Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T19:25:23.264Z Has data issue: false hasContentIssue false

35 - Disordered Social Cognition

Alexithymia and Interoception

from Part VIII - Abnormal Behavior and Evolutionary Psychopathology

Published online by Cambridge University Press:  02 March 2020

Lance Workman
Affiliation:
University of South Wales
Will Reader
Affiliation:
Sheffield Hallam University
Jerome H. Barkow
Affiliation:
Dalhousie University, Nova Scotia
Get access

Summary

Alexithymia is a condition characterized by difficulties identifying and describing one’s own emotional states (Nemiah, Freyberger, & Sifneos, 1976). Individuals with alexithymia are often aware that they are experiencing an emotion, but struggle to determine whether it is fear, excitement, or anger, for example. Alexithymia is therefore associated with difficulties describing how one would feel in particular emotional scenarios (Lane et al., 1990), as well as with difficulties regulating one’s emotions (Stasiewicz et al., 2012; Venta, Hart, & Sharp, 2013). This chapter details the behavioral and neurological characteristics of alexithymia, its etiology (including whether it may be evolutionarily adaptive), and its role in emotional impairment across clinical populations. The relationship between alexithymia and interoception (the ability to perceive and recognize the internal state of one’s body) is also discussed, alongside evidence that alexithymia may represent a general deficit of interoception.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abi-Dargham, A., Rodenhiser, J., Printz, D., et al. (2000). Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proceedings of the National Academy of Sciences, 97(14), 81048109.Google Scholar
Abramson, L., McClelland, D. C., Brown, D., & Kelner, S. (1991). Alexithymic characteristics and metabolic control in diabetic and healthy adults. Journal of Nervous and Mental Disease, 179(8), 490494.Google Scholar
Ainley, V., Brass, M., & Tsakiris, M. (2014). Heartfelt imitation: High interoceptive awareness is linked to greater automatic imitation. Neuropsychologia, 60, 2128.Google Scholar
Aïte, A., Barrault, S., Cassotti, M., et al. (2014). The impact of alexithymia on pathological gamblers’ decision making: A preliminary study of gamblers recruited in “sportsbook” casinos. Cognitive and Behavioral Neurology, 27(2), 5967.CrossRefGoogle ScholarPubMed
Anagnostou, E., & Taylor, M. J. (2011). Review of neuroimaging in autism spectrum disorders: What have we learned and where we go from here. Molecular Autism, 2(1), 4.Google Scholar
Ardizzi, M., Ambrosecchia, M., Buratta, L., et al. (2016). Interoception and positive symptoms in schizophrenia. Frontiers in Human Neuroscience, 10, 379.CrossRefGoogle ScholarPubMed
Assogna, F., Palmer, K., Pontieri, F. E., et al. (2012). Alexithymia is a non-motor symptom of Parkinson disease. American Journal of Geriatric Psychiatry, 20(2), 133141.Google Scholar
Bagby, R. M., Parker, J. D. A., & Taylor, G. J. (1994). The twenty-item Toronto Alexithymia Scale – I. Item selection and cross-validation of the factor structure. Journal of Psychosomatic Research, 38(1), 2332.CrossRefGoogle ScholarPubMed
Bagby, R. M., Quilty, L. C., Taylor, G. J., et al. (2009). Are there subtypes of alexithymia? Personality and Individual Differences, 47(5), 413418.CrossRefGoogle Scholar
Barlow, M., Woodman, T., Chapman, C., et al. (2015). Who takes risks in high-risk sport?: The role of alexithymia. Journal of Sport & Exercise Psychology, 37(1), 8396.CrossRefGoogle ScholarPubMed
Bauman, M. L., & Kemper, T. L. (2005). Neuroanatomic observations of the brain in autism: A review and future directions. International Journal of Developmental Neuroscience, 23(2–3), 183187.Google Scholar
Bechara, A., & Damasio, H. (2002). Decision-making and addiction (part I): Impaired activation of somatic states in substance dependent individuals when pondering decisions with negative future consequences. Neuropsychologia, 40(10), 16751689.Google Scholar
Bechara, A., Dolan, S., & Hindes, A. (2002). Decision-making and addiction (part II): Myopia for the future or hypersensitivity to reward? Neuropsychologia, 40(10), 16901705.CrossRefGoogle ScholarPubMed
Bellebaum, C., Brodmann, K., & Thoma, P. (2014). Active and observational reward learning in adults with autism spectrum disorder: Relationship with empathy in an atypical sample. Cognitive Neuropsychiatry, 19(3), 205225.Google Scholar
Berenbaum, H. (1996). Childhood abuse, alexithymia and personality disorder. Journal of Psychosomatic Research, 41(6), 585595.CrossRefGoogle ScholarPubMed
Bermond, B. (1997). Brain and alexithymia. In Vingerhoets, A., Bussel, F., & Boelhouwer, J., eds., The (Non)expression of Emotions in Health and Disease. Tilburg: Tilburg University Press, pp. 115130.Google Scholar
Berthoz, S., & Hill, E. L. (2005). The validity of using self-reports to assess emotion regulation abilities in adults with autism spectrum disorder. European Psychiatry, 20(3), 291298.Google Scholar
Berthoz, S., Artiges, E., Van de Moortele, P. F., et al. (2002). Effect of impaired recognition and expression of emotions on frontocingulate cortices: An fMRI study of men with alexithymia. American Journal of Psychiatry, 159(6), 961967.CrossRefGoogle ScholarPubMed
Berthoz, S., Lalanne, C., Crane, L., & Hill, E. L. (2013). Investigating emotional impairments in adults with autism spectrum disorders and the broader autism phenotype. Psychiatry Research, 208(3), 257264.Google Scholar
Bird, G., & Viding, E. (2014). The self to other model of empathy: Providing a new framework for understanding empathy impairments in psychopathy, autism, and alexithymia. Neuroscience & Biobehavioral Reviews, 47, 520532.Google Scholar
Bird, G., Silani, G., Brindley, R., et al. (2010). Empathic brain responses in insula are modulated by levels of alexithymia but not autism. Brain, 133(5), 15151525.Google Scholar
Borhani, K., Borgomaneri, S., Làdavas, E., & Bertini, C. (2016). The effect of alexithymia on early visual processing of emotional body postures. Biological Psychology, 115, 18.Google Scholar
Borsci, G., Boccardi, M., Rossi, R., et al. (2009). Alexithymia in healthy women: A brain morphology study. Journal of Affective Disorders, 114(1–3), 208215.CrossRefGoogle ScholarPubMed
Botvinick, M. M. (2007). Conflict monitoring and decision making: Reconciling two perspectives on anterior cingulate function. Cognitive, Affective & Behavioral Neuroscience, 7(4), 356366.CrossRefGoogle ScholarPubMed
Brass, M., & Haggard, P. (2007). To do or not to do: The neural signature of self-control. Journal of Neuroscience, 27(34), 91419145.CrossRefGoogle Scholar
Brewer, R., Collins, F., Cook, R., & Bird, G. (2015a). Atypical trait inferences from facial cues in alexithymia. Emotion, 15(5), 637643.Google Scholar
Brewer, R., Cook, R., Cardi, V., Treasure, J., & Bird, G. (2015b). Emotion recognition deficits in eating disorders are explained by co-occurring alexithymia. Royal Society Open Science, 2(1), 140382.Google Scholar
Brewer, R., Happé, F., Cook, R., & Bird, G. (2015c). Commentary on “Autism, oxytocin and interoception”: Alexithymia, not autism spectrum disorders, is the consequence of interoceptive failure. Neuroscience & Biobehavioral Reviews, 56, 348353.Google Scholar
Brewer, R., Marsh, A. A., Catmur, C., et al. (2015d). The impact of autism spectrum disorder and alexithymia on judgments of moral acceptability. Journal of Abnormal Psychology, 124(3), 589595.Google Scholar
Brewer, R., Cook, R., & Bird, G. (2016). Alexithymia: A general deficit of interoception. Royal Society Open Science, 3(10), 150664.Google Scholar
Brewer, R., Cook, R., Cardi, V., et al. (2019). Alexithymia (and predictive coding) explains personal distress in individuals with eating disorders. Journal of Affective Disorders, 72(7), 18271836.Google Scholar
Broft, A. I., Berner, L. A., Martinez, D., & Walsh, B. T. (2011). Bulimia nervosa and evidence for striatal dopamine dysregulation: A conceptual review. Physiology and Behavior, 104(1), 122127.CrossRefGoogle ScholarPubMed
Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4(6), 215222.Google Scholar
Bushara, K. O., Grafman, J., & Hallett, M. (2001). Neural correlates of auditory–visual stimulus onset asynchrony detection. Journal of Neuroscience, 21(1), 300304.Google Scholar
Cai, W., Ryali, S., Chen, T., Li, C.-S. R., & Menon, V. (2014). Dissociable roles of right inferior frontal cortex and anterior insula in inhibitory control: Evidence from intrinsic and task-related functional parcellation, connectivity, and response profile analyses across multiple datasets. Journal of Neuroscience, 34(44), 1465214667.Google Scholar
Carta, M. G., Sancassiani, F., Pippia, V., et al. (2013). Alexithymia is associated with delayed treatment seeking in acute myocardial infarction. Psychotherapy and Psychosomatics, 82(3), 190192.Google Scholar
Cascio, C. J., Foss-Feig, J. H., Heacock, J. L., et al. (2012). Response of neural reward regions to food cues in autism spectrum disorders. Journal of Neurodevelopmental Disorders, 4(1), 9.Google Scholar
Caspi, A., Houts, R. M., Belsky, D. W., & Goldman-Mellor, S. J. (2015). The p factor: One general psychopathology factor in the structure of psychiatric disorders? Clinical Psychological Science, 2(2), 119137.Google Scholar
Chahraoui, K., Duchene, C., Rollot, F., Bonin, B., & Moreau, T. (2014). Longitudinal study of alexithymia and multiple sclerosis. Brain and Behavior, 4(1), 7582.Google Scholar
Chen, T., Michels, L., Supekar, K., et al. (2015). Role of the anterior insular cortex in integrative causal signaling during multisensory auditory–visual attention. European Journal of Neuroscience, 41(2), 264274.Google Scholar
Cochrane, C. E., Brewerton, T. D., Wilson, D. B., & Hodges, E. L. (1993). Alexithymia in the eating disorders. International Journal of Eating Disorders, 14(2), 219222.Google Scholar
Cole, M. W., & Schneider, W. (2007). The cognitive control network: Integrated cortical regions with dissociable functions. NeuroImage, 37(1), 343360.Google Scholar
Coll, M., Penton, T., Hobson, H., & Hobson, H. (2017). Important methodological issues regarding the use of transcranial magnetic stimulation to investigate interoceptive processing: A comment on Pollatos et al. (2016). Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160506.Google Scholar
Cook, J. L., & Bird, G. (2012). Atypical social modulation of imitation in autism spectrum conditions. Journal of Autism and Developmental Disorders, 42(6), 10451051.Google Scholar
Cook, R., Brewer, R., Shah, P., & Bird, G. (2013). Alexithymia, not autism, predicts poor recognition of emotional facial expressions. Psychological Science, 24(5), 723732.Google Scholar
Coricelli, G., Critchley, H. D., Joffily, M., et al. (2005). Regret and its avoidance: A neuroimaging study of choice behavior. Nature Neuroscience, 8(9), 12551262.CrossRefGoogle ScholarPubMed
Cowdrey, F. A., Park, R. J., Harmer, C. J., & McCabe, C. (2011). Increased neural processing of rewarding and aversive food stimuli in recovered anorexia nervosa. Biological Psychiatry, 70(8), 736743.Google Scholar
Craig, A. D. (2002). How do you feel? Interoception: The sense of the physiological condition of the body. Nature Reviews Neuroscience, 3(8), 655666.Google Scholar
Craig, A. D. (2003a). Interoception: The sense of the physiological condition of the body. Current Opinion in Neurobiology, 13(4), 500505.Google Scholar
Craig, A. D. (2003b). Pain mechanisms: Labeled lines versus convergence in central processing. Annual Review of Neuroscience, 26, 130.Google Scholar
Craig, A. D. (2009). How do you feel – Now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10(1), 5970.Google Scholar
Critchley, H. D., & Harrison, N. A. (2013). Visceral influences on brain and behavior. Neuron, 77(4), 624638.Google Scholar
Critchley, H. D., Mathias, C. J., & Dolan, R. J. (2001). Neural activity in the human brain relating to uncertainty and arousal during anticipation. Neuron, 29(2), 537545.CrossRefGoogle ScholarPubMed
Critchley, H. D., Wiens, S., Rotshtein, P., Ohman, A., & Dolan, R. J. (2004). Neural systems supporting interoceptive awareness. Nature Neuroscience, 7(2), 189195.Google Scholar
Cushman, F., Young, L., & Greene, J. (2010). Our multi-system moral psychology: Towards a consensus view. In Doris, J., Harman, G., Nichols, S., et al., eds., The Oxford Handbook of Moral Psychology. Oxford: Oxford University Press, pp. 4772.CrossRefGoogle Scholar
Damasio, A. R., Tranel, D., & Damasio, H. (1991). Somatic markers and the guidance of behaviour: Theory and preliminary testing. In Levin, H. S., Eisenberg, H. M., & Benton, A. L., eds., Frontal Lobe Function and Dysfunction. New York: Oxford University Press, pp. 217229.CrossRefGoogle Scholar
Damasio, A., Damasio, H., & Tranel, D. (2013). Persistence of feelings and sentience after bilateral damage of the insula. Cerebral Cortex, 23(4), 833846.Google Scholar
Davidson, R. J., Pizzagalli, D., Nitschke, J. B., & Putnam, K. (2002). Depression: Perspectives from affective neuroscience. Annual Review of Psychology, 53, 545574.Google Scholar
De Beradis, D., Conti, C., Iasevoli, F., et al. (2014). Alexithymia and its relationships with acute phase proteins and cytokine release: An updated review. Journal of Biological Regulators & Homeostatic Agents, 28(4), 1317.Google Scholar
de Haan, H. A., van der Palen, J., Wijdeveld, T. G. M., Buitelaar, J. K., & De Jong, C. A. J. (2014). Alexithymia in patients with substance use disorders: State or trait? Psychiatry Research, 216(1), 137145.Google Scholar
Del Giudice, M. (2014). An evolutionary life history framework for psychopathology. Psychological Inquiry, 25(3–4), 261300.Google Scholar
Del Giudice, M., Ellis, B. J., & Shirtcliff, E. A. (2011). The Adaptive Calibration Model of stress responsivity. Neuroscience and Biobehavioral Reviews, 35(7), 15621592.Google Scholar
Delle-Vigne, D., Kornreich, C., Verbanck, P., & Campanella, S. (2014). Subclinical alexithymia modulates early audio-visual perceptive and attentional event-related potentials. Frontiers in Human Neuroscience, 8, 106.Google Scholar
Deng, Y., Ma, X., & Tang, Q. (2013). Brain response during visual emotional processing: An fMRI study of alexithymia. Psychiatry Research, 213(3), 225229.Google Scholar
Dichter, G. S., Richey, J. A., Rittenberg, A. M., Sabatino, A., & Bodfish, J. W. (2012). Reward circuitry function in autism during face anticipation and outcomes. Journal of Autism and Developmental Disorders, 42(2), 147160.Google Scholar
Domschke, K., Stevens, S., Pfleiderer, B., & Gerlach, A. L. (2010). Interoceptive sensitivity in anxiety and anxiety disorders: An overview and integration of neurobiological findings. Clinical Psychology Review, 30(1), 111.Google Scholar
Dosenbach, N. U. F., Fair, D. A., Miezin, F. M., et al. (2007). Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences, 104(26), 1107311078.Google Scholar
Dunn, B. D., Galton, H. C., Morgan, R., et al. (2010). Listening to your heart. How interoception shapes emotion experience and intuitive decision making. Psychological Science, 21(12), 18351844.Google Scholar
Ebisch, S. J. H., Salone, A., Ferri, F., et al. (2013). Out of touch with reality? Social perception in first-episode schizophrenia. Social Cognitive and Affective Neuroscience, 8(4), 394403.Google Scholar
Edwards, J., Jackson, H. J., & Pattison, P. E. (2002). Emotion recognition via facial expression and affective prosody in schizophrenia: A methodological review. Clinical Psychology Review, 22, 789832.Google Scholar
Ehlers, A., & Breuer, P. (1992). Increased cardiac awareness in panic disorder. Journal of Abnormal Psychology, 101(3), 371382.Google Scholar
Eichele, T., Debener, S., Calhoun, V. D., Spe, et al. (2008). Prediction of human errors by maladaptive changes in event-related brain networks. Proceedings of the National Academy of Sciences, 105(16), 61736178.Google Scholar
Ernst, J., Böker, H., Hättenschwiler, J., et al. (2014). The association of interoceptive awareness and alexithymia with neurotransmitter concentrations in insula and anterior cingulate. Social Cognitive and Affective Neuroscience, 9(6), 857863.Google Scholar
Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences, 15(2), 8593.Google Scholar
Fassino, S., Pierò, A., Gramaglia, C., & Abbate-Daga, G. (2004). Clinical, psychopathological and personality correlates of interoceptive awareness in anorexia nervosa, bulimia nervosa and obesity. Psychopathology, 37(4), 168174.CrossRefGoogle ScholarPubMed
Fleming, S. M., & Dolan, R. J. (2012). The neural basis of metacognitive ability. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367(1594), 13381349.Google Scholar
Forbes, E. E., & Dahl, R. E. (2012). Altered reward function in adolescent depression: What, when, and how? Journal of Child Psychology and Psychiatry, 53(1), 315.Google Scholar
Franklin, T. R., Acton, P. D., Maldjian, J. A., et al. (2002). Decreased gray matter concentration in the insular, orbitofrontal, cingulate, and temporal cortices of cocaine patients. Biological Psychiatry, 51(2), 134142.Google Scholar
Frewen, P. A., Pain, C., Dozois, D. J. A., & Lanius, R. A. (2006). Alexithymia in PTSD: Psychometric and fMRI studies. Annals of the New York Academy of Sciences, 1071, 397400.Google Scholar
Frewen, P. A., Dozois, D. J. A., Neufeld, R. W. J., & Lanius, R. A. (2008a). Meta-analysis of alexithymia in posttraumatic stress disorder. Journal of Traumatic Stress, 21(2), 243246.Google Scholar
Frewen, P. A., Lanius, R. A., Dozois, D. J. A., et al. (2008b). Clinical and neural correlates of alexithymia in posttraumatic stress disorder. Journal of Abnormal Psychology, 117(1), 171181.Google Scholar
Fukunishi, I., Kawamura, N., Ishikawa, T., et al. (1997). Mothers’ low care in the development of alexithymia: A preliminary study in Japanese college students. Psychological Reports, 80(1), 143146.Google Scholar
Furl, N., & Averbeck, B. B. (2011). Parietal cortex and insula relate to evidence seeking relevant to reward-related decisions. Journal of Neuroscience, 31(48), 1757217582.Google Scholar
Gaigg, S. B., Maurice, A. S. F., & Bird, G. (2018). The psychophysiological mechanisms of alexithymia in autism spectrum disorder. Autism, 22(2), 227231.Google Scholar
Garfinkel, S. N., & Critchley, H. D. (2013). Interoception, emotion and brain: New insights link internal physiology to social behaviour. Commentary on: “Anterior insular cortex mediates bodily sensibility and social anxiety” by Terasawa et al. (2012). Social Cognitive and Affective Neuroscience, 8(3), 231234.CrossRefGoogle ScholarPubMed
Garfinkel, S. N., Manassei, M. F., Hamilton-Fletcher, G., et al. (2016a). Interoceptive dimensions across cardiac and respiratory axes. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, 20160014.Google Scholar
Garfinkel, S. N., Tiley, C., O’Keeffe, S., et al. (2016b). Discrepancies between dimensions of interoception in autism: Implications for emotion and anxiety. Biological Psychology, 114, 117126.Google Scholar
Ghahremani, A., Rastogi, A., & Lam, S. (2015). The role of right anterior insula and salience processing in inhibitory control. Journal of Neuroscience, 35(8), 32913292.Google Scholar
Gleichgerrcht, E., Tomashitis, B., & Sinay, V. (2015). The relationship between alexithymia, empathy and moral judgment in patients with multiple sclerosis. European Journal of Neurology, 22(9), 12951303.Google Scholar
Goerlich, K. S., Witteman, J., Aleman, A., & Martens, S. (2011). Hearing feelings: Affective categorization of music and speech in alexithymia, an ERP study. PLoS ONE, 6(5), e19501.Google Scholar
Goerlich-Dobre, K. S., Bruce, L., Martens, S., Aleman, A., & Hooker, C. I. (2014a). Distinct associations of insula and cingulate volume with the cognitive and affective dimensions of alexithymia. Neuropsychologia, 53, 284292.CrossRefGoogle ScholarPubMed
Goerlich-Dobre, K. S., Witteman, J., Schiller, N. O., et al. (2014b). Blunted feelings: Alexithymia is associated with a diminished neural response to speech prosody. Social Cognitive and Affective Neuroscience, 9(8), 11081117.Google Scholar
Goerlich-Dobre, K. S., Votinov, M., Habel, U., Pripfl, J., & Lamm, C. (2015). Neuroanatomical profiles of alexithymia dimensions and subtypes. Human Brain Mapping, 36(10), 38053818.Google Scholar
Grabe, H. J., Spitzer, C., & Freyberger, H. J. (2004). Alexithymia and personality in relation to dimensions of psychopathology. American Journal of Psychiatry, 161(7), 12991301.Google Scholar
Grabe, H. J., Wittfeld, K., Hegenscheid, K., et al. (2014). Alexithymia and brain gray matter volumes in a general population sample. Human Brain Mapping, 35(12), 59325945.Google Scholar
Gray, M. A., & Critchley, H. D. (2007). Interoceptive basis to craving. Neuron, 54(2), 183186.Google Scholar
Griffin, C., Lombardo, M. V., & Auyeung, B. (2016). Alexithymia in children with and without autism spectrum disorders. Autism Research, 9(7), 773780.Google Scholar
Grynberg, D., Luminet, O., Corneille, O., Grèzes, J., & Berthoz, S. (2010). Alexithymia in the interpersonal domain: A general deficit of empathy? Personality and Individual Differences, 49(8), 845850.CrossRefGoogle Scholar
Grynberg, D., Chang, B., Corneille, O., et al. (2012). Alexithymia and the processing of emotional facial expressions (EFEs): Systematic review, unanswered questions and further perspectives. PLoS ONE, 7(8), e42429.Google Scholar
Gündel, H., López-Sala, A., Ceballos-Baumann, A., et al. (2004). Alexithymia correlates with the size of the right anterior cingulate. Journal of Psychosomatic Research, 56(6), 609610.Google Scholar
Guttman, H., & Laporte, L. (2002). Alexithymia, empathy, and psychological symptoms in a family context. Comprehensive Psychiatry, 43(6), 448455.Google Scholar
Hahn, A. M., Simons, R. M., & Simons, J. S. (2016). Childhood maltreatment and sexual risk taking: The mediating role of alexithymia. Archives of Sexual Behavior, 45(1), 5362.Google Scholar
Ham, B. J., Lee, M. S., Lee, Y. M., et al. (2005). Association between the catechol O-methyltransferase Val108/158 Met polymorphism and alexithymia. Neuropsychobiology, 52(3), 151154.Google Scholar
Harms, M. B., Martin, A., & Wallace, G. L. (2010). Facial emotion recognition in autism spectrum disorders: A review of behavioral and neuroimaging studies. Neuropsychology Review, 20(3), 290322.Google Scholar
Harshaw, C. (2015). Interoceptive dysfunction: Toward an integrated framework for understanding somatic and affective disturbance in depression. Psychological Bulletin, 141(2), 311363.Google Scholar
Heaton, P., Reichenbacher, L., Sauter, D., et al. (2012). Measuring the effects of alexithymia on perception of emotional vocalizations in autistic spectrum disorder and typical development. Psychological Medicine, 42(11), 24532459.Google Scholar
Heerey, E. A., Bell-Warren, K. R., & Gold, J. M. (2008). Decision-making impairments in the context of intact reward sensitivity in schizophrenia. Biological Psychiatry, 64(1), 6269.Google Scholar
Heiberg, A. N., & Heiberg, A. (1978). A possible genetic contribution to the alexithymia trait. Psychotherapy and Psychosomatics, 30(3–4), 205210.Google Scholar
Heinzel, A., Schäfer, R., Müller, H. W., et al. (2010). Increased activation of the supragenual anterior cingulate cortex during visual emotional processing in male subjects with high degrees of alexithymia: An event-related fMRI study. Psychotherapy and Psychosomatics, 79(6), 363370.Google Scholar
Henry, J. D., Phillips, L. H., Crawford, J. R., Theodorou, G., & Summers, F. (2006). Cognitive and psychosocial correlates of alexithymia following traumatic brain injury. Neuropsychologia, 44(1), 6272.Google Scholar
Herbert, B. M., Herbert, C., & Pollatos, O. (2011). On the relationship between interoceptive awareness and alexithymia: Is interoceptive awareness related to emotional awareness? Journal of Personality, 79(5), 11491175.Google Scholar
Heshmati, R., Jafari, E., Hoseinifar, J., & Ahmadi, M. (2010). Comparative study of alexithymia in patients with schizophrenia spectrum disorders, non-psychotic disorders and normal people. Procedia: Social and Behavioral Sciences, 5, 10841089.Google Scholar
Hill, E., Berthoz, S., & Frith, U. (2004). Brief report: Cognitive processing of own emotions in individuals with autistic spectrum disorder and in their relatives. Journal of Autism and Developmental Disorders, 34(2), 229235.Google Scholar
Hogeveen, J., Bird, G., Chau, A., Krueger, F., & Grafman, J. (2016). Acquired alexithymia following damage to the anterior insula. Neuropsychologia, 82, 142148.Google Scholar
Honkalampi, K., Hintikka, J., Tanskanen, A., Lehtonen, J., & Viinamäki, H. (2000). Depression is strongly associated with alexithymia in the general population. Journal of Psychosomatic Research, 48(1), 99104.Google Scholar
Honkalampi, K., Hintikka, J., Laukkanen, E., & Viinamäki, J. L. H. (2001). Alexithymia and depression: A prospective study of patients with major depressive disorder. Psychosomatics, 42(3), 229234.Google Scholar
Honkalampi, K., Koivumaa-Honkanen, H., Lehto, S. M., et al. (2010). Is alexithymia a risk factor for major depression, personality disorder, or alcohol use disorders? A prospective population-based study. Journal of Psychosomatic Research, 68(3), 269273.Google Scholar
Ibañez, A., Gleichgerrcht, E., & Manes, F. (2010). Clinical effects of insular damage in humans. Brain Structure and Function, 214(5–6), 397410.Google Scholar
Ihme, K., Dannlowski, U., Lichev, V., et al. (2013). Alexithymia is related to differences in gray matter volume: A voxel-based morphometry study. Brain Research, 1491, 6067.Google Scholar
Jardri, R., Pins, D., Lafargue, G., et al. (2011). Increased overlap between the brain areas involved in self-other distinction in schizophrenia. PLoS ONE, 6(3), e17500.Google Scholar
Jessimer, M., & Markham, R. (1997). Alexithymia: A right hemisphere dysfunction specific to recognition of certain facial expressions? Brain and Cognition, 34(2), 246258.Google Scholar
Jongen, S., Axmacher, N., Kremers, N. A., et al. (2014). An investigation of facial emotion recognition impairments in alexithymia and its neural correlates. Behavioural Brain Research, 271, 129139.Google Scholar
Jørgensen, M. M., Zachariae, R., Skytthe, A., & Kyvik, K. (2007). Genetic and environmental factors in alexithymia: A population-based study of 8,785 Danish twin pairs. Psychotherapy and Psychosomatics, 76(6), 369375.Google Scholar
Joukamaa, M., Kokkonen, P., Veijola, J., et al. (2003). Social situation of expectant mothers and alexithymia 31 years later in their offspring: A prospective study. Psychosomatic Medicine, 65(2), 307312.Google Scholar
Kano, M., & Fukudo, S. (2013). The alexithymic brain: The neural pathways linking alexithymia to physical disorders. BioPsychoSocial Medicine, 7(1), 1.Google Scholar
Kano, M., Fukado, S., Jiro, G., et al. (2003). Specific brain processing of facial expressions in people with alexithymia: An H215O-PET study. Brain, 126(6), 14741484.Google Scholar
Kano, M., Hamaguchi, T., Itoh, M., Yanai, K., & Fukudo, S. (2007). Correlation between alexithymia and hypersensitivity to visceral stimulation in human. Pain, 132(3), 252263.Google Scholar
Karukivi, M., Pölönen, T., Vahlberg, T., Saikkonen, S., & Saarijärvi, S. (2014). Stability of alexithymia in late adolescence: Results of a 4-year follow-up study. Psychiatry Research, 219(2), 386390.Google Scholar
Kaye, W. (2008). Neurobiology of anorexia and bulimia nervosa. Physiology & Behavior, 94(1), 121135.Google Scholar
Keating, C., Tilbrook, A. J., Rossell, S. L., Enticott, P. G., & Fitzgerald, P. B. (2012). Reward processing in anorexia nervosa. Neuropsychologia, 50(5), 567575.Google Scholar
Keller, M. C., & Miller, G. (2006). Resolving the paradox of common, harmful, heritable mental disorders: Which evolutionary genetic models work best? Behavioral and Brain Sciences, 29(4), 385452.Google Scholar
Khalsa, S. S., & Lapidus, R. C. (2016). Can interoception improve the pragmatic search for biomarkers in psychiatry? Frontiers in Psychiatry, 7, 121.Google Scholar
Khalsa, S. S., Rudrauf, D., Feinstein, J. S., & Tranel, D. (2009a). The pathways of interoceptive awareness. Nature Neuroscience, 12(12), 14941496.Google Scholar
Khalsa, S. S., Rudrauf, D., Sandesara, C., Olshansky, B., & Tranel, D. (2009b). Bolus isoproterenol infusions provide a reliable method for assessing interoceptive awareness. International Journal of Psychophysiology, 72(1), 3445.Google Scholar
Kober, H., Barrett, L. F., Joseph, J., et al. (2008). Functional grouping and cortical-subcortical interactions in emotion: A meta-analysis of neuroimaging studies. NeuroImage, 42(2), 9981031.Google Scholar
Kohls, G., Schulte-Ruther, M., Nehrkorn, B., et al. (2013). Reward system dysfunction in autism spectrum disorders. Social Cognitive and Affective Neuroscience, 8(5), 565572.Google Scholar
Kokkonen, P., Karvonen, J. T., Veijola, J., et al. (2001). Prevalence and sociodemographic correlates of alexithymia in a population sample of young adults. Comprehensive Psychiatry, 42(6), 471476.Google Scholar
Koob, G. F., & Le Moal, M. (2001). Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology, 24(2), 97129.Google Scholar
Kooiman, C. G., van Rees Vellinga, S., Spinhoven, P., et al. (2004). Childhood adversities as risk factors for alexithymia and other aspects of affect dysregulation in adulthood. Psychotherapy and Psychosomatics, 73(2), 107116.Google Scholar
Koven, N. S., Roth, R. M., Garlinghouse, M. A., Flashman, L. A., & Saykin, A. J. (2011). Regional gray matter correlates of perceived emotional intelligence. Social Cognitive and Affective Neuroscience, 6(5), 582590.Google Scholar
Krolak-Salmon, P., Hénaff, M. A., Isnard, J., et al. (2003). An attention modulated response to disgust in human ventral anterior insula. Annals of Neurology, 53(4), 446453.Google Scholar
Kugel, H., Eichmann, M., Dannlowski, U., et al. (2008). Alexithymic features and automatic amygdala reactivity to facial emotion. Neuroscience Letters, 435(1), 4044.Google Scholar
Lahey, B. B., Applegate, B., Hakes, J. K., et al. (2012). Is there a general factor of prevalent psychopathology during adulthood? Journal of Abnormal Psychology, 121(4), 971977.Google Scholar
Lane, R. D., Quinlan, D. M., Schwartz, G. E., Walker, P. A., & Zeitlin, S. B. (1990). The Levels of Emotional Awareness Scale: A cognitive–developmental measure of emotion. Journal of Personality Assessment, 55(1–2), 124134.Google Scholar
Lane, R. D., Sechrest, L., Riedel, R., Shapiro, D. E., & Kaszniak, A. W. (2000). Pervasive emotion recognition deficit common to alexithymia and the repressive coping style. Psychosomatic Medicine, 62(4), 492501.Google Scholar
Lane, R. D., Weihs, K. L., Herring, A., Hishaw, A., & Smith, R. (2015). Affective agnosia: Expansion of the alexithymia construct and a new opportunity to integrate and extend Freud’s legacy. Neuroscience & Biobehavioral Reviews, 55, 594611.Google Scholar
Larson, M. J., South, M., Krauskopf, E., Clawson, A., & Crowley, M. J. (2011). Feedback and reward processing in high-functioning autism. Psychiatry Research, 187(1–2), 198203.Google Scholar
Lazarov, A., Dar, R., Oded, Y., & Liberman, N. (2010). Are obsessive–compulsive tendencies related to reliance on external proxies for internal states? Evidence from biofeedback-aided relaxation studies. Behaviour Research and Therapy, 48(6), 516523.Google Scholar
Leekam, S. R., Nieto, C., Libby, S. J., Wing, L., & Gould, J. (2007). Describing the sensory abnormalities of children and adults with autism. Journal of Autism and Developmental Disorders, 37(5), 894910.Google Scholar
Leighton, J., Bird, G., Orsini, C., & Heyes, C. (2010). Social attitudes modulate automatic imitation. Journal of Experimental Social Psychology, 46(6), 905910.Google Scholar
Lilenfeld, L. R. R., Wonderlich, S., Riso, L. P., Crosby, R., & Mitchell, J. (2006). Eating disorders and personality: A methodological and empirical review. Clinical Psychology Review, 26(3), 299320.Google Scholar
Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E., & Barrett, L. F. (2012). The brain basis of emotion: A meta-analytic review. Behavioral and Brain Sciences, 35(3), 121143.Google Scholar
Livesey, A. C., Wall, M. B., & Smith, A. T. (2007). Time perception: Manipulation of task difficulty dissociates clock functions from other cognitive demands. Neuropsychologia, 45(2), 321331.Google Scholar
Longarzo, M., D’Olimpio, F., Chiavazzo, A., et al. (2015). The relationships between interoception and alexithymic trait. The Self-Awareness Questionnaire in healthy subjects. Frontiers in Psychology, 6, 1149.Google Scholar
Luminet, O., Vermeulen, N., Demaret, C., Taylor, G. J., & Bagby, R. M. (2006). Alexithymia and levels of processing: Evidence for an overall deficit in remembering emotion words. Journal of Research in Personality, 40(5), 713733.Google Scholar
Lyvers, M., Hasking, P., Albrecht, B., & Thorberg, F. A. (2012). Alexithymia and alcohol: The roles of punishment sensitivity and drinking motives. Addiction Research & Theory, 20(4), 348357.Google Scholar
Lyvers, M., Duric, N., & Thorberg, F. A. (2014). Caffeine use and alexithymia in university students. Journal of Psychoactive Drugs, 46(4), 340346.Google Scholar
Magnani, B., Frassinetti, F., Ditye, T., et al. (2014). Left insular cortex and left SFG underlie prismatic adaptation effects on time perception: Evidence from fMRI. NeuroImage, 92, 340348.Google Scholar
Mann, L., Wise, T., Trinidad, A., & Kohanski, R. (1995). Alexithymia, affect recognition, and five factors of personality in substance abusers. Perceptual and Motor Skills, 81(1), 3540.Google Scholar
Marchesi, C., Brusamonti, E., & Maggini, C. (2000). Are alexithymia, depression, and anxiety distinct constructs in affective disorders? Journal of Psychosomatic Research, 49(1), 4349.Google Scholar
Mason, M. F., Norton, M. I., Van Horn, J. D., et al. (2007). Wandering minds: The default network and stimulus-independent thought. Science, 315(5810), 393395.Google Scholar
Mattila, A. K., Salminen, J. K., Nummi, T., & Joukamaa, M. (2006). Age is strongly associated with alexithymia in the general population. Journal of Psychosomatic Research, 61(5), 629635.Google Scholar
McClenon, J. (2011). Evolutionary theories of schizophrenia: An experience-centered review. Journal of Mind and Behavior, 32(2), 135150.Google Scholar
McDonald, P. W., & Prkachin, K. M. (1990). The expression and perception of facial emotion in alexithymia: A pilot study. Psychosomatic Medicine, 52(2), 199210.Google Scholar
Mezzavilla, M., Ulivi, S., Bianca, M. L., et al. (2015). Analysis of functional variants reveals new candidate genes associated with alexithymia. Psychiatry Research, 227(2–3), 363365.Google Scholar
Miyake, Y., Okamoto, Y., Onoda, K., et al. (2012). Brain activation during the perception of stressful word stimuli concerning interpersonal relationships in anorexia nervosa patients with high degrees of alexithymia in an fMRI paradigm. Psychiatry Research – Neuroimaging, 201(2), 113119.Google Scholar
Moormann, P. P., Bermond, B., Vorst, H. C. M., et al. (2008). New avenues in alexithymia research: The creation of alexithymia types. In Vingerhoets, A., Nyklicek, I., & Denollet, J., eds., Emotion Regulation. New York: Springer, pp. 2742.Google Scholar
Moriguchi, Y., & Komaki, G. (2013). Neuroimaging studies of alexithymia: Physical, affective, and social perspectives. BioPsychoSocial Medicine, 7(1), 8.Google Scholar
Moriguchi, Y., Decety, J., Ohnishi, T., et al. (2007). Empathy and judging other’s pain: An fMRI study of alexithymia. Cerebral Cortex, 17(9), 22232234.Google Scholar
Mundy, P. (2003). Annotation: The neural basis of social impairments in autism: The role of the dorsal medial–frontal cortex and anterior cingulate system. Journal of Child Psychology and Psychiatry, 44(6), 793809.Google Scholar
Murphy, J., Brewer, R., & Bird, G. (2017). Interoception and psychopathology: A developmental neuroscience perspective. Developmental Cognitive Neuroscience, 23, 4556.Google Scholar
Murphy, J., Catmur, C., & Bird, G. (2018). Alexithymia is associated with a multi-domain, multi-dimensional failure of interoception: Evidence from novel tests. Journal of Experimental Psychology: General, 147, 398408.Google Scholar
Nagai, M., Kishi, K., & Kato, S. (2007). Insular cortex and neuropsychiatric disorders: A review of recent literature. European Psychiatry, 22(6), 387394.Google Scholar
Naqvi, N. H., & Bechara, A. (2009). The hidden island of addiction: The insula. Trends in Neurosciences, 32(1), 5667.Google Scholar
Naqvi, N. H., & Bechara, A. (2010). The insula and drug addiction: An interoceptive view of pleasure, urges and decision-making. Brain Structure and Function, 214(5–6), 435450.Google Scholar
Naqvi, N. H., Rudrauf, D., Damasio, H., & Bechara, A. (2007). Damage to the insula disrupts addiction to cigarette smoking. Science, 315(5811), 531534.Google Scholar
Nemiah, J. C., Freyberger, H. J., & Sifneos, P. E. (1976). Alexithymia: A view of the psychosomatic process. In Hill, O. W., ed., Modern Trends in Psychosomatic Medicine. London: Butterworths, pp. 430439.Google Scholar
Neumann, D., Zupan, B., Malec, J. F., & Hammond, F. (2014). Relationships between alexithymia, affect recognition, and empathy after traumatic brain injury. Journal of Head Trauma Rehabilitation, 29(1), E18E27.Google Scholar
Noble, E. P. (2000). Addiction and its reward process through polymorphisms of the D2 dopamine receptor gene: A review. European Psychiatry, 15(2), 7989.Google Scholar
Nowakowski, M. E., McFarlane, T., & Cassin, S. (2013). Alexithymia and eating disorders: A critical review of the literature. Journal of Eating Disorders, 1(1), 21.Google Scholar
Oldershaw, A., Hambrook, D., Stahl, D., et al. (2011). The socio-emotional processing stream in anorexia nervosa. Neuroscience and Biobehavioral Reviews, 35(3), 970988.Google Scholar
Paradiso, S., Vaidaya, J. G., McCormick, L. M., Jones, A., & Robinson, R. G. (2008). Aging and alexithymia association with reduced right rostral cingulate volume. American Journal of Geriatric Psychiatry, 16(9), 760769.Google Scholar
Parker, J. D. A., Bagby, R. M., & Taylor, G. J. (1991). Alexithymia and depression: Distinct or overlapping constructs? Comprehensive Psychiatry, 32(5), 387394.Google Scholar
Parker, J. D. A., Taylor, G. J., & Bagby, R. (1993). Alexithymia and the recognition of facial expressions of emotion. Psychotherapy and Psychosomatics, 59(3–4), 197202.Google Scholar
Parker, J. D. A., Taylor, G. J., & Bagby, R. M. (2003). The 20-Item Toronto Alexithymia Scale III. Reliability and factorial validity in a community population. Journal of Psychosomatic Research, 55(3), 269275.Google Scholar
Parker, J. D. A., Wood, L. M., Bond, B. J., & Shaughnessy, P. (2005). Alexithymia in young adulthood: A risk factor for pathological gambling. Psychotherapy and Psychosomatics, 74(1), 5155.Google Scholar
Parker, P. D., Prkachin, K. M., & Prkachin, G. C. (2005). Processing of facial expressions of negative emotion in alexithymia: The influence of temporal constraint. Journal of Personality, 73(4), 10871107.Google Scholar
Patil, I., & Silani, G. (2014a). Alexithymia increases moral acceptability of accidental harms. Journal of Cognitive Psychology, 26(5), 118.Google Scholar
Patil, I., & Silani, G. (2014b). Reduced empathic concern leads to utilitarian moral judgments in trait alexithymia. Frontiers in Psychology, 5, 501.Google Scholar
Paulus, M. P., & Stein, M. B. (2006). An insular view of anxiety. Biological Psychiatry, 60(4), 383387.Google Scholar
Penfield, W., & Faulk, M. E. (1955). The insula: Further observations on its function. Brain, 78(4), 445470.Google Scholar
Phan, K. L., Wager, T., Taylor, S. F., & Liberzon, I. (2002). Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in PET and fMRI. NeuroImage, 16(2), 331348.Google Scholar
Picardi, A., Fagnani, C., Gigantesco, A., et al. (2011). Genetic influences on alexithymia and their relationship with depressive symptoms. Journal of Psychosomatic Research, 71(4), 256263.Google Scholar
Pollatos, O., Kurz, A. L., Albrecht, J., et al. (2008). Reduced perception of bodily signals in anorexia nervosa. Eating Behaviors, 9(4), 381388.Google Scholar
Pollatos, O., Herbert, B. M., Mai, S., & Kammer, T. (2016). Changes in interoceptive processes following brain stimulation. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 371, 20160016.Google Scholar
Pouga, L., Berthoz, S., De Gelder, B., & Grèzes, J. (2010). Individual differences in socioaffective skills influence the neural bases of fear processing: The case of alexithymia. Human Brain Mapping, 31(10), 14691481.Google Scholar
Press, C., Richardson, D., & Bird, G. (2010). Intact imitation of emotional facial actions in autism spectrum conditions. Neuropsychologia, 48(11), 32913297.Google Scholar
Prkachin, G. C., Casey, C., & Prkachin, K. M. (2009). Alexithymia and perception of facial expressions of emotion. Personality and Individual Differences, 46(4), 412417.Google Scholar
Prochnow, D., Donell, J., Schäfer, R., et al. (2011). Alexithymia and impaired facial affect recognition in multiple sclerosis. Journal of Neurology, 258(9), 16831688.Google Scholar
Quattrocki, E., & Friston, K. (2014). Autism, oxytocin and interoception. Neuroscience and Biobehavioral Reviews, 47, 410430.Google Scholar
Reker, M., Ohrmann, P., Rauch, A. V., et al. (2010). Individual differences in alexithymia and brain response to masked emotion faces. Cortex, 46(5), 658667.Google Scholar
Reuter, J., Raedler, T., Rose, M., et al. (2005). Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nature Neuroscience, 8(2), 147148.Google Scholar
Rogers, M. A., Yamasue, H., Abe, O., et al. (2009). Smaller amygdala volume and reduced anterior cingulate gray matter density associated with history of post-traumatic stress disorder. Psychiatry Research: Neuroimaging, 174(3), 210216.Google Scholar
Säkkinen, P., Kaltiala-Heino, R., Ranta, K., Haataja, R., & Joukamaa, M. (2007). Psychometric properties of the 20-item Toronto Alexithymia Scale and prevalence of alexithymia in a Finnish adolescent population. Psychosomatics, 48(2), 154161.Google Scholar
Salminen, J. K., Saarija, S., & Rela, E. A. A. (1999). Prevalence of alexithymia and its association with sociodemographic variables in the general population of Finland. Journal of Psychosomatic Research, 46(1), 7582.Google Scholar
Sass, L. A., & Parnas, J. (2003). Schizophrenia, consciousness, and the self. Schizophrenia Bulletin, 29(3), 427444.Google Scholar
Schandry, R., & Weitkunat, R. (1990). Enhancement of heartbeat-related brain potentials through cardiac awareness training. International Journal of Neuroscience, 53(2–4), 243253.Google Scholar
Schmitz, N., Rubia, K., Van Amelsvoort, T., et al. (2008). Neural correlates of reward in autism. British Journal of Psychiatry, 192(1), 1924.Google Scholar
Schoenbaum, G., Roesch, M. R., & Stalnaker, T. A. (2006). Orbitofrontal cortex, decision-making and drug addiction. Trends in Neurosciences, 29(2), 116124.Google Scholar
Seth, A. K., Suzuki, K., & Critchley, H. D. (2011). An interoceptive predictive coding model of conscious presence. Frontiers in Psychology, 2, 395.Google Scholar
Shah, P., Catmur, C., & Bird, G. (2016). Emotional decision-making in autism spectrum disorder: the roles of interoception and alexithymia. Molecular Autism, 7(1), 43.Google Scholar
Shah, P., Hall, R., Catmur, C., & Bird, G. (2016). Alexithymia, not autism, is associated with impaired interoception. Cortex, 81, 215220.Google Scholar
Sherrington, C. S. (1900). Cutaneous sensations. In Schäfer, E. A., ed., Text-Book of Physiology. Edinburgh: Pentland, pp. 9201001.Google Scholar
Shishido, H., Gaher, R. M., & Simons, J. S. (2013). I don’t know how I feel, therefore I act: Alexithymia, urgency, and alcohol problems. Addictive Behaviors, 38(4), 20142017.Google Scholar
Silani, G., Bird, G., Brindley, R., et al. (2008). Levels of emotional awareness and autism: An fMRI study. Social Neuroscience, 3(2), 97112.Google Scholar
Simon, J. J., Biller, A., Walther, S., et al. (2010). Neural correlates of reward processing in schizophrenia – Relationship to apathy and depression. Schizophrenia Research, 118(1–3), 154161.Google Scholar
Singer, T., & Lamm, C. (2009). The social neuroscience of empathy. Annals of the New York Academy of Sciences, 1156, 8196.Google Scholar
Sowden, S., Brewer, R., Catmur, C., & Bird, G. (2016). The specificity of the link between alexithymia, interoception and imitation. Journal of Experimental Psychology: Human Perception and Performance, 42(11), 16871692.Google Scholar
Stasiewicz, P. R., Bradizza, C. M., Gudleski, G. D., et al. (2012). The relationship of alexithymia to emotional dysregulation within an alcohol dependent treatment sample. Addictive Behaviors, 37(4), 469476.Google Scholar
Stephan, E., Pardo, J. V., Faris, P. L., et al. (2003). Functional neuroimaging of gastric distention. Journal of Gastrointestinal Surgery, 7(6), 740749.Google Scholar
Stern, E. R. (2014). Neural circuitry of interoception: New insights into anxiety and obsessive–compulsive disorders. Current Treatment Options in Psychiatry, 1, 235247.Google Scholar
Sturm, V. E., & Levenson, R. W. (2011). Alexithymia in neurodegenerative disease. Neurocase, 17(3), 242250.Google Scholar
Suslow, T., & Junghanns, K. (2002). Impairments of emotion situation priming in alexithymia. Personality and Individual Differences, 32(3), 541550.Google Scholar
Swart, M., Kortekaas, R., & Aleman, A. (2009). Dealing with feelings: Characterization of trait alexithymia on emotion regulation strategies and cognitive-emotional processing. PLoS ONE, 4(6), e5751.Google Scholar
Tanaka, S. C., Doya, K., Okada, G., et al. (2004). Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nature Neuroscience, 7(8), 887893.Google Scholar
Taylor, G. J., Parker, J. D. A., & Bagby, R. M. (1990). A preliminary investigation of alexithymia in men with psychoactive substance dependence. American Journal of Psychiatry, 147(9), 12281230.Google Scholar
Tomchek, S. D., & Dunn, W. (2007). Sensory processing in children with and without autism: A comparative study using the short sensory profile. American Journal of Occupational Therapy, 61(2), 190200.Google Scholar
Torrente, F., Ashwood, P., Day, R., et al. (2002). Small intestinal enteropathy with epithelial IgG and complement deposition in children with regressive autism. Molecular Psychiatry, 7(4), 375382.Google Scholar
Ugazio, G., Lamm, C., & Singer, T. (2012). The role of emotions for moral judgments depends on the type of emotion and moral scenario. Emotion, 12(3), 579590.Google Scholar
Valera, E. M., & Berenbaum, H. (2001). A twin study of alexithymia. Psychotherapy and Psychosomatics, 70(5), 239246.Google Scholar
Vandenbergh, J., Dupont, P., Fischler, B., et al. (2005). Regional brain activation during proximal stomach distention in humans: A positron emission tomography study. Gastroenterology, 128(3), 564573.Google Scholar
van der Velde, J., Servaas, M. N., Goerlich, K. S., et al. (2013). Neural correlates of alexithymia: A meta-analysis of emotion processing studies. Neuroscience and Biobehavioral Reviews, 37(8), 17741785.Google Scholar
van der Velde, J., Swart, M., van Rijn, S., et al. (2015). Cognitive alexithymia is associated with the degree of risk for psychosis. PLoS ONE, 10(6), e0124803.Google Scholar
Venta, A., Hart, J., & Sharp, C. (2013). The relation between experiential avoidance, alexithymia and emotion regulation in inpatient adolescents. Clinical Child Psychology and Psychiatry, 18(3), 398410.Google Scholar
Verdejo-Garcia, A., Clark, L., & Dunn, B. D. (2012). The role of interoception in addiction: A critical review. Neuroscience and Biobehavioral Reviews, 36(8), 18571869.Google Scholar
Vorst, H. C. M., & Bermond, B. (2001). Validity and reliability of the Bermond–Vorst Alexithymia Questionnaire. Personality and Individual Differences, 30(3), 413434.Google Scholar
Wagner, A., Aizenstein, H., Venkatraman, V. K., et al. (2007). Altered reward processing in women recovered from anorexia nervosa. American Journal of Psychiatry, 164(12), 18421849.Google Scholar
Wakefield, A. J., Anthony, A., Murch, S. H., et al. (2000). Enterocolitis in children with developmental disorders. American Journal of Gastroenterology, 95(9), 22852295.Google Scholar
Wakefield, A. J., Ashwood, P., Limb, K., & Andrew, A. (2005). The significance of ileo-colonic lymphoid nodular hyperplasia in children with autistic spectrum disorder. European Journal of Gastroenterology and Hepatology, 17, 827836.Google Scholar
Walter, N. T., Montag, C., Markett, S. A., & Reuter, M. (2011). Interaction effect of functional variants of the BDNF and DRD2/ANKK1 gene is associated with alexithymia in healthy human subjects. Psychosomatic Medicine, 73(1), 2328.Google Scholar
Weissman, D. H., Roberts, K. C., Visscher, K. M., & Woldorff, M. G. (2006). The neural bases of momentary lapses in attention. Nature Neuroscience, 9(7), 971978.Google Scholar
Werner, N. S., Jung, K., Duschek, S., & Schandry, R. (2009). Enhanced cardiac perception is associated with benefits in decision-making. Psychophysiology, 46(6), 11231129.Google Scholar
White, J. F. (2003). Intestinal pathophysiology in autism. Experimental Biology and Medicine, 228(6), 639649.Google Scholar
Williams, B. L., Hornig, M., Buie, T., et al. (2011). Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS ONE, 6(9), e24585.Google Scholar
Williams, C., & Wood, R. L. (2010). Alexithymia and emotional empathy following traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 32(3), 259267.Google Scholar
Wittmann, M., Lovero, K. L., Lane, S. D., & Paulus, M. P. (2010). Now or later? Striatum and insula activation to immediate versus delayed rewards. Journal of Neuroscience, Psychology, and Economics, 3(1), 1526.Google Scholar
Zhang, X., Salmeron, B. J., Ross, T. J., et al. (2011). Factors underlying prefrontal and insula structural alterations in smokers. Neuroimage, 54(1), 4248.Google Scholar
Zotev, V., Krueger, F., Phillips, R., et al. (2011). Self-regulation of amygdala activation using real-time fMRI neurofeedback. PLoS ONE, 6(9), e24522.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×