Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T10:36:58.948Z Has data issue: false hasContentIssue false

11 - Limbic system: temporal lobe

Published online by Cambridge University Press:  25 August 2009

David L. Clark
Affiliation:
Ohio State University
Nashaat N. Boutros
Affiliation:
Yale University, Connecticut
Mario F. Mendez
Affiliation:
University of California, Los Angeles
Get access

Summary

The temporal lobe can be divided into two subdivisions. The newer lateral portion (neocortical) is responsible for audition, for speech, and for the integration of sensory information from a variety of sensory modalities and is the topic of Chapter 5. The other division of the temporal lobe is the ventromedial portion, which is older cortex (archicortex and paleocortex) and consists of regions that have become recognized as components of the limbic system. The limbic system structures that are part of the temporal lobe include the parahippocampal gyrus (see Figures 5.2 and 13.1), the entorhinal cortex, the hippocampal formation (Figure 11.1), the uncus (see Figure 13.2), the amygdala, and the cortex of the temporal pole (Martin, 1996). All sensory information from the external world passes through unimodal and multimodal association areas before finally converging on the hippocampus and amygdala. These structures can be considered to be supramodal centers. Chapter 13 provides an overall picture of the limbic system.

The hippocampus is important in memory and for learning the importance of specific external stimuli. The amygdala appears to be important in emotional conditioning and in learning the relationship between internal and external cues related to emotion and affect (Bechara et al., 1995).

Hippocampal formation

The hippocampal formation occupies a central position in the limbic system (Figures 11.1–11.3). Superficially, cortex near the rostral end of the parahippocampal gyrus is the entorhinal cortex and corresponds with BA 28 (Figures 13.1 and 13.2).

Type
Chapter
Information
The Brain and Behavior
An Introduction to Behavioral Neuroanatomy
, pp. 178 - 200
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, R. B. Jr., Gordon, H. L., Baird, A. A., Ambady, N., and Kleck, R. E. 2003. Science 300:1536.CrossRef
Adler, L. E., Olincy, A., Waldo, M., Harris, J. G., Griffith, J., Stevens, K., Flach, K., Nagamoto, H., Bickford, P., Leonard, S., and Freedman, R. 1998. Schizophrenia, sensory gating, and nicotinic receptors. Schizophr. Bull. 24:189–202.CrossRefGoogle ScholarPubMed
Adolphs, R., Tranel, D., Damasio, H., and Damasio, A. 1994. Impaired recognition of emotion in facial expressions following bilateral damage to human amygdala. Nature 372:669–672.CrossRefGoogle ScholarPubMed
Adolphs, R., Tranel, D., Damasio, H., and Damasio, A. 1995. Fear and the human amygdala. J. Neurosci. 15:5879–5891.CrossRefGoogle ScholarPubMed
Aggleton, J. P. 1992. The functional effects of amygdala lesions in humans: a comparison with findings from monkeys. In: Aggleton, J. P. (ed.), The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction. New York: Wiley-Liss, pp. 485–503.Google Scholar
Aggleton, J. P. 1993. The contribution of the amygdala to normal and abnormal emotional states. Trends Neurosci. 16:328–333.CrossRefGoogle ScholarPubMed
Alheid, G. F., and Heimer, L. 1996. Theories of basal forebrain organization and the “emotional motor system”. Prog. Brain Res. 107:461–484.CrossRefGoogle ScholarPubMed
Altshuler, L. L., Bartzokis, G., Grieder, T., Curran, J., and Mintz, J. 1998. Amygdala enlargement in bipolar disorder and hippocampal reduction in schizophrenia: an MRI study demonstrating neuroanatomic specificity. Arch. Gen. Psychiatry 55:663–664.Google ScholarPubMed
Amaral, D. G. 2003. The amygdala, social behavior, and danger detection. Ann. N.Y. Acad. Sci. 1000:337–347.CrossRefGoogle ScholarPubMed
Amaral, D. G., Price, J. L., Pitkanen, A., and Carmichael, S. T. 1992. Anatomical organization of the primate amygdaloid complex. In: Aggleton, J. P. (ed.) The Amygdala. New York: Wiley, pp. 1–66.Google ScholarPubMed
Arnold, S. E., Franz, B. A., Gur, R. C., Gur, R. E., Shapiro, R. M., Moberg, P. J., and Trojanowski, J. Q. 1995. Smaller neuron size in schizophrenia in hippocampal subfields that mediate cortico-hippocampal interactions. Am. J. Psychiatry 152:738–748.Google Scholar
Arnold, S. E., Ruscheinsky, D. D., and Han, L.-Y. 1997. Further evidence of abnormal cytoarchitecture of the entorhinal cortex in schizophrenia using spatial point pattern analyses. Biol. Psychiatry 42:639–647.CrossRefGoogle ScholarPubMed
Asmundson, G. J., and Stein, M. B. 1994. Vagal attenuation in panic disorder: an assessment of parasympathetic nervous system function and subjective reactivity to respiratory manipulation. Psychosom. Med. 56(3):187–193.CrossRefGoogle Scholar
Bauman, N. M., and Kemper, T. L. 1985. Histoanatomic observations of the brain in early infantile autism. Neurology 35:866–874.CrossRefGoogle ScholarPubMed
Bechara, A., Tranel, D., Damasio, H., Adolphs, R., Rockland, C., and Damasio, A. R. 1995. Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science 269:1115–1118.CrossRefGoogle ScholarPubMed
Benes, F. M., Kwok, E. W., Vincent, S. L., and Todtenkopf, M. S. 1998. A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives. Biol. Psychiatry 44:88–97.CrossRefGoogle ScholarPubMed
Blum, K., Cull, J. G., Braverman, E. R., and Comings, D. E. 1996. Reward deficiency syndrome. Am. Sci. 84:132–145.Google Scholar
Bogerts, B. 1998. The temporolimbic system theory of positive schizophrenic symptoms. Schizophr. Bull. 23(3):423–443.CrossRefGoogle Scholar
Bogerts, B., Meertz, E., and Schonfeldt-Bausch, R. 1985. Basal ganglia and limbic system pathology in schizophrenia: a morphometric study of brain volume and shrinkage. Arch. Gen. Psychiatry 42:784–791.CrossRefGoogle ScholarPubMed
Bohus, B., Koolhaas, J. M., Luiten, P. G. M., Korte, S. M., Roozendaal, B., and Wiersma, A. 1996. The neurobiology of the central nucleus of the amygdala in relation to neuroendocrine and autonomic outflow. In: G. Holstege, R. Bandler, and C. B. Saper (eds.) The emotional motor system. Prog. Brain Res. 107:447–460.CrossRef
Brezun, J. M., and Daszuta, A. 1999. Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats. Neuroscience. 89:999–1002.CrossRefGoogle ScholarPubMed
Brown, R., Colter, N., Corsellis, J. A. N., Crow, T. J., Frith, C. D., Jagoe, R., Johnstone, E. C., and Marsh, L. 1986. Post-mortem evidence of structural brain changes in schizophrenia: differences in brain weight, temporal horn area and parahippocampal gyrus compared with affective disorder. Arch. Gen. Psychiatry 43:36–42.CrossRefGoogle Scholar
Brun, V. H., Otnaess, M. K., Molden, S., Steffenach, H.-A., Witter, M. P., Moser, M.-B., and Moser, E. I. 2002. Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. Science 296:2243–2246.CrossRefGoogle ScholarPubMed
Cahill, L., Haier, R. J., White, N. S., Fallon, J., Kilpatrick, L., Lawrence, C., Potkin, S. G., and Alkire, M. T. 2001. Sex-related difference in amygdala activity during emotionally influenced memory storage. Neurobiol. Learn. Mem. 75:1–9.CrossRefGoogle ScholarPubMed
Cameron, H. A., and McKay, R. D. G. 1999. Restoring production of hippocampal neurons in old age. Nat. Neurosci. 2(10):894–897.CrossRefGoogle ScholarPubMed
Cameron, H. A., and McKay, R. D. G. 2001. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J. Comp. Neurol. 435(4):406–417.CrossRefGoogle ScholarPubMed
Canli, T., Sivers, H., Whitfield, S. L., Gotlib, I. H., and Gabrieli, J. D. E. 2002. Amygdala response to happy faces as a function of extraversion. Science 296:2191.CrossRefGoogle ScholarPubMed
Davis, M. 1997. Neurobiology of fear responses: the role of the amygdala. J. Neuropsychiatry Clin. Neurosci. 9:82–402.Google ScholarPubMed
Deakin, J. F. W. and Graeff, F. G. 1991. 5-HT and mechanisms of defense. J. Psychopharmacol. 5:305–315.CrossRefGoogle Scholar
Bellis, M. D., Clark, D. B., Beers, S. R., Soloff, P. H., Boring, A. M., Hall, J., Kersn, A., and Keshavan, M. S. 2000. Hippocampal volume in adolescent-onset alcohol use disorders. Am. J. Psychiatry 157(5):737–744.CrossRefGoogle ScholarPubMed
Delis, D. C., and Lucas, J. A. 1996. Memory. In: Fogel, B. S., Schiffer, R. B., and Rao, S. M. (eds.) Neuropsychiatry. Baltimore, Md.: Williams and Wilkins, pp. 365–399.Google Scholar
Dolan, R. J. 2002. Emotion, cognition and behavior. Science 298:1191–1194.CrossRefGoogle Scholar
Drevets, W. C., Videen, T. O., Price, J. L., Preskorn, S. H., Carmichael, S. T., and Raichle, M. E. 1992. A functional anatomical study of unipolar depression. J. Neurosci. 12:3628–3641.CrossRefGoogle ScholarPubMed
Eisch, A. J., Barrot, M., Schad, C. A., Self, D. W., and Nestler, E. J. 2000. Opiates inhibit neurogenesis in the adult rat hippocampus. Proc. Natl. Acad. Sci. U.S.A. 97:7579–7584.CrossRefGoogle ScholarPubMed
Friedman, B. H., Thayer, J. F., Borkovec, T. D., Tyrrell, R. A., Johnson, B. H., and Colombo, R. 1993. Autonomic characteristics of nonclinical panic and blood phobia. Biol. Psychiatry 34:298–310.CrossRefGoogle ScholarPubMed
Gloor, P., Olivier, A., and Quesney, L. F. 1981. The role of the amygdala in the expression of psychic phenomena in temporal lobe seizures. In: Ben-Ari, Y. (ed.) The Amygdaloid Complex. New York: Elsevier, pp. 489–507.Google Scholar
Goddard, A. W., and Charney, D. S. 1997. Toward an integrated neurobiology of panic disorder. J. Clin. Psychiatry 58 (Suppl. 2):4–11.Google ScholarPubMed
Gorman, J. M., Liebowitz, M. R., Fyer, A. J., and Stein, J. 1989. A neuroanatomical hypothesis for panic disorder. Am. J. Psychiatry 146:148–161.Google ScholarPubMed
Gould, E., Cameron, H. A., and McEwen, B. S. 1994. Blockade of NMDA receptors increases cell death and birth in the developing dentate gyrus. J. Comp. Neurol. 340:551–565.CrossRefGoogle Scholar
Gould, E., McEwen, B. S., Tanapat, P., Galena, L. A. M., and Fuchs, E. 1997. Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J. Neurosci. 17:2492–2498.CrossRefGoogle ScholarPubMed
Graeff, F. B. 1990. Brain defence systems and anxiety. In: Roth, M., Burrows, G. D., and Noyes, R. (eds.) Handbook of Anxiety, vol. 3. Amsterdam: Elsevier Science, pp. 307–357.Google Scholar
Grove, G., Coplan, J. D., and Hollander, E. 1997. The neuroanatomy of 5-HT dysregulation and panic disorder. J. Neuropsychiatry Clin. Neurosci. 9:198–207.Google ScholarPubMed
Gur, R. E., Cowell, P., Turetsky, B. I., Gallacher, F., Cannon, T., Bilker, W., and Gur, R. C. 1998. A follow-up magnetic resonance imaging study of schizophrenia. Arch. Gen. Psychiatry 55:145–152.CrossRefGoogle ScholarPubMed
Gurvits, T. V., Shenton, M. E., Hokama, H., Ohta, H., Lasko, N. B., Gilbertson, M. W., Orr, S. P., Kikinis, R., Jolesz, F. A., McCartey, R. W., and Pitman, R. K. 1996. Magnetic resonance imaging study of hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biol. Psychiatry 40 (11):1091–1099.CrossRefGoogle ScholarPubMed
Guze, B. H., and Gitlin, M. 1994. The neuropathologic basis of major affective disorders: neuroanatomic insights. J. Neuropsychiatry 6:114–119.Google ScholarPubMed
Hamann, S., Herman, R. A., Nolan, C. L., and Wallen, K. 2004. Men and women differ in amygdala response to visual sexual stimuli. Nature Neurosci. 7:411–416.CrossRefGoogle ScholarPubMed
Hariri, A. R., Tessitore, A., Matty, V. S., Fera, F., and Weinberger, D. R. 2002. The amygdala response to emotional stimuli: a comparison of faces and scenes. Neuroimage 17:317–323.CrossRefGoogle ScholarPubMed
Hasselmo, M. E., Schnett, E., and Barkai, E. 1995. Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in rat hippocampal region CA3. J. Neurosci. 15:5249–5262.CrossRefGoogle ScholarPubMed
Hatfield, T., Han, J.-S., Conley, M., Gallagher, M., and Holland, P. 1996. Neurotoxic lesions of basolateral, but not central, amygdala interfere with Pavlovian second-order conditioning and reinforcer devaluation effects. J. Neurosci. 16:5256–5265.CrossRefGoogle Scholar
Heckers, S. 2001. Neuroimaging studies of the hippocampus in schizophrenia. Hippocampus 11:520–528.CrossRefGoogle Scholar
Heckers, S., and Heinsen, H. 1991. Hippocampal neuron number in schizophrenia. A stereological study. Arch. Gen. Psychiatry 48:1002–1008.CrossRefGoogle ScholarPubMed
Herholz, K., Weisenbach, S., Zündorf, G., Lenz, O., Schröder, H., Bauer, B., Kalbe, E., and Heiss, W. D. 2004. In vivo study of acetylcholine esterase in basal forebrain, amygdala, and cortex in mild to moderate Alzheimer disease. Neuroimage 21:136–143.CrossRefGoogle ScholarPubMed
Hermann, B. P., Wyler, A. R., Blumer, D., and Richey, E. T. 1992. Ictal fear: lateralizing significance and implications for understanding the neurobiology of pathological fear states. Neuropsychiatry Neuropsychol. Brain Neurol. 5:203–210.Google Scholar
Hirayasn, Y., Shenton, M. E., Salisbury, D. F., Dickey, C. C., Fischer, I. A., Mazzoni, P., Kisler, T., Arakaki, H., Kwon, J. S., Anderson, J. E., Yurgelun-Todd, D., Tohen, M., and McCartey, R. W. 1998. Lower left temporal lobe MRI volumes in patients with first-episode schizophrenia compared with psychotic patients with first-episode affective disorder and normal subjects. Am. J. Psychiatry. 155(10):1384–1391.CrossRefGoogle Scholar
Holland, P. C., and Gallagher, M. 1993. Amygdala central nucleus lesions disrupt increments, but not decrements, in conditioned stimulus processing. Behav. Neurosci. 107:246–253.CrossRefGoogle Scholar
Izquierdo, I., and Cammarota, M. 2004. Zif and the survival of memory. Science 304:829–830.CrossRefGoogle Scholar
Jacobs, B. L. 2002. Adult brain neurogenesis and depression. Brain Behav. Immun. 16:602–609.CrossRefGoogle ScholarPubMed
Jacobs, L. F., and Schenk, F. 2003. Unpacking the cognitive map: the parallel map theory of hippocampal function. Psychol. Rev. 110(2):285–315.CrossRefGoogle ScholarPubMed
Jakob, H., and Beckmann, H. 1994. Circumscribed malformation and nerve cell alterations in the entorhinal cortex of schizophrenics. Pathogenetic and clinical aspects. J. Neural Transm. 98:83–106.CrossRefGoogle ScholarPubMed
Jenke, F., Moreau, J. L., and Martin, J. R. 1995. Dorsal periaqueductal gray-induced aversion as a simulation of panic anxiety: elements of face and predictive validity. Psychiatry Res. 57:181–191.Google Scholar
Jin, K., Peel, A. L., Mao, X. O., Xie, L., Cottrell, B. A., Henshall, D. C., and Greenberg, D. A. 2004. Increased hippocampal neurogenesis in Alzheimer's disease. Proc. Natl. Acad. Sci. U.S.A. 101(1):343–347.CrossRefGoogle ScholarPubMed
Kalivas, P. W., Pierce, R. C., Cornish, J., and Sorg, B. A. 1998. A role for sensitization in craving and relapse in cocaine addiction. J. Psychopharmacol. 12:49–53.CrossRefGoogle ScholarPubMed
Killgore, W. D., and Yurgelun-Todd, D. A. 2004. Activation of the amygdala and anterior cingulate during nonconscious processing of sad versus happy faces. Neuroimage 21:1215–1223.CrossRefGoogle ScholarPubMed
Kotrla, K. J., and Weinberger, D. R. 1995. Brain imaging in schizophrenia. Annu. Rev. Med. 46:113–122.CrossRefGoogle Scholar
Kreindler, A., and Steriade, M. 1964. EEG patterns of arousal and sleep induced by stimulating various amygdaloid levels in the cat. Arch. Ital. Biol. 102:576–586.Google ScholarPubMed
Krimer, L. S., Herman, M. M., and Saunders, R. C. 1995. Qualitative and quantitative analysis of the entorhinal cortex cytoarchitectural organization in schizophrenia. Soc. Neurosci. Abstr. 21:239.Google Scholar
Krimer, L. S., Herman, M. M., Saunders, R. C., Boyd, J. C., Hyde, T. M., Carter, J. M., Kleinman, J. E., and Weinberger, D. R. 1997. A qualitative and quantitative analysis of the entorhinal cortex in schizophrenia. Cerebr. Cortex 7:732–739.CrossRefGoogle Scholar
Krystal, J. H., D'Souza, D. C., Petrakis, I. L., Belger, A., Berman, R., Charney, D. S., Abi-Saab, W., and Madonick, S. 1999. NMDA agonists and antagonists as probes of glutamatergic dysfunction and pharmacotherapies for neuropsychiatric disorders. Harv. Rev. Psychiatry 7:125–133.CrossRefGoogle ScholarPubMed
LeDoux, J. E. 1992. Brain mechanisms and emotional learning. Curr. Opin. Neurobiol. 2:191–197.CrossRefGoogle ScholarPubMed
Liddle, P. F., Friston, K. J., Frith, C. D., Hirsch, S. R., Jones, T., and Frackowiak, R. S. J. 1992. Patterns of cerebral blood flow in schizophrenia. Br. J. Psychiatry 160:179–186.CrossRefGoogle Scholar
London, E. D., Stapleton, J. M., Phillips, R. L., Grant, S. J., Villemagne, V. L., Liu, X., and Soria, R. 1996. PET studies of cerebral glucose metabolism: acute effects of cocaine and long-term deficits in brains of drug abusers. NIDA Res. Monogr. 163:146–158.Google ScholarPubMed
Madsen, T. M., Treschow, A., Bengzon, J., Bolwig, T. G., Lindvall, O., and Tingström, A. 2000. Increased neurogenesis in a model of electroconvulsive therapy. Biol. Psychiatry. 47:1043–1049.CrossRefGoogle Scholar
Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S. J., and Frith, C. D. 2000. Navigation-related structural change in the hippocampi of taxi drivers. Proc. Natl. Acad. Sci. U.S.A. 97:4398–4403.CrossRefGoogle ScholarPubMed
Maguire, E. A., Spiers, H. J., Good, C. D., Hartley, T., Frackowiak, R. S. J., and Burgess, N. 2003. Navigational expertise and the human hippocampus: a structural brain imaging analysis. Hippocampus 13:250–259.CrossRefGoogle ScholarPubMed
Martin, J. H. 1996. Neuroanatomy: Text and Atlas, 2nd edn. Stamford, Conn.: Appleton and Lange, p. 449.Google Scholar
Mather, M., Canli, T., English, T., Witfiled, S., Wais, P., Ochsner, K., Gabrieli, J. D. E., and Carstensen, L. L. 2004. Amygdala responses to emotionally valenced stimuli in older and younger adults. Psychol. Sci. 15(4):259–263.CrossRefGoogle ScholarPubMed
McCarthy, M. M. 2003. Stretching the truth: why hippocampal neurons are so vulnerable following traumatic brain injury. Exp. Neurol. 184:40–43.CrossRefGoogle ScholarPubMed
McGaugh, J. L., Cahill, L., and Roozendaal, B. 1996. Involvement of the amygdala in memory storage: interaction with other brain systems. Exp. Neurol. 93:13508–13524.Google ScholarPubMed
Mendez, M. F., and Cummings, J. L. 2003. Dementia: A Clinical Approach, 3rd edn. Philadelphia, Pa.: Butterworth-Heinemann.Google Scholar
Mendez, M. F., and Foti, D. J. 1997. Lethal hyperoral behaviour from Kluver–Bucy syndrome. J. Neurol. Neurosurg. Psychiatry 62(3):293–294.CrossRefGoogle ScholarPubMed
Mesulam, M. M. 1981. Dissociative states with abnormal temporal lobe EEG: multiple personality and the illusion of possession. Arch. Neurol. 38:176–181.CrossRefGoogle ScholarPubMed
Morris, J. S., Öhman, A., and Dolan, R. J. 1998. Conscious and unconscious emotional learning in the human amygdala. Nature 393:467–470.CrossRefGoogle ScholarPubMed
Morris, J. S., Öhman, A., and Dolan, R. J. 1999. A subcortical pathway to the right amygdala mediating “unseen” fear. Proc. Natl. Acad. Sci. U.S.A. 96:1680–1685.CrossRefGoogle ScholarPubMed
Morris, J. S., deBonis, M. and Dolan, R. J. 2002. Human amygdala responses to fearful eyes. Neuroimage 17(1):214–222.CrossRefGoogle ScholarPubMed
Morrison, J. H., and Hof, P. R. 1997. Life and death of neurons in the aging brain. Science 278:412–419.CrossRefGoogle ScholarPubMed
Narr, K. L., Thompson, P. M., Szeszko, P., Robinson, D., Jang, S., Woods, R. P., Kim, S., Hayashi, K. M., Asunction, D., Toga, A. W., and Bilder, R. M. 2004. Regional specificity of hippocampal volume reductions in first-episode schizophrenia. Neuroimage 21:1563–1575.CrossRefGoogle ScholarPubMed
Nashold, B. S. Jr., Wilson, W. P., and Slaughter, G. 1974. The midbrain and pain. In: Bonica, J. J. (ed.) International symposium on pain. Adv. Neurol.4:191–196.Google Scholar
Nelson, M. D., Saykin, A. J., Flashman, L. A., and Riordan, H. J. 1998. Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging. Arch. Gen. Psychiatry 55:433–440.CrossRefGoogle ScholarPubMed
Nomura, M., Ohira, H., Haneda, K., Iidaka, T., Sadato, N., Okada, T., and Yonekura, Y. 2004. Functional association of the amygdala and ventral prefrontal cortex during cognitive evaluation of facial expressions primed by masked angry faces: an event-related fMRI study. Neuroimage 21:352–363.CrossRefGoogle ScholarPubMed
Pakkenberg, B. 1987. Post-mortem study of chronic schizophrenic brains. Br. J. Psychiatry 151:744–752.CrossRefGoogle ScholarPubMed
Pantelis, C., Velakoulis, D., McGorry, P. D., Wood, S. J., Suckling, J., Phillips, L. J., Yung, A. R., Bullmore, E., Brewer, W., Soulsby, B., Desmond, P., and McGuire, P. K. 2003. Neuroanatomical abnormalities before and after onset of psychosis: a cross sectional and longitudinal MRI comparison. Lancet 361:281–288.CrossRefGoogle ScholarPubMed
Phelphs, E. A., O'Connor, K. J., Gatenby, J. C., Gore, J. C., Grillon, C., and Davis, M. 2001. Activation of the left amygdala to a cognitive representation of fear. Nat. Neurosci. 4:437–441.CrossRefGoogle Scholar
Pitkanen, A., Savander, V., and LeDoux, J. E. 1997. Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci. 20:517–523.CrossRefGoogle ScholarPubMed
Price, J. L., Russchen, F. T., and Amaral, D. G. 1987. The limbic region. II: the amygdaloid complex. In: Bjorklund, A. and Hokfelt, T. (eds.) Handbook of chemical neuroanatomy, vol. 5. Integrated Systems of the CNS, Part I. Hypothalamus, Hippocampus, Amygdala, Retina. New York: Elsevier.Google Scholar
Pritchard, P. B. III, Holmstrom, V. L., and Roitzsch, J. C. 1985. Epileptic amnestic attacks: benefits from antiepileptic drugs. Neurology 35:1188–1189.CrossRefGoogle Scholar
Rauch, S. L., Kolk, B. A., Fisler, R. E., Alpert, N. M., Orr, S. P., Savage, C. R., Fischman, A. J., Jenike, M. A., and Pitman, R. K. 1996. A symptom provocation study of posttraumatic stress disorder using positron emission tomography and script-driven imagery. Arch. Gen. Psychiatry 53:380–387.CrossRefGoogle ScholarPubMed
Redmond, D. E. Jr. 1987. Studies of the nucleus locus coeruleus in monkeys and hypotheses for neuropsychopharmacology. In: Meltzer, H. Y. (ed.) Psychopharmacology: The Third Generation of Progress. New York: Raven Press, pp. 967–975.Google Scholar
Reiman, E. M. 1997. The application of positron emission tomography to the study of normal and pathological emotions. J. Clin. Psychiatry 58 (Suppl. 16):4–12.Google Scholar
Reiman, E. M., Raichel, M. E., Butler, F. K., Herscovitch, P., and Robins, E. 1984. A focal brain abnormality in panic disorder, a severe form of anxiety. Nature 310:683–685.CrossRefGoogle ScholarPubMed
Russchen, F. T., Amaral, D. G., and Price, J. L. 1985. The afferent connections of the substantia innominata in the monkey, Macaca fascicularis. J. Comp. Neurol. 242:1–27.CrossRefGoogle ScholarPubMed
Sachs, B. D., and Meisel, R. L. 1994. The physiology of male sexual behavior. In: Knobil, E. and Neill, J. D. (eds.) The Physiology of Reproduction. New York: Raven Press, pp. 3–105.Google Scholar
Saver, J. L., Salloway, S. P., Devinsky, O., and Bear, D. M. 1996. Neuropsychiatry of aggression. In: Fogel, B. S., Schiffer, R. B., and Rao, S. M. (eds.) Neuropsychiatry. Baltimore, Md.: Williams and Wilkins, pp. 523–548.Google Scholar
Schwartz, C. E., Wright, C. I., Shin, L. M., Kagan, J., and Rauch, S. L. 2003. Inhibited and uninhibited infants “grown up”: adult amygdalar response to novelty. Science 300:1952–1954.CrossRefGoogle ScholarPubMed
Scott, S. A., Dekosky, S. T., and Scheff, S. W. 1991. Volumetric atrophy of the amygdala in Alzheimer's disease: quantitative serial reconstruction. Neurology 41:351–356.CrossRefGoogle ScholarPubMed
Sheehan, D. V., Raj, B. A., Trehan, R. R., and Knapp, E. L. 1993. Serotonin in panic disorder and social phobia. Int. Clin. Psychopharmacol. 8(Suppl. 2):163–77.CrossRefGoogle ScholarPubMed
Sheline, Y. I., Wang, P. W., Gado, M. H., Csernansky, J. G., and Vannier, M. W. 1996 Hippocampal atrophy in recurrent major depression. Proc. Natl. Acad. Sci. U.S.A. 93(9):3908–3913.CrossRefGoogle ScholarPubMed
Shinotoh, H., Namba, H., Fukushi, K., Nagatsuka, S., Tanaka, N., Aotsuka, A., Ota, T., Tanada, S., and Irie, T. 2000. Progressive loss of cortical acetylcholinesterase activity in association with cognitive decline in Alzheimer's disease: a positron emission tomography study. Ann. Neurol. 48:194–200.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Skaggs, W. E., and McNaughton, B. L. 1996. Replay of neuronal firing sequences in rat hippocampus during sleep flowing spatial exposure. Science 271:1870–1873.CrossRefGoogle Scholar
Squire, L. R., Amaral, D. G., and Press, G. A. 1990. Magnetic resonance measurements of hippocampal formation and mammillary nuclei distinguish medial temporal lobe and diencephalic amnesia. J. Neurosci. 19:3106–3117.CrossRefGoogle Scholar
Strakowski, S. M., DelBello, M. P., Sax, K. W., Zimmerman, M. E., Shear, P. K., Hawkins, J. M., and Larson, E. R. 1999. Brain magnetic resonance imaging of structural abnormalities in bipolar disorder. Arch. Gen. Psychiatry 56:254–260.CrossRefGoogle ScholarPubMed
Swanson, L. W., Kohler, D., and Bjorklund, A. 1987. The limbic region. I: the septohippocampal system. In: Bjorklund, A. and Hokfelt, T. (eds.) Handbook of chemical neuroanatomy, vol. 5. Integrated Systems of the CNS, Part I. Hypothalamus, Hippocampus, Amygdala, Retina. New York: Elsevier.Google Scholar
Tamminga, C. A. 1998. Schizophrenia and glutamatergic transmission. Crit. Rev. Neurobiol. 12:21–36.CrossRefGoogle ScholarPubMed
Tamminga, C. A. 1999. Glutamatergic aspects of schizophrenia. Br. J. Psychiatry 174 (Suppl. 37):12–15.Google Scholar
Tanapat, P., Hastings, N. B., Reeves, A. J., and Gould, E., 1999. Estrogen stimulates a transient increase in the number of new neurons in the dentate gyrus of the adult female rat. J. Neurosci. 19:5792–5801.CrossRefGoogle ScholarPubMed
Tremblay, C., Kirouac, G., and Dore, F. Y. 2001. The recognition of adults' and children's facial expressions of emotions. J. Psychol. 121(4):341–350.CrossRefGoogle Scholar
Hoesen, G. W. 1997. Ventromedial temporal lobe: anatomy, with comments on Alzheimer's disease and temporal injury. J. Neuropsychiatry 9:331–341.Google ScholarPubMed
Vass, R. 2004. Fear not. Sci. Am. 14:62–69.Google Scholar
Velakoulis, D., Pantelis, C., McGorry, P. E., Dudgeon, P., Brewer, W., Cook, M., Desmond, P., Bridle, N., Tierney, P., Murrie, V., Singh, B., and Copolov, D. 1999. Hippocampal volume in first-episode psychoses and chronic schizophrenia. Arch. Gen. Psychiatry 56:133–140.CrossRefGoogle ScholarPubMed
Vuilleumier, P., Armony, J. L., Driver, J., and Dolan, R. J. 2001. Effects of attention and emotion on face processing in the human brain: an event related fMRI study. Neuron 30(3):829–841.CrossRefGoogle Scholar
Vuilleumier, P., Armony, J. L., Clarke, R., Husain, M., Driver, J., and Dolan, R. J. 2002. Neural response to emotional faces with and without awareness: event-related fMRI in a parietal patient with visual extinction and spatial neglect. Neuropsychologia 40(12):2156–2166.CrossRefGoogle Scholar
Whalen, P. J., Rauch, S. L., Etcoff, N. L., McInerney, S. C., Lee, M. B., and Jenike, M. A. 1998. Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. J. Neurosci. 18(1):411–418.CrossRefGoogle ScholarPubMed
Wilson, M. A., and McNaughton, B. L. 1993. Dynamics of the hippocampal ensemble code for space. Science 261:1055–1058.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×