Skip to main content Accessibility help
  • Print publication year: 2017
  • Online publication date: September 2017

12 - Creativity in the Physical Sciences

from Part III - Creativity in the Sciences



It is not uncommon for people to gloss over the high degree of creativity involved in science. The physical sciences (physics, chemistry, geology, and astronomy) would not be where they are today without extremely creative insights and solutions to both experimental and theoretical problems. In this chapter I review the vast and growing psychological literature on creativity in the physical sciences. I do so by organizing the studies by their overarching methodology, namely psychometric, experimental, biographical, historiometric, and biometric. I begin, however, by first defining creativity and how it is measured in the physical sciences. I end by pointing out some of the important gaps in our understanding of creativity in the physical sciences, such as the biological, genetic, epigenetic, and neuroscientific foundations of creative talent in the physical sciences, why still so few women are entering the profession, and whether personality traits distinguish those who are interested in and have talent for the physical sciences compared to the social and biological sciences.

Amabile, T. (1996). Creativity in context. Boulder, CO: Westview.
Baron-Cohen, S., Wheelwright, S., Stott, C., Bolton, P., & Goodyer, I. (1997). Is there a link between engineering and autism? Autism, 1, 101109.
Baron-Cohen, S., Bolton, P., Wheelwright, S., Short, L., Mead, G., Smith, A., & Scahill, V. (1998). Autism occurs more often in families of physicists, engineers, and mathematicians, Autism, 2, 296301.
Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., & Clubley, E. (2001). The Autism-Spectrum Quotient (AQ): Evidence from Asperger Syndrome/High-Functioning Autism, males and females, scientists and mathematicians, Journal of Autism & Developmental Disorders, 31, 517.
Bayer, A. E., & Dutton, J. E. (1977). Career age and research–professional activities of academic scientists: Tests of alternative non-linear models and some implications for higher education faculty policies. Journal of Higher Education, 48, 259282.
Benbow, C. P., & Stanley, J. C. (1983). Sex differences in mathematical reasoning ability: More facts. Science, 222, 10291031.
Berger, J. (1994). The young scientists: America’s future and the winning of the Westinghouse. Reading, MA: Addison-Wesley.
Billington, J., Baron-Cohen, S., & Wheelwright, S. (2007). Cognitive style predicts entry into physical sciences and humanities: Questionnaire and performance tests of empathy and systemizing. Learning and Individual Differences, 17, 260268.
Brink, T. L. (1980). Idiot savant with unusual mechanical ability: An organic explanation. The American Journal of Psychiatry, 137(2), 250251.
Brody, L. E., & Mills, C. J. (2005). Talent search research: What have we learned? High Ability Studies, 16, 97111.
Bunge, S. A., Wendelken, C., Badre, D., & Wagner, A. D. (2005). Analogical reasoning and prefrontal cortex: Evidence for separable retrieval and integration mechanisms. Cerebral Cortex, 15, 239249.
Byrne, R. W. (2001). Social and technical forms of primate intelligence. In deWaal, F. B. M. (Ed.), Tree of origin: What primate behavior can tell us about human social evolution (pp. 145172). Cambridge: Harvard University Press.
Cacioppo, J. T., Petty, R. E., & Kao, C. F. (1984). The efficient assessment of need for cognition. Journal of Personality Assessment, 48, 306307.
Carey, S., & Spelke, E. (1994). Domain specific knowledge and conceptual change. In Hirschfeld, L. A and Gelman, S. A. (Eds.). Mapping the mind: Domain specificity in cognition and culture, (pp. 169200). Cambridge, England: Cambridge University Press.
Carruthers, P., Stich, S., & Siegal, M. (Eds.). (2002). The cognitive basis of science. Cambridge, England: Cambridge University Press.
Cattell, R. B. (1963). The personality and motivation of the researcher from measurements of contemporaries and from biography. In Taylor, C. W. & Barron, F. X. (Eds.). Scientific creativity (pp. 119131). New York: Wiley.
Ceci, S. J., & Williams, W. (Eds.). (2007). Why aren’t more women in science? Top researchers debate the evidence. Washington, DC: American Psychological Association Books.
Ceci, S. J., & Williams, W. (2010). The mathematics of sex: How biology and society conspire to limit talented women and girls. Oxford, England: Oxford University Press.
Christensen, B. T., & Schunn, C. D. (2007). The relationship of analogical distance to analogical function and preinventive structure: The case of engineering design. Memory & Cognition, 35(1), 2938. DOI:10.3758/BF03195939
Chung, K. H., & Cox, R. A. K. (1990). Patterns of productivity in the finance literature: A study of the bibliometric distributions. Journal of Finance, 45, 301309. DOI:10.1111/j.1540-6261.1990.tb05095.x
Clement, J. (1991). Experts and science students: The use of analogies, extreme cases, and physical intuition. In Voss, J. E, Perkins, D. N., & Segal, J. W. (Eds.), Informal reasoning and education (pp. 345362). Hillsdale, NJ: Erlbaum.
Cohen, A. R., Stotland, E., & Wolfe, D. M. (1955). An experimental investigation of need for cognition. Journal of Abnormal and Social Psychology, 51, 291294.
Cole, J. R., & Cole, S. (1973). Social stratification in science. Chicago: University of Chicago Press.
Cole, J. R., & Zuckerman, H. (1987). Marriage, motherhood, and research performance in science. Scientific American, 256, 119125.
Cole, S. (1979). Age and scientific performance. American Journal of Sociology, 84, 958977.
Cox, C. (1926). Genetic studies of genius: Volume II – The early mental traits of 300 geniuses. Stanford, CA: Stanford University Press.
Csikszentihalyi, M., Rathunde, K., & Whalen, S. (1997). Talented teenagers: The roots of success and failure. New York: Cambridge University Press.
Davidson, K. (1999). Carl Sagan: A life. New York: Wiley & Sons.
Deary, I. J., Strand, S., Smith, P., & Fernandes, C. (2007). Intelligence and educational achievement. Intelligence, 35, 1321.
Deary, I. J., Thorpe, G., Wilson, V., Starr, J.M., & Whalley, L. J. (2003). Population sex differences in IQ at age 11: The Scottish mental survey 1932. Intelligence, 31, 533542. DOI: 10.1016/S0160-2896(03)00053-9.
Dennis, W. (1956). Age and productivity among scientists. Science, 123, 724725.
Dennis, W. (1966). Creative productivity between the ages of 20 and 80 years. Journal of Gerontology, 21, 18.
Diamond, A. M. (1986). The life-cycle research productivity of mathematicians and scientist. Journal of Gerontology, 41, 520525.
Dunbar, K. (1995). How scientists really reason: Scientific reasoning in real-world laboratories. In Sternberg, R. J. & Davidson, J. E. (Eds.), The nature of insight (pp. 365395). Cambridge, MA: MIT Press.
Dunbar, K., & Blanchette, I. (2001). The in vivo⁄in vitro approach to cognition: The case of analogy. TRENDS in Cognitive Science, 5, 334339.
Edge, The Third Culture (2005) The science of gender and science: Pinker vs. Spelke, a debate, May 16. Retrieved on September 24, 2015, from
Einhorn, H. J., & Hogarth, R. M. (1978). Confidence in judgment: Persistence of the illusion of validity. Psychological Review, 85, 395416.
Eysenck, H. J. (1993). Word association, origence and psychoticism. Creativity Research Journal, 7, 209216.
Eysenck, H. J. (1995). Genius: The natural history of creativity. Cambridge, UK: Cambridge University Press.
Falk-Krzesinski, H. J., Börner, K., Contractor, N., Fiore, S. M., Hall, K. L., Keyton, J., & Uzzi, B. (2010). Advancing the science of team science. Clinical and Translational Science, 3, 263266.
Feist, G. J. (1993). A structural model of scientific eminence. Psychological Science, 4, 366371.
Feist, G. J. (1997). Quantity, quality, and depth of research as influences on scientific eminence: Is quantity most important? Creativity Research Journal, 10, 325335. DOI:10.1207/s15326934crj1004_4
Feist, G. J. (1998). A meta-analysis of the impact of personality on scientific and artistic creativity. Personality and Social Psychological Review, 2, 290309.
Feist, G. J. (2001). Three perspectives on evolution, creativity, and aesthetics. Bulletin of Psychology and the Arts, 2, 3.
Feist, G. J. (2006a). How development and personality influence scientific thought, interest, and achievement. Review of General Psychology, 10, 163182.
Feist, G. J. (2006b). The development of scientific talent in Westinghouse finalists and members of the National Academy of Sciences. Journal of Adult Development, 13, 2335. DOI: 10.1007/s10804-006-9002-3.
Feist, G. J. (2006c). The psychology of science and the origins of the scientific mind. New Haven, CT: Yale University Press.
Feist, G. J. (2011). Psychology of science as a new subdiscipline in psychology. Current Directions in Psychological Science, 20, 330334. DOI: 10.1177/0963721411418471
Feist, G. J. (2012). Predicting interest in and attitudes toward science from personality and need for cognition. Personality and Individual Differences, 52, 771775. DOI:10.1016/j.paid.2012.01.005
Fonlupt, P. (2003). Perception and judgment of physical causality involve different brain structures. Cognitive Brain Research, 17, 248254.
Francis, B., Skelton, C., & Read, B. (2012). The identities and practices of high achieving pupils: Negotiating achievement and peer cultures. London: Continuum International Publishing Group.
Gallagher, A. M., & DeLisi, R. (1994). Gender differences in Scholastic Aptitude Test – Mathematics problem solving among high ability students. Journal of Educational Psychology, 86, 204211.
Gallagher, A. M., & Kaufman, J. C. (Eds.). (2005). Gender differences in mathematics: An integrative psychological approach. New York: Cambridge University Press.
Gardner, H. (1983). Frames of mind: The theory of multiple intelligences. New York: Basic Books.
Gardner, H. (1999). Intelligence reframed: Multiple intelligences for the 21st century. New York: Basic Books.
Geary, D. C., & Huffman, K. J. (2002). Brain and cognitive evolution: Forms of modularity and functions of mind. Psychological Bulletin, 128, 667698.
Gentner, D., & Jeriorski, M. (1989). Historical shifts in the use of analogy in science. In Gholson, B., Shadish, W. R., Neimeyer, R. A., & Houts, A. C. (Eds.), Psychology of science: Contributions to metascience (pp. 296325). Cambridge, England: Cambridge University Press.
Gibson, J., & Light, P. (1967). Intelligence among university scientists. Nature, 213(5075), 441443. DOI:10.1038/213441a0
Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive Psychology, 15, 138.
Gleick, J. (1992). Genius: The life and science of Richard Feynman. New York: Pantheon.
Gleick, J. (2003). Isaac Newton. New York: Pantheon.
Goodchild, P. (1980). J. Robert Oppenheimer: Shatterer of worlds. Boston: Houghton Mifflin.
Gopnik, A., Meltzoff, A. N., & Kuhl, P. K. (1999). The scientist in the crib: Minds, brains, and how children learn. New York: William Morrow and Co.
Gorman, M. E. (1992). Simulating science: Heuristics, mental models, and technoscientific thinking. Bloomington, IN: Indiana University Press.
Gorman, M. E. (2013). The psychology of technological invention. In Feist, G. J. & Gorman, M. E. (Eds.), Handbook of the psychology of science (pp. 383396). New York, NY: Springer Publishing Co.
Gough, H. G. (1987). California Psychological Inventory: Administrators guide. Palo Alto, CA: Consulting Psychologists Press.
Green, A. E., Kraemer, D. J. M., Fugelsang, J. A., Gray, J. R., & Dunbar, K. N. (2010). Connecting long distance: Semantic distance in analogical reasoning modulates frontopolar cortex activity. Cerebral Cortex, 20, 7076. DOI: 10.1093/cercor/bhp081.
Gorman, M. E., Stafford, A., & Gorman, M. E. (1987). Disconfirmation and dual hypotheses on a more difficult version of Wason’s 2–4–6 task. The Quarterly Journal of Experimental Psychology, Section A, 39, 128.
Grosul, M., & Feist, G. J. (2014). The creative person in science. Psychology of Aesthetics, Creativity, and the Arts, 3043. DOI:10.1037/a0034828.
Guilford, J. P. (1950). Creativity. American Psychologist, 5, 444454.
Gupta, D. K. (1987). Lotka’s law and productivity patterns of entomological research in Nigeria for the period, 1900–1973. Scientometrics, 12, 3346. DOI:10.1007/BF02016688
Harmon, L. R. (1961). The High School background of science doctorates: A survey reveals the influence of class size, region of origin, as well as ability, in PhD production. Science, 133, 679688.
Hecht, D. K. (2015). Storytelling and science: Rewriting Oppenheimer in the Nuclear Age. Amherst, MA: University of Massachusetts Press.
Hedges, L. V., & Nowell, A. (1995). Sex differences in mental test scores, variability, and numbers of high-scoring individuals. Science, 269, 4145.
Helson, R., & Crutchfield, R. S. (1970). Mathematicians: The creative researcher and the average PhD. Journal of Consulting and Clinical Psychology, 34, 250257.
Hemlin, S., & Olsson, L. (2013). The psychology of research groups: Creativity and performance. In Feist, G. J. & Gorman, M. E. (Eds.), Handbook of the psychology of science (pp. 397418). New York: Springer Publishing.
Herrnstein, R. J., & Murray, C. (1994). The bell-curve: Intelligence and class structure in American life. New York: Free Press.
Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. PNAS: Proceedings of the National Academy of Science, 102, 1656916572. DOI:10.1073/pnas.0507655102
Horner, K. L., Rushton, J. P., & Vernon, P. A. (1986). Relation between aging and research productivity of academic psychologists. Psychology and Aging, 4, 319324.
Huang, S. H., & Yang, JM. (2012). A study on the productivity review for management of performance using bibliometric methodology. Eleventh Wuhan International Conference on e-Business. Paper 4. Abstract retrieved on October 20, 2015, from
Isaacson, W. (2008). Einstein: His life and universe. New York: Simon & Shuster.
Isaacson, W. (2014). Einstein: The life of a genius. London: Carlton Publishing.
Jones, R. A. (1997). The Boffin: A stereotype of scientists in post-war British films (1945–1970). Public Understanding of Science, 6, 3148.
Kadosh, R. C., Soski, S., Iuculano, T., Kanai, R., & Walsh, V. (2010). Modulating neuronal activity produces specific and long-lasting changes in numerical competence. Current Biology, 20, 20162020. Doi: 10.1016/j.cub.2010.10.007
Karmiloff-Smith, A. (1992). Beyond modularity: A developmental perspective on cognitive science. Cambridge: MIT Press.
Kaufman, J. C., & Baer, J. (2004). Hawking’s haiku, Madonna’s math: Why it is hard to be creative in every room of the house. In Sternberg, R. J., Grigorenko, E. L., & Singer, J. L. (Eds.), Creativity: From potential to realization. Washington, DC: APA Books.
Klahr, D. (2000). Exploring science: The cognition and development of discovery processes. Cambridge: MIT Press.
Klahr, D., & Simon, H. (1999). Studies of scientific discovery: Complementary approaches and convergent findings. Psychological Bulletin, 125, 524543.
Kokosh, J. (1969). MMPI personality characteristics of physical and social science students. Psychological Reports, 24, 883893.
Koyama, R., & Ikegaya, Y. (2015). Microglia in the pathogenesis of autism spectrum disorders. Neuroscience Research. Retrieved on October 23, 2015, from
Kumar, N. (Ed.). (2012). Gender and science: Studies across cultures. Delhi, India: Foundation Books.
Larkin, J., McDermott, J., Simon, D. P., & Simon, H. A. (1980). Expert and novice performance in solving physics problems. Science, 208(4450), 13351342. DOI:10.1126/science.208.4450.1335z
Lawson, J., Baron-Cohen, S., & Wheelwright, S. (2004). Empathizing and systemizing in adults with and without Asperger Syndrome. Journal of Autism and Developmental Disorders, 34, 301310.
Le, H., Robbins, S. B., & Westrick, P. (2014). Predicting student enrollment and persistence in college STEM fields using an expanded PE fit framework: A large-scale multilevel study. Journal of Applied Psychology, 99(5), 915947.
Lehman, H. C. (1953). Age and achievement. Princeton, NJ: Princeton University Press.
Lehman, H. C. (1960). The age decrement in outstanding scientific creativity. American Psychologist, 15, 128134.
Lehman, H. C. (1966). The psychologist’s most creative years. American Psychologist, 21, 363369.
Levin, S. G., & Stephan, P. E. (1991). Research productivity over the life cycle: Evidence for academic scientists. The American Economic Review, 81, 114132.
Lippa, R. (1998). Gender-related individual differences and the structure of vocational interests: The importance of the people-things dimension. Journal of Personality and Social Psychology, 74, 9961009.
Lotka, A. J. (1926). The frequency distribution of scientific productivity. Journal of the Washington Academy of Sciences, 16(12), 317324.
Lounsbury, J. W., Foster, N., Patel, H., Carmody, P., Gibson, L. W., & Stairs, D. R. (2012). An investigation of the personality traits of scientists versus nonscientists and their relationship with career satisfaction. R&D Management, 42(1), 4759.
MacKinnon, D. W. (1970). Creativity: A multi-faceted phenomenon. In Roslanksy, J. (Ed.), Creativity (pp. 1932). Amsterdam: North-Holland Publishing.
Mahoney, M. J., & Kimper, T. P. (1976). From ethics to logic: A survey of scientists. In Mahoney, M. J. (Ed.), Science as subject: The psychological imperative (pp. 187193). Cambridge, MA: Ballinger.
Mayo, R., Alfasi, D., & Schwarz, N. (2014). Distrust and the positive test heuristic: Dispositional and situated social distrust improves performance on the Wason Rule Discovery Task. Journal of Experimental Psychology: General, 143(3), 985990. DOI:10.1037/a0035127
Merton, R. K. (1973). The sociology of science: Theoretical and empirical investigations. Chicago: Chicago University Press.
Miller, A. I. (1996). Insights of genius: Imagery and creativity in science and art. New York: Springer Verlag.
Mithen, S. (1996). The prehistory of the mind: The cognitive origins of art and science. London: Thames and Hudson.
Mount, M. K., Barrick, M. R., Scullen, S. M., & Rounds, J. (2005). Higher-order dimensions of the big five personality traits and the big six vocational interest types. Personnel Psychology, 58, 447478.
Murray, C. (2003). Human accomplishment: The pursuit of excellence in the arts and sciences, 800 B. C. to 1950. New York: HarperCollins.
National Research Council (2015). Enhancing the effectiveness of team science. Committee on the Science of Team Science. Cooke, N. J. & Hilton, M. L. (Eds.). Washington, DC: The National Academies Press.
National Science Foundation, National Center for Science and Engineering Statistics. (2015). Women, Minorities, and Persons with Disabilities in Science and Engineering: 2015. Special Report NSF 15–311. Arlington, VA. Retrieved on September 25, 2015 at
Neffe, J., & Frische, S. (2007). Einstein: A biography. New York: Macmillan.
Nersessian, N. J. (1984). Faraday to Einstein: Constructing meaning in scientific theories. Dordrecht, Holland: Nijhoff.
Nersessian, N. J. (1986). How do scientists think? Capturing the dynamics of conceptual change in science. In Giere, R. N. (Ed.), Cognitive models of science (pp. 344). Minneapolis, MN: University of Minnesota Press.
Nersessian, N. J. (2008). Creating scientific concepts. Cambridge, MA: MIT Press.
Nersessian, N. J. (2009). How do engineering scientists think? Model‐based simulation in biomedical engineering research laboratories. Topics in Cognitive Science, 1(4), 730757. doi:10.1111/j.1756-8765.2009.01032.x
Nettle, D. (2006). Schizotypy and mental health amongst poets, visual artists, and mathematicians. Journal of Research in Personality, 40, 876890.
Novick, L. R. (1988). Analogical transfer, problem similarity, and expertise. Journal of Experimental Psychology: Learning, Memory & Cognition, 14, 510520.
Over, R. (1982). Is age a good predictor of research productivity? Australian Psychologist, 17, 129139.
Over, R. (1989). Age and scholarly impact. Psychology and Aging, 4, 222225.
Paletz, S. B. F., & Schunn, C. D. (2010). A social-cognitive framework of multidisciplinary team innovation. Topics in Cognitive Science, 2, 7395. DOI: 10.1111/j.1756-8765.2009.01029.x
Parker, S. T., and McKinney, M. L. (1999). Origins of intelligence. Baltimore, MD: Johns Hopkins University Press.
Pinker, S. (2002). The blank slate: The modern denial of human nature. New York: Viking.
Plucker, J. A., & Renzulli, J. S. (1999). Psychometric approaches to the study of human creativity. In Sternberg, R.J. (Ed.), Handbook of creativity (pp. 3561). Cambridge, England: Cambridge University Press.
Portes, A., & Rumbaut, R. G. (2001). Legacies: The story of the immigrant second generation. Berkeley, CA: University of California Press.
Proctor, E. J., & Capaldi, R. W. (Eds.), (2012). Psychology of science: Implicit and explicit processes. New York: Oxford University Press.
Prediger, D. J. (1982). Dimensions underlying Holland’s hexagon: Missing link between interests and occupations? Journal of Vocational Behavior, 21, 259287.
Price, D. (1963). Little science, big science. New York, NY: Columbia University Press
Rasoal, C., Danielsson, H., & Jungert, T. (2012). Empathy among students in engineering programmes. European Journal of Engineering Education, 37(5), 427435.
Rawlings, D., & Locarnini, A. (2008). Dimensional schizotypy, autism, and unusual word associations in artists and scientists. Journal of Research in Personality, 42, 465471.
Rivera, S. M., Reiss, A. L., Eckert, M. A., & Menon, V. (2005). Developmental changes in mental arithemetic: Evidence for increased functional specialization in the left inferior parietal cortex. Cerebral Cortex, 15, 17791790. DOI: 10.1093/cercor/bhi055
Robertson, K. F., Smeets, S., Lubinski, D., & Benbow, C. P. (2010). Beyond the threshold hypothesis: Even among the gifted and top math/science graduate students, cognitive abilities, vocational interests and lifestyle preferences matter for career choice, performance and persistence. Current Directions in Psychological Science, 19, 346351. DOI: 10.1177/0963721410391442.
Robinson, J. E. (2008). Look me in the eye: My life with Asperger’s. New York: Three Rivers Press.
Roe, A. (1952). The making of a scientist. Westport, CT: Greenwood Press.
Roe, A. (1953). A psychological study of eminent psychologists and anthropologists, and a comparison with biological and physical scientists. Psychological Monographs: General and Applied, 67, 155.
Roe, A. (1965). Changes in scientific activities with age. Science, 150, 313318.
Roser, M. E., Fugelsang, J. A., Dunbar, K. N., Corballis, P. M., & Gazzaniga, M. S. (2005). Dissociating processes supporting causal perception and causal inference in the brain. Neuropsychology, 19, 591602. DOI: 10.1037/0894-4105.19.5.591.
Rubinstein, G. (2005). The big five among male and female students of different faculties. Personality and Individual Differences, 38(7), 14951503.
Runco, M. (2004). Everyone has creative potential. In Sternberg, R. J., Grigorenko, E. L., & Singer, J. L. (Eds.), Creativity: From potential to realization (pp. 2130). Washington, DC: APA Books.
Runyan, W. M. (2006). Psychobiography and the psychology of science: Understanding the relations between the live and work of individual psychologists. Review of General Psychology, 10, 147162.
Runyan, W. M. (2013). Psychobiography and the psychology of science: Encounters with psychology, philosophy, and statistics. In Feist, G. J. & Gorman, M. E., (Eds.), Handbook of the psychology of science (pp. 353379). New York, NY: Springer Publishing Co.
Science of Science and Innovation Policy. (n.d.). Retrieved on September 25, 2015 from
Schuldberg, D. (2000). Six subclinical spectrum traits in normal creativity. Creativity Research Journal, 13(1), 516.
Schulze, A. D., & Seuffert, V. (2013). Conflicts, cooperation, and competition in the field of science and technology. In Feist, G. J. & Gorman, M. E. (Eds.), Handbook of the psychology of science (pp. 303330). New York, NY: Springer Publishing Co.
Schunn, C. D., & Trafton, J. G. (2013). The psychology of uncertainty in scientific data analysis. In Feist, G. J. & Gorman, M. E., (Eds.), Handbook of the psychology of science (pp. 461483). New York, NY: Springer Publishing Co.
Simonton, D. K. (1979). Multiple discovery and invention: Zeitgeist, genius, or chance? Journal of Personality and Social Psychology, 37, 16031616.
Simonton, D. K. (1986). Multiple discovery: Some Monte Carlo simulations and Gedanken experiments. Scientometrics, 9, 269280.
Simonton, D. K. (1988a). Age and outstanding achievement: What do we know after a century of research? Psychological Bulletin, 104, 251267.
Simonton, D. K. (1988b). Scientific genius: A psychology of science. Cambridge, England: Cambridge University Press.
Simonton, D. K. (1991). Career landmarks in science: Individual differences and interdisciplinary contrasts. Developmental Psychology, 27, 119130.
Simonton, D. K. (1999). Significant samples: The psychological study of eminent individuals. Psychological Methods, 4, 425451.
Simonton, D. K. (2000). Methodological and theoretical orientation and the long-term disciplinary impact of 54 eminent psychologists. Review of General Psychology, 4(1), 1324.
Simonton, D. K. (2008). Scientific talent, training, and performance: Intellect, personality, and genetic endowment. Review of General Psychology, 12, 2846. DOI: 10.1037/1089-2680.12.1.28.
Simonton, D. K. (2009). Varieties of (scientific) creativity: A hierarchical model of domain-specific disposition, development, and achievement. Perspectives on Psychological Science, 4, 441452.
Simonton, D. K. (2010). Creative thought as blind-variation and selective-retention: Combinatorial models of exceptional creativity. Physics of Life Reviews, 7, 156179. DOI: 10.1016/j.plrev.2010.02.002
Simonton, D. K. (2012). Foresight, insight, oversight, and hindsight in scientific discovery: How sighted were Galileo’s telescopic sightings? Psychology of Aesthetics, Creativity, and the Arts, 6(3), 243254.
Simonton, D. K. (2013). Creative thoughts as acts of free will: A two-stage formal integration. Review of General Psychology, 17(4), 374.
Soler, J. M. (2007). A rational indicator of scientific creativity. Journal of Infometrics, 1, 123130. doi:10.1016/j.joi.2006.10.004
Spelke, E. S. (2005). Sex differences in intrinsic aptitude for mathematics and science? A critical review. American Psychologist, 60, 950958.
Sternberg, R. J. (1988). A three-facet model of creativity. In Sternberg, R. J. (Ed.), The nature of creativity (pp. 125147). Cambridge, England: Cambridge University Press.
Strand, S., Deary, I. J., & Smith, P. (2006). Sex differences in cognitive abilities test scores: A UK national picture. British Journal of Educational Psychology, 76, 463480.
Stroebe, W. (2010). The graying of academia: Will it reduce scientific productivity? American Psychologist, 65, 660673. DOI: 10.1037/a0021086
Subotnik, R. F., & Steiner, C. L. (1994). Adult manifestations of adolescent talent in science: A longitudinal study of 1983 Westinghouse Science Talent Search winners. In Subotnik, R. & Arnold, K. D. (Eds.), Beyond Terman: Contemporary longitudinal studies of giftedness and talent. Creativity research (pp. 5276). Norwood, NJ: Ablex Publishing Corp.
Subotnik, R. F., Duschl, R. A., & Selmon, E. H. (1993). Retention and attrition of science talent: A longitudinal study of Westinghouse Science Talent Search winners. International Journal of Science Education, 15, 6172.
Sulloway, F. (1995). Born to Rebel: Birth order, family dynamics and creative lives. New York: Pantheon Books.
Tang, G., Gudsnuk, K., Kuo, S-H., Cotrina, M. L., Rosoklija, G. Sosunov, A., & Sulzer, D. (2014). Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron, 83, 11311143. DOI: 10.1016/j.neuron.2014.07.040.
Terman, L. M. (1954). Scientists and nonscientists in a group of 800 gifted men. Psychological Monographs: General and Applied, 68(7), 144. DOI:10.1037/h0093672.
Thomson, N. D., Wurtzburg, S. J., & Centifanti, L. C. M. (2015). Empathy or science? Empathy explains physical science enrollment for men and women. Learning and Individual Differences, 40, 115120.
Treffert, D. A. (2006). Extraordinary people: Understanding savant syndrome (updated version). Lincoln, NE: iUniverse.
Tweney, R. D. (1989). A framework for the cognitive psychology of science. In Gholson, B., Shadish, W. R. Jr., Neimeyer, R. A., & Houts, A. C. (Eds.), Psychology of science: Contributions to metascience (pp. 342366). Cambridge, MA: Cambridge University Press.
Tweney, R. D. (1991). Faraday’s notebooks: The active organization of creative science. Physics Education, 26, 301306.
Tweney, R. D. (1998). Toward a cognitive psychology of science: Recent research and its implications. Current Directions in Psychological Science, 7, 150154.
Tweney, R. D. (2013). Cognitive-historical approaches to the understanding of science. In Feist, G. J. & Gorman, M. E. (Eds.), Handbook of the psychology of science (pp. 7193). New York, NY: Springer Publishing.
Tweney, R. D. & Hoffner, C. E. (1987). Understanding the microstructure of science: An example. In Program of the ninth annual conference of the cognitive science society (pp. 677681). Hillsdale, NJ: Lawrence Erlbaum.
Tweney, R. D., Doherty, M. E., & Mynatt, C. R. (Eds.), (1981). On scientific thinking. New York: Columbia University Press.
Vartanian, O., Bristol, A. S., & Kaufman, J. C. (Eds.), (2013). Neuroscience of creativity. Cambridge, MA: MIT Press.
Wai, J., Lubinski, D., & Benbow, C. P. (2005). Creativity and occupational accomplishments among intellectually precocious youths: An age 13 to Age 33 longitudinal study. Journal of Educational Psychology, 97, 484492.
Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101, 817835.
Wai, J., Cacchio, M., Putallaz, M., & Makel, M. C. (2010). Sex differences in the right tail of cognitive abilities: A 30-year examination. Intelligence, 38, 412423. DOI: 10.1016/j.intell.2010.04.006
Wason, P. C. (1966). Reasoning. In Foss, B. (Ed.), New horizons in psychology: I. (pp. 135151). Baltimore, MD: Penguin.
Webb, R. M., Lubinski, D., & Benbow, C. P. (2002). Mathematically facile adolescents with math-science aspirations: New perspectives on their educational and vocational development. Journal of Educational Psychology, 94, 785794.
Wilson, G. D., & Jackson, C. (1994). The personality of physicists. Personality and Individual Differences, 16, 187189.
Zuckerman, H. (1996). Scientific elite (2nd edn.). New York: Free Press.