Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T13:04:33.803Z Has data issue: false hasContentIssue false

1 - DNA structures

Published online by Cambridge University Press:  05 March 2015

Alexander Vologodskii
Affiliation:
New York University
Get access

Summary

Chemical structure and conformational flexibility of single-stranded DNA

Single-stranded DNA (ssDNA) is the building base for the double helix and other DNA structures. All these structures are formed due to noncovalent interactions between the components of ssDNA. ssDNA consists of a backbone of repeating units and bases that are attached to each unit as side chains (Fig. 1.1).

An isolated part of the repeating unit that consists of a base and the sugar is called a nucleoside. If a phosphate group is added to the nucleoside, it becomes a 3′- or 5′- nucleotide, depending on where the phosphate group is bound. Each repeating unit of the backbone consists of sugar and phosphate and has six skeletal bonds. The backbone has clear directionality, and the method of numbering of carbon atoms of the sugar, shown in Fig. 1.1, identifies 3′–5′ or 5′–3′ directions. It is common to assume a 5′–3′ direction of the polynucleotide chain when presenting a sequence of bases.

There is an important degree of freedom in isolated nucleosides that is related to rotation around the bond connecting the sugar and a base, the β-glycosidic bond. The rotation angle, χ, is measured with reference to the orientation of O1′–C1′ and N9–C8 bonds for purines and to the orientation of O1′–C1′ and N1–C6 bonds for pyrimidines. Although many different values of χ are sterically allowed, two major rotational isomers, called anti and syn, are particularly important. For the anti conformation χ is close to 0°, and for syn χ is around 210°. The conformations are diagramed in Fig. 1.2.

The bond lengths and the angles between the adjacent bonds do not change notably. The remarkable conformational flexibility of ssDNA is due to six rotation angles in each repeating unit of the backbone. Of course, the rotation angles cannot accept just any values, since there are many potential steric clashes between chemical groups of the unit.

Type
Chapter
Information
Biophysics of DNA , pp. 1 - 22
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexeev, D. G., Lipanov, A. A. & Skuratovskii, I. Y. (1987). Poly(dA).poly(dT) is a B-type double helix with a distinctively narrow minor groove. Nature 325, 821–3.
Bang, I. (1910). Examination or the guanyle acid. Biochem. Z. 26, 293–311.Google Scholar
Barbic, A., Zimmer, D. P. & Crothers, D. M. (2003). Structural origins of adenine-tract bending. Proc. Natl. Acad. Sci. U. S. A. 100, 2369–73.CrossRefGoogle ScholarPubMed
Beal, P. A. & Dervan, P. B. (1991). 2nd structural motif for recognition of DNA by oligonucleotide-directed triple-helix formation. Science 251, 1360–3.CrossRefGoogle Scholar
Berman, H. M. (1997). Crystal studies of B-DNA: the answers and the questions. Biopolymers 44, 23–44.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Berman, H. M., Olson, W. K., Beveridge, D. L., Westbrook, J., Gelbin, A., Demeny, T., Hsieh, S. H., Srinivasan, A. R. & Schneider, B. (1992). The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophys. J. 63, 751–9.CrossRefGoogle ScholarPubMed
Brown, T., Kennard, O., Kneale, G. & Rabinovich, D. (1985). High-resolution structure of a DNA helix containing mismatched base pairs. Nature 315, 604–6.CrossRefGoogle ScholarPubMed
Dewey, T. G. & Turner, D. H. (1979). Laser temperature-jump study of stacking in adenylic acid polymers. Biochemistry 18, 5757–62.CrossRefGoogle ScholarPubMed
Dickerson, R. E., Goodsell, D. S., Kopka, M. L. & Pjura, P. E. (1987). The effect of crystal packing on oligonucleotide double helix structure. J. Biomol. Struct. Dyn. 5, 557–79.CrossRefGoogle ScholarPubMed
Dickerson, R. E. & Ng, H.-L. (2001). DNA structure from A to B. Proc. Natl. Acad. Sci. U. S. A. 98, 6986–8.CrossRefGoogle Scholar
DiGabriele, A. D., Sanderson, M. R. & Steitz, T. A. (1989). Crystal lattice packing is important in determining the bend of a DNA dodecamer containing an adenine tract. Proc. Natl. Acad. Sci. U.S.A. 86, 1816–20.CrossRefGoogle ScholarPubMed
Egli, M. & Saenger, W. (1984). Principles of Nucleic Acid Structure.New York: Springer.Google Scholar
Eisenberg, H. & Felsenfeld, G. (1967). Studies of the temperature-dependent conformation and phase separation of polyriboadenylic acid solutions at neutral pH. J. Mol. Biol. 30, 17–37.CrossRefGoogle ScholarPubMed
Eisinger, J. (1971). Complex formation between transfer RNA's with complementary anticodons. Biochem. Biophys. Res. Commun. 43, 854–61.CrossRefGoogle ScholarPubMed
Frank-Kamenetskii, M. D. & Mirkin, S. M. (1995). Triplex DNA structures. Annu. Rev. Biochem. 64, 65–95.CrossRefGoogle ScholarPubMed
Gellert, M., Lipsett, M. N. & Davies, D. R. (1962). Helix formation by guanylic acid. Proc. Natl. Acad. Sci. U. S. A. 48, 2013–18.CrossRefGoogle ScholarPubMed
Gorin, A. A., Zhurkin, V. B. & Olson, W. K. (1995). B-DNA twisting correlates with base-pair morphology. J. Mol. Biol. 247, 34–48.CrossRefGoogle ScholarPubMed
Goulet, I., Zivanovic, Y. & Prunell, A. (1987). Helical repeat of DNA in solution. The V curve method. Nucleic Acids Res. 15, 2803–21.CrossRefGoogle ScholarPubMed
Hagerman, P. J. (1986). Sequence-directed curvature of DNA. Nature 321, 449–50.CrossRefGoogle ScholarPubMed
Hagerman, P. J. (1990). Sequence-directed curvature of DNA. Annu. Rev. Biochem. 59, 755–81.CrossRefGoogle ScholarPubMed
Hare, D., Shapiro, L. & Patel, D. J. (1986). Extrahelical adenosine stacks into right-handed DNA: solution conformation of the d(C-G-C-A-G-A-G-C-T-C-G-C-G) duplex deduced from distance geometry analysis of nuclear Overhauser effect spectra. Biochemistry 25, 7456–64.Google Scholar
Hunter, W. N., Brown, T., Anand, N. N. & Kennard, O. (1986a). Structure of an adenine-cytosine base pair in DNA and its implications for mismatch repair. Nature 320, 552–5.CrossRefGoogle ScholarPubMed
Hunter, W. N., Kneale, G., Brown, T., Rabinovich, D. & Kennard, O. (1986b). Refined crystal structure of an octanucleotide duplex with G · T mismatched base-pairs. J. Mol. Biol. 190, 605–18.CrossRefGoogle ScholarPubMed
Inners, L. D. & Felsenfeld, G. (1970). Conformation of polyribouridylic acid in solution. J. Mol. Biol. 50, 373–89.CrossRefGoogle ScholarPubMed
Kalnik, M. W., Norman, D. G., Zagorski, M. G., Swann, P. F. & Patel, D. J. (1989). Conformational transitions in cytidine bulge-containing deoxytridecanucleotide duplexes: extra cytidine equilibrates between looped out (low temperature) and stacked (elevated temperature) conformations in solution. Biochemistry 28, 294–303.CrossRefGoogle ScholarPubMed
Koo, H. S., Drak, J., Rice, J. A. & Crothers, D. M. (1990). Determination of the extent of DNA bending by an adenine–thymine tract. Biochemistry 29, 4227–34.CrossRefGoogle ScholarPubMed
Koo, H. S., Wu, H. M. & Crothers, D. M. (1986). DNA bending at adenine–thymine tracts. Nature 320, 501–6.CrossRefGoogle ScholarPubMed
Krylov, D. Y., Makarov, V. L. & Ivanov, V. I. (1990). The B-A transition in superhelical DNA. Nucleic Acids Res. 18, 759–61.CrossRefGoogle Scholar
Lane, A. N., Chaires, J. B., Gray, R. D. & Trent, J. O. (2008). Stability andkinetics of G-quadruplex structures. Nucleic Acids Res.36, 5482–515.Google ScholarPubMed
Lavery, R., Zakrzewska, K., Beveridge, D., Bishop, T. C., Case, D. A., Cheatham, T., 3rd, Dixit, S., Jayaram, B., Lankas, F., Laughton, C., Maddocks, J. H., Michon, A., Osman, R., Orozco, M., Perez, A., Singh, T., Spackova, N. & Sponer, J. (2010). A systematic molecular dynamics study of nearest-neighbor effects on base pair and base pair step conformations and fluctuations in B-DNA. Nucleic Acids Res. 38, 299–313.CrossRefGoogle ScholarPubMed
Li, M. H., Zhou, Y. H., Luo, Q. & Li, Z. S. (2010). The 3D structures of G-quadruplexes of HIV-1 integrase inhibitors: molecular dynamics simulations in aqueous solution and in the gas phase. J. Mol. Model. 16, 645–57.CrossRefGoogle ScholarPubMed
Macaya, R. F., Schultze, P., Smith, F. W., Roe, J. A. & Feigon, J. (1993). Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proc. Natl. Acad. Sci. U. S. A. 90, 3745–9.CrossRefGoogle ScholarPubMed
MacDonald, D., Herbert, K., Zhang, X., Polgruto, T. & Lu, P. (2001). Solution structure of an A-tract DNA bend. J. Mol. Biol. 306, 1081–98.CrossRefGoogle ScholarPubMed
Marini, J. C., Levene, S. D., Crothers, D. M. & Englund, P. T. (1982). Bent helical structure in kinetoplast DNA. Proc. Natl. Acad. Sci. U. S. A. 79, 7664–8.CrossRefGoogle ScholarPubMed
Moody, E. M. & Bevilacqua, P. C. (2004). Structural and energetic consequences of expanding a highly cooperative stable DNA hairpin loop. J. Am. Chem. Soc. 126, 9570–7.CrossRefGoogle ScholarPubMed
Morden, K. M. & Maskos, K. (1993). NMR studies of an extrahelical cytosine in an A. T rich region of a deoxyribodecanucleotide. Biopolymers 33, 27–36.CrossRefGoogle Scholar
Mukundan, V. T., Do, N. Q. & Phan, A. T. (2011). HIV-1 integrase inhibitor T30177 forms a stacked dimeric G-quadruplex structure containing bulges. Nucleic Acids Res. 39, 8984–91.CrossRefGoogle ScholarPubMed
Patel, D. J., Kozlowski, S. A., Ikuta, S. & Itakura, K. (1984a). Deoxyadenosine–deoxycytidine pairing in the D(C-G-C-G-a-a-T-T-C-a-C-G) duplex – conformation and dynamics at and adjacentto the dA.dC mismatchsite. Biochemistry 23, 3218–26.Google Scholar
Patel, D. J., (1984b). Deoxyguanosine–deoxyadenosine pairing in the d(C-G-A-G-A-A-T-T-C-G-C-G) duplex: conformation and dynamics at and adjacent to the dG × dA mismatch site. Biochemistry 23, 3207–17.Google Scholar
Peck, L. J. & Wang, J. C. (1981). Sequence dependence of the helical repeat of DNA in solution. Nature 292, 375–8.CrossRefGoogle ScholarPubMed
Perez, A., Marchan, I., Svozil, D., Sponer, J., Cheatham, T. E., 3rd, Laughton, C. A. & Orozco, M. (2007). Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. Biophys. J. 92, 3817–29.CrossRefGoogle ScholarPubMed
Phan, A. T. (2010). Human telomeric G-quadruplex: structures of DNA and RNA sequences. FEBSJ. 277, 1107–17.Google ScholarPubMed
Pörschke, D. (1978). Molecular states in single-stranded adenylate chains byrelaxation analysis. Biopolymers 17, 315–23.Google Scholar
Raghunathan, G., Miles, H. T. & Sasisekharan, V. (1993). Symmetry and molecular structure ofa DNA triple helix: d(T)n • d(A)n • d(T)n. Biochemistry 32, 455–62.CrossRefGoogle Scholar
Rich, A., Nordheim, A. & Wang, A. H.-J. (1984). The chemistry and biology of left-handed Z-DNA. Annu. Rev. Biochem. 53, 791–846.CrossRefGoogle ScholarPubMed
Shaw, D. E., Maragakis, P., Lindorff-Larsen, K., Piana, S., Dror, R. O., Eastwood, M. P., Bank, J. A., Jumper, J. M., Salmon, J. K., Shan, Y. & Wriggers, W. (2010). Atomic-level characterization of the structural dynamics of proteins. Science 330, 341–6.CrossRefGoogle ScholarPubMed
Sinden, R. R. (1994). DNA Structure and Function.San Diego, CA: Academic.Google Scholar
Sprous, D., Zacharias, W., Wood, Z. A. & Harvey, S. C. (1995). Dehydrating agents sharply reduce curvature in DNAs containing A-tracts. Nucleic Acids Res. 23, 1816–21.CrossRefGoogle ScholarPubMed
Stannard, B. S. & Felsenfeld, G. (1975). The conformation of polyriboadenylic acid at low temperature and neutral pH. A single-stranded rodlike structure. Biopolymers 14, 299–307.CrossRefGoogle ScholarPubMed
Strauss, F., Gaillard, C. & Prunell, A. (1981). Helical periodicity of DNA, poly(dA).poly(dT) and poly(dA-dT). poly(dA-dT) in solution. Eur. J. Biochem. 118, 215–22.Google ScholarPubMed
Tjandra, N. & Bax, A. (1997). Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278, 1111–14.CrossRefGoogle Scholar
Van de Ven, F. J. & Hilbers, C. W. (1988). Nucleic acids and nuclear magnetic resonance. Eur. J. Biochem. 178, 1–38.Google ScholarPubMed
Vermeulen, A., Zhou, H. & Pardi, A. (2000). Determination DNA global structure and DNA bending by application of NMR residual dipolar coupling. J. Amer. Chem. Soc. 122, 9638–9647.CrossRefGoogle Scholar
Wang, A. H., Quigley, G. J., Kolpak, F. J., Crawford, J. L., van Boom, J. H., van der Marel, G. & Rich, A. (1979). Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 282, 680–6.CrossRefGoogle ScholarPubMed
Wang, J. C. (1979). Helical repeat of DNA in solution. Proc. Natl. Acad. Sci. U. S. A. 76, 200–203.CrossRefGoogle ScholarPubMed
Wang, Y. & Patel, D. J. (1992). Guanine residues in d(T2AG3) and d(T2G4) form parallel-stranded potassium cation stabilized G-quadruplexes with anti glycosidic torsion angles in solution. Biochemistry 31, 8112–19.CrossRefGoogle Scholar
Watson, J. D. & Crick, F. H. C. (1953). The structure of DNA. Nature 171, 123–31.Google Scholar
Williamson, J. R. (1994). G-quartet structures in telomeric DNA. Annu. Rev. Biophys. Biomol. Struct. 23, 703–30.CrossRefGoogle ScholarPubMed
Wing, R., Drew, H., Takano, T., Broka, C., Tanaka, S., Itakura, K. & Dickerson, R. E. (1980). Crystal structure analysis of a complete turn of B-DNA. Nature 287, 755–8.CrossRefGoogle ScholarPubMed
Woodson, S. A. & Crothers, D. M. (1988). Structural model for an oligonucleotide containing a bulged guanosine by NMR and energy minimizationBiochemistry 27, 3130–41.CrossRefGoogle ScholarPubMed
Woodson, S. A. (1989). Conformation of a bulge-containing oligomer from a hot-spot sequence by NMR and energy minimization. Biopolymers 28, 1149–77.CrossRefGoogle ScholarPubMed
Wu, Z., Delaglio, F., Tjandra, N., Zhurkin, V. B. & Bax, A. (2003). Overall structure and sugar dynamics of a DNA dodecamer from homo- and heteronuclear dipolar couplings and 31P chemical shift anisotropy. J. Biomol. NMR 26, 297–315.Google ScholarPubMed
Wyatt, J. R., Vickers, T. A., Roberson, J. L., Buckheit, R. W., Jr., Klimkait, T., DeBaets, E., Davis, P. W., Rayner, B., Imbach, J. L. & Ecker, D. J. (1994). Combinatorially selected guanosine-quartet structure is a potent inhibitor of human immunodeficiency virus envelope-mediated cell fusion. Proc. Natl. Acad. Sci. U. S. A. 91, 1356–60.CrossRefGoogle ScholarPubMed
Yakovchuk, P., Protozanova, E. & Frank-Kamenetskii, M. D. (2006). Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res. 34, 564–74.CrossRefGoogle ScholarPubMed
Yoshizawa, S., Kawai, G., Watanabe, K., Miura, K. & Hirao, I. (1997). GNA trinucleotide loop sequences producing extraordinarily stable DNA minihairpins. Biochemistry 36, 4761–7.CrossRefGoogle ScholarPubMed
Young, M. A., Ravishanker, G., Beveridge, D. L. & Berman, H. M. (1995). Analysis of local helix bending in crystal structures of DNA oligonucleotides and DNA–protein complexes. Biophys. J. 68, 2454–68.CrossRefGoogle ScholarPubMed
Zimmerman, S. B., Cohen, G. H. & Davies, D. R. (1975). X-fay fiber diffraction and model-building study of polyguanylic acid and polyinosinic acid. J. Mol. Biol. 92, 181–92.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • DNA structures
  • Alexander Vologodskii, New York University
  • Book: Biophysics of DNA
  • Online publication: 05 March 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139542371.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • DNA structures
  • Alexander Vologodskii, New York University
  • Book: Biophysics of DNA
  • Online publication: 05 March 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139542371.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • DNA structures
  • Alexander Vologodskii, New York University
  • Book: Biophysics of DNA
  • Online publication: 05 March 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139542371.002
Available formats
×