Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T12:18:17.840Z Has data issue: false hasContentIssue false

10 - Late Quaternary Glacier Fluctuations in the Himalayas and Adjacent Mountains

from Part II - Physiography of the Highest Barrier on Earth

Published online by Cambridge University Press:  20 April 2017

Herbert H. T. Prins
Affiliation:
Wageningen Universiteit, The Netherlands
Tsewang Namgail
Affiliation:
Snow Leopard Conservancy India Trust
Get access
Type
Chapter
Information
Bird Migration across the Himalayas
Wetland Functioning amidst Mountains and Glaciers
, pp. 155 - 174
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowski, U., Bergau, A., Seebach, D., et al. (2006). Pleistocene glaciations of Central Asia: results from 10Be surface exposure ages of erratic boulders from the Pamir (Tajikistan) and the Alay-Turkestan range (Kyrgyzstan). Quaternary Science Reviews, 25, 10801096.Google Scholar
Bagla, P. (2009). No sign yet of Himalayan meltdown, Indian report finds. Science, 326, 924925.Google Scholar
Barnard, P.L., Owen, L.A. & Finkel, R.C. (2004a). Style and timing of glacial and paraglacial sedimentation in a monsoonal influenced high Himalayan environment, the upper Bhagirathi Valley, Garhwal Himalaya. Sedimentary Geology, 165, 199221.Google Scholar
Barnard, P.L., Owen, L.A., Sharma, M.C. & Finkel, R.C. (2004b). Late Quaternary (Holocene) landscape evolution of a monsoon-influenced high Himalayan valley, Gori Ganga, Nanda Devi, NE Garhwal. Geomorphology, 61, 91110.Google Scholar
Benn, D.I. & Owen, L.A. (1998). The role of the Indian summer monsoon and the mid-latitude westerlies in Himalayan glaciation: review and speculative discussion. Journal of the Geological Society, 155, 353363.CrossRefGoogle Scholar
Benn, D.I. & Owen, L.A. (2002). Himalayan glacial sedimentary environments: a framework for reconstructing and dating former glacial extents in high mountain regions. Quaternary International, 97/98, 326.Google Scholar
Benn, D.I., Owen, L.A., Osmaston, H.A., Seltzer, G.O., Porter, S.C. & Mark, B. (2005). Reconstruction of equilibrium-line altitudes for tropical and sub-tropical glaciers. Quaternary International, 138/139, 821.Google Scholar
Bishop, M.P., Bush, A., Copland, L., et al. (2010). Climate change and mountain topographic evolution in the Central Karakoram, Pakistan. Annals of Geography, 100, 122.Google Scholar
Bolch, T., Kulkarni, A., Kääb, A., et al. (2012). The state and fate of Himalayan glaciers. Science, 336, 310314.Google Scholar
Chevalier, M.-L., Hilley, G., Tapponnier, P., et al. (2011). Constraints on the late Quaternary glaciations in Tibet from cosmogenic exposure ages of moraine surfaces. Quaternary Science Reviews, 30, 528554.Google Scholar
Chevalier, M.-L., Ryerson, F.J., Tapponnier, P., et al. (2005). Slip-rate measurements on the Karakoram Fault may imply secular variations in fault motion. Science, 307, 411414.Google Scholar
Cogley, J.G. (2011). Present and future states of Himalaya and Karakoram glaciers. Annals of Glaciology, 52, 6973.Google Scholar
Copland, L., Sylvestre, T., Bishop, M.P., et al. (2011). Expanded and recently increased glacier surging the Karakoram Arctic. Alpine and Antarctic Research, 43, 503516.Google Scholar
Derbyshire, E. (1981). Glacier regime and glacial sediment facies: a hypothetical framework for the Qinghai-Xizang Plateau. In: Proceedings of Symposium on Qinghai-Xizang (Tibet) Plateau, Beijing, China. Geological and Ecological Studies of Qinghai-Xizang Plateau. Vol. 2. Beijing: Science Press, 1981, pp. 16491656.Google Scholar
Derbyshire, E. & Owen, L.A. (1997). Quaternary glacial history of the Karakoram Mountains and northwest Himalayas: a review. Quaternary International, 38/39, 85102.Google Scholar
Dortch, J.M., Owen, L.A. & Caffee, M.W. (2010). Quaternary glaciation in the Nubra and Shyok valley confluence, northernmost Ladakh, India. Quaternary Research, 74, 132144.Google Scholar
Dortch, J.M., Owen, L.A. & Caffee, M.W. (2013). Timing and Climatic Drivers for Glaciation across Semi-arid Western Himalayan-Tibetan Orogen. Quaternary Science Reviews, 78, 168208.Google Scholar
Duncan, C.C., Klein, A.J., Masek, J.G. & Isacks, B.L. (1998). Late Pleistocene and modern glaciations in Central Nepal from digital elevation data and satellite imagery. Quaternary Research, 49, 241254.CrossRefGoogle Scholar
Ehlers, J. & Gibbard, P. (2004). Quaternary glaciations – extent and chronologies. Part III: South America, Asia, Africa, Australia, Antarctica. Developments. Quaternary Science, 2, 380 pp.Google Scholar
Elhers, J., Gibbard, P. & Hughes, P.D. (2011). Quaternary Glaciations – Extent and Chronology: A Closer Look. Developments in Quaternary Science, vol. 15, Elsevier, Amsterdam, 2nd Edition, pp. 929942.Google Scholar
Fielding, E., Isacks, B., Barazangi, M. & Duncan, C. (1994). How flat is Tibet? Geology, 22, 163167.Google Scholar
Frenzel, B. (1960). Die Vegetations- und Landschaftszonen Nordeurasiens während der letzten Eiszeit und während der Postglazialen Warmezeit. Akademie der Wissenschaften und der Literatur in Mainz, Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse, 13, 9371099.Google Scholar
Gillespie, A. & Molnar, P. (1995). Asynchronous maximum advances of mountain and continental glaciers. Reviews of Geophysics, 33, 311364.Google Scholar
Hedrick, K.A., Seong, Y.B., Owen, L.A., Caffee, M.C. & Dietsch, C. (2011). Towards defining the transition in style and timing of Quaternary glaciation between the monsoon-influenced Greater Himalaya and the semi-arid Transhimalaya of Northern India. Quaternary International, 236, 2133.Google Scholar
Hewitt, K. (1999). Quaternary moraines vs catastrophic avalanches in the Karakoram Himalaya, northern Pakistan. Quaternary Research, 51, 220237.CrossRefGoogle Scholar
Hewitt, K., Gosse, J. & Clague, J.J. (2011). Rock avalanches and the pace of late Quaternary development of river valleys in the Karakoram Himalaya. Geological Society of America Bulletin, 123, 18361850.Google Scholar
Heyman, J., Hattestrand, C. & Stroeven, V. (2008). Glacial geomorphology of the Bayan Har sector of the NE Tibetan plateau. Journal of Maps, 2008, 4262.CrossRefGoogle Scholar
Intergovernmental Panel on Climate Change (2007). Climate Change 2007: Impacts, Adaptations and Vulnerability. Parry, M., Canziani, O., Palutikof, J., Van der Linden, P. & Hanson, C. eds., Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, p. 976.Google Scholar
Kamp, U. & Owen, L.A. (2011). Late Quaternary Glaciation of Northern Pakistan. In Quaternary Glaciations – Extent and Chronology: A Closer Look. Developments in Quaternary Science, vol. 15, Amsterdam: Elsevier, pp. 909927.Google Scholar
Klute, F. (1930). Verschiebung der Klimagebiete der letzten Eiszeit. Petermanns Mitteilungen Ergänzungsheft, 209, 166182.Google Scholar
Kuhle, M. (1985). Ein subtropisches Inlandeis als Eiszeitauslöser, Südtibet un Mt. Everest expedition 1984. Georgia Augusta, Nachrichten aus der Universität Gottingen, May, 117.Google Scholar
Kuhle, M. (1987). The Problem of a Pleistocene Inland Glaciation of the Northeastern Qinghai-Xizang Plateau. In Hövermann, J & Wang, W., eds., Reports of the Qinghai- Xizang (Tibet) Plateau. Beijing: Science Press, pp. 250315.Google Scholar
Kuhle, M. (1988). Geomorphological findings on the build-up of Pleistocene glaciation in southern Tibet and on the problem of inland ice. GeoJournal, 17, 457512.Google Scholar
Kuhle, M. (1991). Observations supporting the Pleistocene inland glaciation of High Asia. GeoJournal, 25, 131231.CrossRefGoogle Scholar
Kuhle, M. (1995). Glacial isostatic uplift of Tibet as a consequence of a former ice sheet. GeoJournal, 37, 431449.Google Scholar
Lee, S.Y., Seong, Y.B., Owen, L.A., et al. (2014). Late Quaternary glaciation in the Nun-Kun massif, northwestern India. Boreas, 43, 6789.Google Scholar
Li, B., Li, J. & Cui, Z. (1991). Quaternary glacial distribution map of Qinghai-Xizang (Tibet) Plateau 1:3,000,000. Shi, Y., Quaternary Glacier, and Environment Research Center, Lanzhou University.Google Scholar
Lowe, J. & Walker, M. (2015). Reconstructing Quaternary Environments. London: Routledge, 3rd edition, p. 538.Google Scholar
Mayer, C., Lambrecht, A., Belò, M., Smiraglia, C. & Diolaiuti, G. (2006). Glaciological characteristics of the ablation zone of Baltoro glacier, Karakoram, Pakistan. Annals of Glaciology, 43, 123131.Google Scholar
Mix, A.C., Bard, E. & Schneider, R. (2001). Environmental processes of the ice age: land, ocean, glaciers (EPILOG). Quaternary Science Reviews, 20, 627657.CrossRefGoogle Scholar
Morén, B., Heyman, J. & Stroeven, A.P. (2011). Glacial geomorphology of the central Tibetan Plateau. Journal of Maps, 2011, 115125.CrossRefGoogle Scholar
Murari, M.K., Owen, L.A., Dortch, J.M., et al. (2014). Timing and climatic drivers for glaciation across monsoon-influenced regions of the Himalayan-Tibetan orogen. Quaternary Science Reviews, 88C, 159182.Google Scholar
National Academy (Committee on Himalayan Glaciers, Hydrology, Climate Change, and Implications for Water Security) (2012). Himalayan Glaciers: Climate Change, Water Resources, and Water Security. Washington, DC: The National Academies Press, p. 156.Google Scholar
NGRIP members (2004). High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431, 147151.CrossRefGoogle Scholar
Owen, L.A. (2010) Landscape development of the Himalayan-Tibetan orogen: a review. Special Publication of the Geological Society of London, 338, 389407.CrossRefGoogle Scholar
Owen, L.A. & Benn, D.I. (2005). Equilibrium-line altitudes of the Last Glacial Maximum for the Himalaya and Tibet: an assessment and evaluation of results. Quaternary International, 138/139, 5578.Google Scholar
Owen, L.A., Caffee, M., Bovard, K., Finkel, R.C. & Sharma, M. (2006). Terrestrial cosmogenic surface exposure dating of the oldest glacial successions in the Himalayan orogen. Geological Society of America Bulletin, 118, 383392.Google Scholar
Owen, L.A., Caffee, M.W., Finkel, R.C. & Seong, B. S. (2008). Quaternary glaciation of the Himalayan–Tibetan orogen. Journal of Quaternary Science, 23, 513532.CrossRefGoogle Scholar
Owen, L.A. & Dortch, J.M. (2014) Quaternary glaciation of the Himalayan-Tibetan orogen. Quaternary Science Reviews, 88, 1454.Google Scholar
Owen, L.A., Finkel, R.C., Caffee, M.W. & Gualtieri, L. (2002a). Timing of multiple glaciations during the Late Quaternary in the Hunza Valley, Karakoram Mountains, northern Pakistan: defined by cosmogenic radionuclide dating of moraines. Geological Society of America Bulletin, 114, 593604.2.0.CO;2>CrossRefGoogle Scholar
Owen, L.A., Gualtieri, L., Finkel, R.C., Caffee, M.W., Benn, D.I. & Sharma, M.C. (2001). Cosmogenic radionuclide dating of glacial landforms in the Lahul Himalaya, northern India: defining the timing of Late Quaternary glaciation. Journal of Quaternary Science, 16, 555563.Google Scholar
Owen, L.A., Kamp, U., Spencer, J.Q. & Haserodt, K. (2002b). Timing and style of Late Quaternary glaciation in the eastern Hindu Kush, Chitral, northern Pakistan: a review and revision of the glacial chronology based on new optically stimulated luminescence dating. Quaternary International, 97–98, 4156.Google Scholar
Owen, L.A., Robinson, R., Benn, D.I., et al. (2009). Quaternary glaciation of Mount Everest. Quaternary Science Reviews, 28, 14121433.CrossRefGoogle Scholar
Owen, L.A., White, B., Rendell, H. & Derbyshire, E. (1992). Loessic silts in the western Himalayas: their sedimentology, genesis and age. Catena, 19, 493509.Google Scholar
Owen, L.A., Yi, C., Finkel, R.C. & Davis, N. (2010). Quaternary glaciation of Gurla Mandata (Naimon’anyi). Quaternary Science Reviews, 29, 18171830.Google Scholar
Phillips, W.M., Sloan, V.F., Shroder, J.F. Jr., Sharma, P., Clarke, M.L. & Rendell, H.M. (2000). Asynchronous glaciation at Nanga Parbat, northwestern Himalaya Mountains, Pakistan. Geology, 28, 431434.Google Scholar
Porter, S.C. (1970). Quaternary glacial record in the Swat Kohistan, West Pakistan. Geological Society of America Bulletin, 81, 14211446.Google Scholar
Richards, B.W.M., Owen, L.A. & Rhodes, E.J. (2000). Timing of Late Quaternary glaciations in the Himalayas of northern Pakistan. Journal of Quaternary Science, 15, 283297.Google Scholar
Röhringer, I., Zech, R., Abramowski, U., et al. (2012). The late Pleistocene glaciation in the Bogchigir Valleys (Pamir, Tajikistan) based on 10Be surface exposure dating. Quaternary Research, 78, 590597.Google Scholar
Röthlisberger, F. & Geyh, M.A. (1985a). Gletscherschwankungen der letzten 10.000 Jahre – Ein Verleich zwischen Nord- und Südhemisphäre (Alpen, Himalaya, Alaska, Südamerika, Neuseeland). Aarau: Verlag Sauerländer.Google Scholar
Röthlisberger, F. & Geyh, M. (1985b). Glacier variations in Himalayas and Karakoram. Zeitschrift für Gletscherkunde und Glazialgeologie, 21, 237249.Google Scholar
Rutter, N.W. (1995). Problematic ice sheets. Quaternary International, 28, 1937.Google Scholar
Schäfer, J.M., Tschudi, S., Zhao, Z., et al. (2002). The limited influence of glaciations in Tibet on global climate over the past 170000 yr. Earth and Planetary Science Letters, 194, 287297.CrossRefGoogle Scholar
Seong, Y.B., Owen, L.A., Bishop, M.P., et al. (2007). Quaternary glacial history of the central Karakoram. Quaternary Science Reviews, 26, 33843405.Google Scholar
Seong, Y.B., Owen, L.A., Bishop, M.P., et al. (2008). Reply to comments by Kuhle, Matthias on Seong, Y.B., Owen, L.A., Bishop, M.P., Bush, A., et al. 2007. Quaternary glacial history of the central Karakoram. Quaternary Science Reviews, 27, 16561658.Google Scholar
Seong, Y.B., Owen, L.A., Yi, C. & Finkel, R.C. (2009). Quaternary glaciation of Muztag Ata and Kongur Shan: evidence for glacier response to rapid climate changes throughout the Late Glacial and Holocene in westernmost Tibet. Geological Society of America, Bulletin, 121, 348365.CrossRefGoogle Scholar
Sharma, M.C. & Owen, L.A. (1996). Quaternary glacial history of NW Garhwal Himalayas. Quaternary Science Reviews, 15, 335365.Google Scholar
Shi, Y. (1992). Glaciers and glacial geomorphology in China. Zeitschrift für Geomorphologie, 86, 1935.Google Scholar
Shi, Y., Zheng, B. & Li, S. (1992). Last glaciation and maximum glaciation in the Qinghai-Xizang (Tibet) Plateau: a controversy to M.Kuhle’s ice sheet hypothesis. Zeitschrift für Geomorphologie, 84, 1935.Google Scholar
Shiraiwa, T. & Watanabe, T. (1991). Late Quaternary glacial fluctuations in the Langtang Valley, Nepal Himalaya, reconstructed by relative dating methods. Arctic and Alpine Research, 23, 404416.Google Scholar
Solomina, O., Bradley, R.S., Hodgson, D.A., et al. (2015). Holocene glacier fluctuations. Invited review. Quaternary Science Reviews, 111, 934.CrossRefGoogle Scholar
Spencer, J.Q. & Owen, L.A. (2004). Optically stimulated luminescence dating of Late Quaternary glaciogenic sediments in the upper Hunza valley: validating the timing of glaciation and assessing dating methods. Quaternary Sciences Reviews, 23, 175191.Google Scholar
Taylor, P.J. & Mitchell, W.A. (2000). Late Quaternary glacial history of the Zanskar Range, north-west Indian Himalaya. Quaternary International, 65/66, 81100.Google Scholar
Thackray, G.D., Owen, L.A. & Yi, C. (2008). Timing and nature of late Quaternary mountain glaciation. Journal of Quaternary Science, 23, 503508.Google Scholar
Watanabe, T., Shiraiwa, T. & Ono, Y. (1989). Distribution of periglacial landforms in the Langtang Valley, Nepal Himalaya. Bulletin of Glacier Research, 7, 209220.Google Scholar
Yi, C., Chen, H., Yang, J., et al. (2008). Review of Holocene glacial chronologies based on radiocarbon dating in Tibet and its surrounding mountains. Journal of Quaternary Science, 23, 533558.Google Scholar
Zech, R., Abramowski, U., Glaser, B., Sosin, P., Kubik, P.W. & Zech, W. (2005). Late Quaternary glacier and climate history of the Pamir Mountains derived from cosmogenic 10Be exposure ages. Quaternary Research, 64, 212220.CrossRefGoogle Scholar
Zech, W., Glaser, B., Sosin, P., Kubik, P.W. & Zech, W. (2003). Evidence for long-lasting landform surface instability on hummocky moraines in the Pamir Mountains (Tajikistan) from 10Be surface exposure dating. Earth and Planetary Science Letters, 237, 453461.CrossRefGoogle Scholar
Zheng, B. & Rutter, N. (1998). On the problem of Quaternary glaciations, and the extent and patterns of Pleistocene ice cover in the Qinghai-Xizang (Tibet) plateau. Quaternary International, 45/46, 109122.Google Scholar
Zhou, S., Li, J., Zhao, J., Wang, J. & Zheng, J. (2011). Quaternary glaciations: extent and chronology in China. In Elhers, J., Gibbard, P. & Hughes, P.D., eds., Quaternary Glaciations – Extent and Chronology: A Closer Look. Developments in Quaternary Science, vol. 15, Amsterdam: Elsevier, 2nd Edition, pp. 9811002.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×