological Review, 109, 75–90.
Gonzalez, C., Lerch, J. F., & Lebiere, C. (2003). Instance-based learning in dynamic decision making. Cognitive Science, 27, 591–635.
Goodie, A. S., Ortmann, A., Davis, J., Bullock, S., & Werner, G. M. (1999). Demons versus heuristics in artificial intelligence, behavioral ecology, and economics. In G. Gigerenzer, P. M. Todd, & the ABC Research Group (Eds.), Simple heuristics that make us smart (pp. 327–355). New York: Oxford University Press.
Gordon, D. F., & Desjardins, M. (1995). Evaluation and selection of biases in machine learning. Machine Learning, 20, 5–22.
Grünwald, P. (2005). Minimum description length tutorial. In P. Grünwald, I. J. Myung, & M. A. Pitt (Eds.), Advances in minimum description length (pp. 23–79). Cambridge, MA: MIT Press.
Hamilton, W. D. (1996). Narrow roads of gene land: Evolution of social behaviour (Vol. 1). Oxford: Oxford University Press.
Hammond, K. R., & Stewart, T. R. (Eds.). (2001). The essential Brunswik: Beginnings, explications, applications. New York: Oxford University Press.
Hertwig, R., Hoffrage, U., & Martignon, L. (1999). Quick estimation: Letting the environment do some of the work. In G. Gigerenzer, P. M. Todd, & the ABC Research Group (Eds.), Simple heuristics that make us smart (pp. 209–234). New York: Oxford University Press.
Hertwig, R., & Todd, P. M. (2003). More is not always better: The benefits of cognitive limits. In D. Hardman & L. Macchi (Eds.), Thinking: Psychological perspectives on reasoning, judgment and decision making (pp. 213–231). Chichester, UK: Wiley.
Hutchinson, J., Fanselow, C., & Todd, P. M. (forthcoming). Car parking as a game between simple heuristics. In P. M. Todd, G. Gigerenzer, & the ABC Research Group (Eds.), Ecological Rationality: Intelligence in the World. New York: Oxford University Press.
Hutter, M. (2005). Universal artificial intelligence: Sequential decisions based on algorithmic probability. Berlin: Springer.
Juslin, P., & Persson, M. (2002). PRObabilities from EXemplars (PROBEX): A “lazy” algorithm for probabalistic inference from generic knowledge. Cognitive Science, 26(5), 563–607.
Kahneman, D., Slovic, P., & Tversky, A. (Eds.). (1982). Judgment under uncertainty: Heuristics and biases. Cambridge: Cambridge University Press.
Kalousis, A., Gama, J., & Hilario, M. (2004). On data and algorithms: Understanding inductive performance. Machine Learning, 54, 275–312.
Kearns, M. (1999). Computational learning theory. In R. A. Wilson & F. C. Keil (Eds.), The MIT encyclopedia of the cognitive sciences (pp. 159–160). Cambridge, MA: MIT Press.
Kearns, M., Mansour, Y., Ng, A. Y., & Ron, D. (1997). An experimental and theoretical comparison of model selection methods. Machine Learning, 27, 7–50.
Knill, D. C., & Pouget, A. (2004). The Bayesian brain: The role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(12), 712–719.
Kürzenhäuser, S., & Hoffrage, U. (2002). Teaching Bayesian reasoning: An evaluation of a classroom tutorial for medical students. Medical Teacher, 24(5), 516–521.
Li, M., & Vitányi, P. M. B. (1997). An introduction to Kolmogorov complexity and its applications. New York: Springer.
Makse, H. A., Havlin, B., & Stanley, H. E. (1995). Modeling urban growth patterns. Nature, 377, 608–612.
Markman, A. B., & Dietrich, E. (2000). Extending the classical view of representation. Trends in Cognitive Sciences, 4(12), 470–475.
Martignon, L., & Hoffrage, U. (1999). Why does one-reason decision making work? In G. Gigerenzer, P. M. Todd, & the ABC Research Group (Eds.), Simple heuristics that make us smart (pp. 119–140). New York: Oxford University Press.
McLeod, P., & Dienes, Z. (1996). Do fielders know where to go to catch the ball or only how to get there? Journal of Experimental Psychology, 22(3), 531–543.
Mitchell, T. M. (1997). Machine learning. New York: McGraw-Hill.
Newell, B. R., & Shanks, D. R. (2003). Take the best or look at the rest? Factors influencing “one-reason” decision-making. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 53–65.
Oaksford, M., & Chater, N. (1998). Rational models of cognition. Oxford: Oxford University Press.
Pachur, T., & Biele, G. (2007). Forecasting by ignorance: The use and usefulness of recognition in lay predictions of sports events. Acta Psychologica, 125(1), 99–116.
Payne, J. W., Bettman, J. R., & Johnson, E. J. (1993). The adaptive decision maker. New York: Cambridge University Press.
Pearl, J. (1988). Probabilistic reasoning in intelligent systems. San Francisco: Morgan Kauf-mann.
Pitt, M. A., Myung, I. J., & Zhang, S. (2002). Toward a method of selecting among computational models of cognition. Psychological Review, 109(3), 472–491.
Ramachandran, V. S. (1990). Interactions between motion, depth, color and form: The utilitarian theory of perception. In C. Blakemore (Ed.), Vision: Coding and efficiency (pp. 346–360). New York: Cambridge University Press.
Reddy, R. (1988). AAAI presidential address: Foundations and grand challenges of artificial intelligence. AI Magazine, 9(4), 9–21.
Reimer, T., & Hoffrage, U. (2005). Can simple group heuristics detect hidden profiles in randomly generated environments? Swiss Journal of Psychology, 64(1), 21–37.
Reimer, T., & Katsikopoulos, K. V. (2004). The use of recognition in group decision-making. Cognitive Science, 28(6), 1009–1029.
Rieskamp, J., & Hoffrage, U. (1999). When do people use simple heuristics and how can we tell? In G. Gigerenzer, P. M. Todd, & the ABC Research Group (Eds.), Simple heuristics that make us smart (pp. 141–167). New York: Oxford University Press.
Rieskamp, J., & Otto, P. (2005). SSL: A theory of how people learn to select strategies. Manuscript submitted for publication.
Rissanen, J. J. (1989). Stochastic complexity and statistical inquiry. Singapore: World Scientific.
Rozin, P., & Fallon, A. E. (1987). A perspective on disgust. Psychological Review, 94(1), 23–41.
Russell, S., & Norvig, P. (1995). Artificial intelligence: A modern approach. Englewood Cliffs, NJ: Prentice Hall.
Schooler, L. J., & Hertwig, R. (2005). How forgetting aids heuristic inference. Psychological Review, 112, 610–628.
Shepard, R. N. (1987). Towards a universal law of generalization for psychological science. Science, 37(4820), 1317–1323.
Shepard, R. N. (2001). Perceptual-cognitive universals as reflections of the world. Behavioral and Brain Sciences, 24(4), 581–601.
Simon, H. A. (1956). Rational choice and structure of the environment. Psychological Review, 63, 129–138.
Simon, H. A. (1990). Invariants of human behavior. Annual Review of Psychology, 41, 1–19.
Simon, H. A. (1996). The sciences of the artificial (3rd ed.). Cambridge, MA: MIT Press.
Slezak, P. (1999). Situated cognition: Empirical issue, “paradigm shift” or conceptual confusion? In J. Wiles & T. Dartnall (Eds.), Perspectives on cognitive science (Vol. 2, pp. 69–98). Stamford, CT: Ablex.
Smith, B. C. (1999). Situatedness/embeddedness. In R. A. Wilson & F. C. Keil (Eds.), The MIT encyclopedia of the cognitive sciences (pp. 769–770). Cambridge, MA: MIT Press.
Sober, E. (1975). Simplicity. Oxford, UK: Clarendon Press.
Solomonoff, R. J. (1964). A formal theory of inductive inference, part 1 and part 2. Information and Control, 7(1–2), 224–254.
Stenning, K., & van Lambalgen, M. (2004). A little logic goes a long way: Basing experiment on semantic theory in the cognitive science of conditional reasoning. Cognitive Science, 28(4), 481–529.
Takezawa, M. (2004). Developing a new framework of adaptive concession-making strategies: An approach to behavioral game theory from psychology. Manuscript submitted for publication.
Tanner, C., & Medin, D.L. (2004). Protected values: No omission bias and no framing effects. Psychonomic Bulletin and Review, 11(1), 185–191.
Thrun, S., & Pratt, L. Y. (1998). Learning to learn. Boston: Kluwer Academic.
Todd, P. M. (1999). Simple inference heuristics versus complex decision machines. Minds and Machines, 9(4), 461–477.
Todd, P. M. (2001). Fast and frugal heuristics for environmentally bounded minds. In G. Gigerenzer & R. Selten (Eds.), Bounded rationality: The adaptive toolbox (pp. 51–70). Cambridge, MA: MIT Press.
Todd, P. M., Billari, F. C., & Simão, J. (2005). Aggregate age-at-marriage patterns from individual mate-search heuristics. Demography, 42(3), 559–574.
Todd, P. M., & Dieckmann, A. (2005). Heuristics for ordering cue search in decision making. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing systems 17 (pp. 1393–1400). Cambridge, MA: MIT Press.
Todd, P. M., & Gigerenzer, G. (2001). Shepard's mirrors or Simon's scissors? Commentary on R. N. Shepard: Perceptual-cognitive universals as reflections of the world. Behavioral and Brain Sciences, 24(4), 704–705.
Todd, P. M., & Gigerenzer, G. (2003). Bounding rationality to the world. Journal of Economic Psychology, 24(2), 143–165.
Todd, P. M., Hertwig, R., & Hoffrage, U. (2005). The evolutionary psychology of cognition. In D. M. Buss (Ed.), The handbook of evolutionary psychology (pp. 776–802). Hoboken, NJ: Wiley.
Tversky, A. (1972). Elimination by aspects: A theory of choice. Psychological Review, 79(4), 281–299.
van Gelder, T. J. (1995). What might cognition be, if not computation? Journal of Philosophy, 91, 345–381.
Varela, F., Thompson, E., & Rosch, E. (1991). The embodied mind: Cognitive science and human experience. Cambridge, MA: MIT Press.
Vera, A. H., & Simon, H. A. (1993). Situated action: A symbolic interpretation. Cognitive Science, 17, 7–48.
Westenberg, M. R. M., & Koele, P. (1992). Response modes, decision processes and decision outcomes. Acta Psychologica, 80, 169–184.
Winograd, T., & Flores, F. (1996). Understanding computers and cognition: A new foundation for design. Norwood, NJ: Ablex.
Zahavi, A., & Zahavi, A. (1997). The handicap principle: A missing piece of Darwin's puzzle. Oxford, UK: Oxford University Press.