Skip to main content Accessibility help
×
Home
  • Print publication year: 2015
  • Online publication date: March 2015

1 - DNA structures

Summary

Chemical structure and conformational flexibility of single-stranded DNA

Single-stranded DNA (ssDNA) is the building base for the double helix and other DNA structures. All these structures are formed due to noncovalent interactions between the components of ssDNA. ssDNA consists of a backbone of repeating units and bases that are attached to each unit as side chains (Fig. 1.1).

An isolated part of the repeating unit that consists of a base and the sugar is called a nucleoside. If a phosphate group is added to the nucleoside, it becomes a 3′- or 5′- nucleotide, depending on where the phosphate group is bound. Each repeating unit of the backbone consists of sugar and phosphate and has six skeletal bonds. The backbone has clear directionality, and the method of numbering of carbon atoms of the sugar, shown in Fig. 1.1, identifies 3′–5′ or 5′–3′ directions. It is common to assume a 5′–3′ direction of the polynucleotide chain when presenting a sequence of bases.

There is an important degree of freedom in isolated nucleosides that is related to rotation around the bond connecting the sugar and a base, the β-glycosidic bond. The rotation angle, χ, is measured with reference to the orientation of O1′–C1′ and N9–C8 bonds for purines and to the orientation of O1′–C1′ and N1–C6 bonds for pyrimidines. Although many different values of χ are sterically allowed, two major rotational isomers, called anti and syn, are particularly important. For the anti conformation χ is close to 0°, and for syn χ is around 210°. The conformations are diagramed in Fig. 1.2.

The bond lengths and the angles between the adjacent bonds do not change notably. The remarkable conformational flexibility of ssDNA is due to six rotation angles in each repeating unit of the backbone. Of course, the rotation angles cannot accept just any values, since there are many potential steric clashes between chemical groups of the unit.

Alexeev, D. G., Lipanov, A. A. & Skuratovskii, I. Y. (1987). Poly(dA).poly(dT) is a B-type double helix with a distinctively narrow minor groove. Nature 325, 821–3.
Bang, I. (1910). Examination or the guanyle acid. Biochem. Z. 26, 293–311.
Barbic, A., Zimmer, D. P. & Crothers, D. M. (2003). Structural origins of adenine-tract bending. Proc. Natl. Acad. Sci. U. S. A. 100, 2369–73.
Beal, P. A. & Dervan, P. B. (1991). 2nd structural motif for recognition of DNA by oligonucleotide-directed triple-helix formation. Science 251, 1360–3.
Berman, H. M. (1997). Crystal studies of B-DNA: the answers and the questions. Biopolymers 44, 23–44.
Berman, H. M., Olson, W. K., Beveridge, D. L., Westbrook, J., Gelbin, A., Demeny, T., Hsieh, S. H., Srinivasan, A. R. & Schneider, B. (1992). The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophys. J. 63, 751–9.
Brown, T., Kennard, O., Kneale, G. & Rabinovich, D. (1985). High-resolution structure of a DNA helix containing mismatched base pairs. Nature 315, 604–6.
Dewey, T. G. & Turner, D. H. (1979). Laser temperature-jump study of stacking in adenylic acid polymers. Biochemistry 18, 5757–62.
Dickerson, R. E., Goodsell, D. S., Kopka, M. L. & Pjura, P. E. (1987). The effect of crystal packing on oligonucleotide double helix structure. J. Biomol. Struct. Dyn. 5, 557–79.
Dickerson, R. E. & Ng, H.-L. (2001). DNA structure from A to B. Proc. Natl. Acad. Sci. U. S. A. 98, 6986–8.
DiGabriele, A. D., Sanderson, M. R. & Steitz, T. A. (1989). Crystal lattice packing is important in determining the bend of a DNA dodecamer containing an adenine tract. Proc. Natl. Acad. Sci. U.S.A. 86, 1816–20.
Egli, M. & Saenger, W. (1984). Principles of Nucleic Acid Structure.New York: Springer.
Eisenberg, H. & Felsenfeld, G. (1967). Studies of the temperature-dependent conformation and phase separation of polyriboadenylic acid solutions at neutral pH. J. Mol. Biol. 30, 17–37.
Eisinger, J. (1971). Complex formation between transfer RNA's with complementary anticodons. Biochem. Biophys. Res. Commun. 43, 854–61.
Frank-Kamenetskii, M. D. & Mirkin, S. M. (1995). Triplex DNA structures. Annu. Rev. Biochem. 64, 65–95.
Gellert, M., Lipsett, M. N. & Davies, D. R. (1962). Helix formation by guanylic acid. Proc. Natl. Acad. Sci. U. S. A. 48, 2013–18.
Gorin, A. A., Zhurkin, V. B. & Olson, W. K. (1995). B-DNA twisting correlates with base-pair morphology. J. Mol. Biol. 247, 34–48.
Goulet, I., Zivanovic, Y. & Prunell, A. (1987). Helical repeat of DNA in solution. The V curve method. Nucleic Acids Res. 15, 2803–21.
Hagerman, P. J. (1986). Sequence-directed curvature of DNA. Nature 321, 449–50.
Hagerman, P. J. (1990). Sequence-directed curvature of DNA. Annu. Rev. Biochem. 59, 755–81.
Hare, D., Shapiro, L. & Patel, D. J. (1986). Extrahelical adenosine stacks into right-handed DNA: solution conformation of the d(C-G-C-A-G-A-G-C-T-C-G-C-G) duplex deduced from distance geometry analysis of nuclear Overhauser effect spectra. Biochemistry 25, 7456–64.
Hunter, W. N., Brown, T., Anand, N. N. & Kennard, O. (1986a). Structure of an adenine-cytosine base pair in DNA and its implications for mismatch repair. Nature 320, 552–5.
Hunter, W. N., Kneale, G., Brown, T., Rabinovich, D. & Kennard, O. (1986b). Refined crystal structure of an octanucleotide duplex with G · T mismatched base-pairs. J. Mol. Biol. 190, 605–18.
Inners, L. D. & Felsenfeld, G. (1970). Conformation of polyribouridylic acid in solution. J. Mol. Biol. 50, 373–89.
Kalnik, M. W., Norman, D. G., Zagorski, M. G., Swann, P. F. & Patel, D. J. (1989). Conformational transitions in cytidine bulge-containing deoxytridecanucleotide duplexes: extra cytidine equilibrates between looped out (low temperature) and stacked (elevated temperature) conformations in solution. Biochemistry 28, 294–303.
Koo, H. S., Drak, J., Rice, J. A. & Crothers, D. M. (1990). Determination of the extent of DNA bending by an adenine–thymine tract. Biochemistry 29, 4227–34.
Koo, H. S., Wu, H. M. & Crothers, D. M. (1986). DNA bending at adenine–thymine tracts. Nature 320, 501–6.
Krylov, D. Y., Makarov, V. L. & Ivanov, V. I. (1990). The B-A transition in superhelical DNA. Nucleic Acids Res. 18, 759–61.
Lane, A. N., Chaires, J. B., Gray, R. D. & Trent, J. O. (2008). Stability andkinetics of G-quadruplex structures. Nucleic Acids Res.36, 5482–515.
Lavery, R., Zakrzewska, K., Beveridge, D., Bishop, T. C., Case, D. A., Cheatham, T., 3rd, Dixit, S., Jayaram, B., Lankas, F., Laughton, C., Maddocks, J. H., Michon, A., Osman, R., Orozco, M., Perez, A., Singh, T., Spackova, N. & Sponer, J. (2010). A systematic molecular dynamics study of nearest-neighbor effects on base pair and base pair step conformations and fluctuations in B-DNA. Nucleic Acids Res. 38, 299–313.
Li, M. H., Zhou, Y. H., Luo, Q. & Li, Z. S. (2010). The 3D structures of G-quadruplexes of HIV-1 integrase inhibitors: molecular dynamics simulations in aqueous solution and in the gas phase. J. Mol. Model. 16, 645–57.
Macaya, R. F., Schultze, P., Smith, F. W., Roe, J. A. & Feigon, J. (1993). Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proc. Natl. Acad. Sci. U. S. A. 90, 3745–9.
MacDonald, D., Herbert, K., Zhang, X., Polgruto, T. & Lu, P. (2001). Solution structure of an A-tract DNA bend. J. Mol. Biol. 306, 1081–98.
Marini, J. C., Levene, S. D., Crothers, D. M. & Englund, P. T. (1982). Bent helical structure in kinetoplast DNA. Proc. Natl. Acad. Sci. U. S. A. 79, 7664–8.
Moody, E. M. & Bevilacqua, P. C. (2004). Structural and energetic consequences of expanding a highly cooperative stable DNA hairpin loop. J. Am. Chem. Soc. 126, 9570–7.
Morden, K. M. & Maskos, K. (1993). NMR studies of an extrahelical cytosine in an A. T rich region of a deoxyribodecanucleotide. Biopolymers 33, 27–36.
Mukundan, V. T., Do, N. Q. & Phan, A. T. (2011). HIV-1 integrase inhibitor T30177 forms a stacked dimeric G-quadruplex structure containing bulges. Nucleic Acids Res. 39, 8984–91.
Patel, D. J., Kozlowski, S. A., Ikuta, S. & Itakura, K. (1984a). Deoxyadenosine–deoxycytidine pairing in the D(C-G-C-G-a-a-T-T-C-a-C-G) duplex – conformation and dynamics at and adjacentto the dA.dC mismatchsite. Biochemistry 23, 3218–26.
Patel, D. J., (1984b). Deoxyguanosine–deoxyadenosine pairing in the d(C-G-A-G-A-A-T-T-C-G-C-G) duplex: conformation and dynamics at and adjacent to the dG × dA mismatch site. Biochemistry 23, 3207–17.
Peck, L. J. & Wang, J. C. (1981). Sequence dependence of the helical repeat of DNA in solution. Nature 292, 375–8.
Perez, A., Marchan, I., Svozil, D., Sponer, J., Cheatham, T. E., 3rd, Laughton, C. A. & Orozco, M. (2007). Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. Biophys. J. 92, 3817–29.
Phan, A. T. (2010). Human telomeric G-quadruplex: structures of DNA and RNA sequences. FEBSJ. 277, 1107–17.
Pörschke, D. (1978). Molecular states in single-stranded adenylate chains byrelaxation analysis. Biopolymers 17, 315–23.
Raghunathan, G., Miles, H. T. & Sasisekharan, V. (1993). Symmetry and molecular structure ofa DNA triple helix: d(T)n • d(A)n • d(T)n. Biochemistry 32, 455–62.
Rich, A., Nordheim, A. & Wang, A. H.-J. (1984). The chemistry and biology of left-handed Z-DNA. Annu. Rev. Biochem. 53, 791–846.
Shaw, D. E., Maragakis, P., Lindorff-Larsen, K., Piana, S., Dror, R. O., Eastwood, M. P., Bank, J. A., Jumper, J. M., Salmon, J. K., Shan, Y. & Wriggers, W. (2010). Atomic-level characterization of the structural dynamics of proteins. Science 330, 341–6.
Sinden, R. R. (1994). DNA Structure and Function.San Diego, CA: Academic.
Sprous, D., Zacharias, W., Wood, Z. A. & Harvey, S. C. (1995). Dehydrating agents sharply reduce curvature in DNAs containing A-tracts. Nucleic Acids Res. 23, 1816–21.
Stannard, B. S. & Felsenfeld, G. (1975). The conformation of polyriboadenylic acid at low temperature and neutral pH. A single-stranded rodlike structure. Biopolymers 14, 299–307.
Strauss, F., Gaillard, C. & Prunell, A. (1981). Helical periodicity of DNA, poly(dA).poly(dT) and poly(dA-dT). poly(dA-dT) in solution. Eur. J. Biochem. 118, 215–22.
Tjandra, N. & Bax, A. (1997). Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278, 1111–14.
Van de Ven, F. J. & Hilbers, C. W. (1988). Nucleic acids and nuclear magnetic resonance. Eur. J. Biochem. 178, 1–38.
Vermeulen, A., Zhou, H. & Pardi, A. (2000). Determination DNA global structure and DNA bending by application of NMR residual dipolar coupling. J. Amer. Chem. Soc. 122, 9638–9647.
Wang, A. H., Quigley, G. J., Kolpak, F. J., Crawford, J. L., van Boom, J. H., van der Marel, G. & Rich, A. (1979). Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 282, 680–6.
Wang, J. C. (1979). Helical repeat of DNA in solution. Proc. Natl. Acad. Sci. U. S. A. 76, 200–203.
Wang, Y. & Patel, D. J. (1992). Guanine residues in d(T2AG3) and d(T2G4) form parallel-stranded potassium cation stabilized G-quadruplexes with anti glycosidic torsion angles in solution. Biochemistry 31, 8112–19.
Watson, J. D. & Crick, F. H. C. (1953). The structure of DNA. Nature 171, 123–31.
Williamson, J. R. (1994). G-quartet structures in telomeric DNA. Annu. Rev. Biophys. Biomol. Struct. 23, 703–30.
Wing, R., Drew, H., Takano, T., Broka, C., Tanaka, S., Itakura, K. & Dickerson, R. E. (1980). Crystal structure analysis of a complete turn of B-DNA. Nature 287, 755–8.
Woodson, S. A. & Crothers, D. M. (1988). Structural model for an oligonucleotide containing a bulged guanosine by NMR and energy minimizationBiochemistry 27, 3130–41.
Woodson, S. A. (1989). Conformation of a bulge-containing oligomer from a hot-spot sequence by NMR and energy minimization. Biopolymers 28, 1149–77.
Wu, Z., Delaglio, F., Tjandra, N., Zhurkin, V. B. & Bax, A. (2003). Overall structure and sugar dynamics of a DNA dodecamer from homo- and heteronuclear dipolar couplings and 31P chemical shift anisotropy. J. Biomol. NMR 26, 297–315.
Wyatt, J. R., Vickers, T. A., Roberson, J. L., Buckheit, R. W., Jr., Klimkait, T., DeBaets, E., Davis, P. W., Rayner, B., Imbach, J. L. & Ecker, D. J. (1994). Combinatorially selected guanosine-quartet structure is a potent inhibitor of human immunodeficiency virus envelope-mediated cell fusion. Proc. Natl. Acad. Sci. U. S. A. 91, 1356–60.
Yakovchuk, P., Protozanova, E. & Frank-Kamenetskii, M. D. (2006). Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res. 34, 564–74.
Yoshizawa, S., Kawai, G., Watanabe, K., Miura, K. & Hirao, I. (1997). GNA trinucleotide loop sequences producing extraordinarily stable DNA minihairpins. Biochemistry 36, 4761–7.
Young, M. A., Ravishanker, G., Beveridge, D. L. & Berman, H. M. (1995). Analysis of local helix bending in crystal structures of DNA oligonucleotides and DNA–protein complexes. Biophys. J. 68, 2454–68.
Zimmerman, S. B., Cohen, G. H. & Davies, D. R. (1975). X-fay fiber diffraction and model-building study of polyguanylic acid and polyinosinic acid. J. Mol. Biol. 92, 181–92.