Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T22:46:11.225Z Has data issue: false hasContentIssue false

List of references

Published online by Cambridge University Press:  10 January 2011

Jean-Pierre Cuif
Affiliation:
Université de Paris-Sud II, Orsay
Yannicke Dauphin
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
James E. Sorauf
Affiliation:
State University of New York, Binghamton
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abelson, P. H. (1954) Amino acids in fossils. Science 119(3096): 576.Google Scholar
Acil, Y., Mobasseri, A. E., Warnake, P. H.et al. (2005) Detection of mature collagen in human dental enamel. Calc. Tissue Int. 76: 121–126.CrossRefGoogle ScholarPubMed
Addadi, L., Moradian, J., Shaye, E.et al. (1987) A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation: relevance to biomineralization. Proc. Nat. Acad. Sci. USA 84: 2732–2736.Google ScholarPubMed
Addadi, L., Raz, S., Weiner, S. (2003) Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Adv. Mater. 15(12): 959–970.CrossRefGoogle Scholar
Adkins, J. F., Boyle, E. A., Curry, W. B.et al. (2003) Stable isotopes in deep-sea corals and a new mechanism for “vital effects”. Geochim. Cosmochim. Acta 67(6): 1129–1143.CrossRefGoogle Scholar
Aharon, P., Chappell, J. (1986) Oxygen isotopes, sea level changes and the temperature history of a coral reef environment in New Guinea over the last 10.5 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 56: 337–379.CrossRefGoogle Scholar
Aizenberg, J. (2000) Patterned crystallization of calcite in vivo and in vitro. J. Crystal Growth 211: 143–148.CrossRefGoogle Scholar
Aizenberg, J., Hanson, J., Koetzle, T. F.et al. (1997) Control of macromolecule distribution within synthetic and biogenic single calcite crystals. J. Am. Chem. Soc. 119(5): 881–886.CrossRefGoogle Scholar
Aizenberg, J., Weaver, J. C., Thanawanam, M. S.et al. (2005) Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309: 275–278.CrossRefGoogle ScholarPubMed
Albeck, S., Aizenberg, J., Addadi, L.et al. (1993) Interactions of various skeletal intracrystalline components with calcite crystals. J. Am. Chem. Soc. 115: 11 691–11 697.CrossRefGoogle Scholar
Allemand, D., Benazet-Tambutté, S. (1996) Dynamics of calcification in the Mediterranean red coral, Corallium rubrum (Linnaeus) (Cnidaria, Octocorallia). J. Exp. Zool. 276: 270–278.Google Scholar
Allemand, D., Cuif, J. P., Watabe, N.et al. (1994) The organic matrix of skeletal structures of the mediterranean red coral, Corallium rubrum. Bull. Inst. Océanogr. Monaco, sp. issue 14: 129–139.Google Scholar
Alloiteau, J. (1952) Madréporaires post-paléozoiques. In Traité de Paléontologie, Piveteau, J. (ed.). Paris: Masson, Vol. 1, pp. 539–684.Google Scholar
Alloiteau, J. (1957) Contribution à la Systématique des Madréporaires Fossiles. C.N.R.S. publ., Paris, 462pp.Google Scholar
Al-Sawalmih, A. (2007) Crystallographic texture of the arthropod cuticle using synchrotron wide angle X-ray diffraction. MSc dissertation, RWTH Aachen University, 136pp.Google Scholar
Ameye, L., Hermann, R., Killian, C.et al. (1999) Ultrastructural localization of proteins involved in sea urchin biomineralization. J. Histochem. Cytochem. 47 (9): 1189–1200.CrossRefGoogle ScholarPubMed
Ameye, L., Becker, G., Killian, C.et al. (2001) Proteins and saccharides of the sea urchin organic matrix of mineralization: characterization and localization in the spine skeleton. J. Struct. Biol. 134: 56–66.CrossRefGoogle ScholarPubMed
Anderson, O. R. (1981) Radiolarian fine structure and silica deposition. In Silicon and Siliceous Structures in Biological Systems, Simpson, T. & Volcani, B. E. (eds.). New York: Springer, pp. 346–379.Google Scholar
Anderson, O. R. (2007) Fine structure of silica deposition and the origin of shell components in a testate Amoeba Netzelia tuberculata. J. Eukaryotic Microbiol. 35(2): 204–211.Google Scholar
Andrews, P. (1990) Owls, Caves and Fossils. London: Natural History Museum Publications, 231pp.Google Scholar
Andrews, P., Nesbit-Evans, E. M. (1983) Small mammal bone accumulations produced by mammalian carnivores. Paleobiology 9(3): 289–307.CrossRefGoogle Scholar
Ans, R. A., Meyler, B. L., Sammelsel'g, V. A. (1982) Otolith growth zone structure in the Baltic sprat Sprattus sprattus balticus (G. Schneider) (Clupeidae). J. Ichthyol. 22: 156–160.Google Scholar
Arias, J. L., Fernandez, M. S. (2003) Biomimetic processes through the study of mineralized shells. Mater. Charact. 50: 189–195.CrossRefGoogle Scholar
Arias, J. L., Carrino, D. A., Fernandez, M. S.et al. (1992) Partial biochemical and immunochemical characterization of avian eggshell extracellular matrices. Arch. Biochem. Biophys. 298(1): 293–302.Google ScholarPubMed
Arnaud-Haond, S., Goyard, E., Vonau, V.et al. (2007) Pearl formation: persistence of the graft during the entire process of biomineralization. Mar. Biotechnol. 9(1): 113–116.CrossRefGoogle ScholarPubMed
Azam, B., Hemmingsen, B., Volcani, B. E. (1974) Role of silicon in diatom metabolism. Arch. Microbiol. 97: 103–114.CrossRefGoogle ScholarPubMed
Bandel, K., Spaeth, Ch. (1988) Structural differences in the ontogeny of some belemnite rostra. In Cephalopods – Present and Past, Wiedmann, J. & Kullmann, J. (eds.). Stuttgart: Schweizerbart'sche Verlag, pp. 247–271.Google Scholar
Barnes, D. J. (1970) Coral skeletons: an explanation of their growth and structure. Science 170: 1305–1308.CrossRefGoogle ScholarPubMed
Baron, R. (1989) Molecular mechanism of bone resorption by the osteoclast. International Association for Dental Research, General Session 66. Canadian Association for Dental Research. Ann. Meet. 12. Satellite Symp. Vol. 224(2), pp. 317–324.
Baronnet, A., Cuif, J. P., Dauphin, Y.et al. (2008) Crystallization of biogenic Ca-carbonate within organo-mineral micro-domains. Structure of the calcite prisms of the pelecypod Pinctada margaritifera (Mollusca) at the submicron to nanometer ranges. Mineral. Mag. 72: 617–626.CrossRefGoogle Scholar
Barrick, R. E., Showers, W. J. (1995) Thermophysiology of Tyrannosaurus rex: evidence from oxygen isotopes. Science 265: 222–224.CrossRefGoogle Scholar
Barskov, I. S. (1973) Protoconch structure and shell ontogeny of the belemnites (Coleoidea, Cephalopoda) (in Russian). Dokl. Akad. Nauk CCCP 208(2): 439–442.Google Scholar
Bassett, M. G., Kaljo, D., Teller, L. (1989) The Baltic region. In A Global Standard for the Silurian System, Holland, C. H. & Bassett, M. G. (eds.). Nat. Mus. Wales Geol. Ser. 9, 158–170.
Bates, R. L., Jackson, J. A. (1980) Glossary of Geology. Falls Church: American Geological Institute, 751pp.Google Scholar
Bathurst, R. G. C. (1971) Carbonate sediments and their diagenesis. In Developments in Sedimentology, Vol. 12. Amsterdam: Elsevier, 620pp.Google Scholar
Bauch, D., Darling, K., Simstich, J.et al. (2003) Palaeoceanographic implications of genetic variation in living North Atlantic Neogloboquadrina pachyderma. Nature 424: 299–302.CrossRefGoogle ScholarPubMed
, A. W. H., Ericson, D. B. (1963) Aspects of calcification in planktonic Foraminifera. In: Comparative biology of calcified tissues, Leroy, S. L. & Moss, M. L. (eds.). Ann. New York Acad. Sci. 109: 337–350.
Belcher, A. M., Wu, X. H., Christensen, R. J.et al. (1996) Control of crystal phase switching and orientation by soluble mollusc-shell protein. Nature 381: 56–58.CrossRefGoogle Scholar
Benayahu, Y. (1985) Faunistic composition and patterns in the distribution of soft corals (Octocorallia, Alcyonacea) along the coral reefs of Sinai penninsula. In Proc. 5th Int. Coral Reef Congress, Tahiti, Vol. 6, pp. 255–260.Google Scholar
Beniash, E., Aizenberg, J., Addadi, L.et al. (1997) Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth. Proc. R. Soc. London B 264: 461–465.CrossRefGoogle Scholar
Benson, S., Benson, N. C., Wilt, F. H. (1986) The organic matrix of the skeletal spicule of sea urchin Strongylocentrotus purpuratus embryos. J. Cell Biol. 102: 1878–1886.CrossRefGoogle Scholar
Benson, S., Jones, E., Crise-Benson, N.et al. (1983) Morphology of the organic matrix of the spicule of the sea urchin larva. Exp. Cell Res. 148: 249–253.CrossRefGoogle ScholarPubMed
Bergquist, P. R. (1978) Sponges. London: Hutchinson & Co, 268pp.Google Scholar
Berman, A., Addadi, L., Kvick, A.et al. (1990) Intercalation of sea urchin proteins in calcite: study of a crystalline composite material. Science 250: 664–667.CrossRefGoogle ScholarPubMed
Berner, R. A. (1980) Early Diagenesis: A Theoretical Approach. Princeton series in geochemistry. Princeton, NJ: Princeton University Press, 256pp.Google Scholar
Bevelander, G., Nakahara, H. (1969) An electron microscope study of the formation of the nacreous layer in the shell of certain Bivalve mollusks. Calc. Tissue Res. 3: 84–92.CrossRefGoogle Scholar
Bevelander, G., Nakahara, H. (1980) Compartment and envelope formation in the process of biological mineralization. In: The mechanisms of biomineralization in animals and plants, Proc. 3rd Biomineralization Symp., Omori, M. & Watabe, N. (eds.). Kanagawa: Tokai University Press, pp. 19–27.Google Scholar
Bezares, J., Asaro, R. J., Hawley, M. (2008) Macromolecular structure of the organic framework of nacre in Haliotis rufescens. Implications for growth and mechanical behavior. J. Struct. Biol. 163: 61–75.CrossRefGoogle ScholarPubMed
Bidder, I. G. P. (1898) The skeleton and classification of calcareous sponges. Proc. R. Soc. London 64: 61–76.CrossRefGoogle Scholar
Blamart, D., Escoubeyrou, K., Juillet-Leclerc, A.et al. (2002) Composition isotopique δ18O-δ13C des otolithes des populations de poissons récifaux de Taiaro (Tuamotu, Polynésie française): implications isotopiques et biologiques. C. R. Biologie 325: 99–106.CrossRefGoogle Scholar
Blamart, D., Rollion-Bard, C., Cuif, J. P.et al. (2005) C and O isotopes in a deep-sea coral (Lophelia pertusa) related to skeletal microstructure. In Cold-water Corals and Ecosystems, Freiwald, A. & Roberts, J. M. (eds.). Berlin: Springer-Verlag, pp. 1005–1020.CrossRefGoogle Scholar
Bocquet-Védrine, J. (1965) Etude du tégument et de la mue chez le Cirripède operculé Elminus modestis Darwin. Arch. Zool. Exper. Gen. 105: 30–76.Google Scholar
Bøggild, O. B. (1930) The shell structure of the molluscs. D. Kgl. Danske Vidensk. Selsk. Skr., Naturvidensk. og Mathem. 9(2/2): 231–326.Google Scholar
Borelli, G., Mayer-Gostan, N., Pontual, H.et al. (2001) Biochemical relationships between endolymph and otolith matrix in the trout (Oncorhynchus mykiss) and turbot (Psetta maxima). Calc. Tissue Int. 69(6): 356–364.CrossRefGoogle Scholar
Botha, J., Chinsamy, A. (2000) Growth patterns deduced from the bone histology of the cynodonts Diademodon and Cynognathus. J. Vert. Pal. 20(4): 705–711.CrossRefGoogle Scholar
Bouligand, Y. (1966) Le tégument de quelques Copépodes et ses dépendances musculaires et sensorielles. Mém. Mus. Natn. Hist. Nat Paris, sér. A, 40: 189–206.Google Scholar
Bouligand, Y. (1972) Twisted fibrous arrangement in biological materials and cholesteric mesophases. Tissue & Cell 4(2): 189–217.CrossRefGoogle Scholar
Bourget, E. (1987) Barnacle shells composition, structure and growth. In Crustacean, Issue 5: Barnacle Biology, Southward, A. J. (ed.). Rotterdam: Balkema, pp. 267–287.Google Scholar
Bourne, G. C. (1899) Studies on the structure and formation of the calcareous skeleton of the Anthozoa. Quart. J. Microsc. Sci. 41: 499–547.Google Scholar
Bovee, E. C. (1981) Distribution and forms of siliceous structures among Protozoa. In Silicon and Siliceous Structures in Biological Systems, Simpson, T. L. & Volcani, B. E. (eds.). New York: Springer, pp. 233–279.CrossRefGoogle Scholar
Bowerbank, J. S. (1844) On the structure of the shells of molluscan and conchyferous animals. Trans. Microsc. Soc. London 1: 123–152.CrossRefGoogle Scholar
Bradford, E. W. (1967) Microanatomy and histochemistry of dentine. In Structural and Chemical Organization of Teeth, Miles, A. E. W. (ed.). New York: Academic Press, Vol. II, pp. 3–34.Google Scholar
Briggs, D. E. G. (2003) The role of decay and mineralization in the preservation of soft-bodied fossils. Annu. Rev. Earth Planet. Sci. 31: 275–301.CrossRefGoogle Scholar
Briggs, D. E. G., Kear, J. (1994) Decay and mineralization of shrimps. Palaios 9(5): 431–456.CrossRefGoogle Scholar
Bryan, W. H., Hill, D. (1941) Spherulitic crystallization as a mechanism of skeletal growth in the hexacorals. Proc. R. Soc. Queensland 52(9): 78–91.Google Scholar
Bubel, A. (1975) An ultrastructural study of the mantle of the barnacle Elminus modestis Darwin in relation to shell formation. J. Exp. Mar. Biol. Ecol. 20: 287–334.CrossRefGoogle Scholar
Buddemeier, R. W., Kinzie, R. A. (1975) The chronometric reliability of contemporary corals. In Growth Rhythms and the History of the Earth, Rosenberg, G. D. & Runcorn, S. K. (eds.). New York: Wiley, pp. 135–147.Google Scholar
Burger, C., Zhou, H., Wang, H.et al. (1966) Le tégument de quelques Copépodes et ses dépendances musculaires et sensorielles. Mém. Mus. Natn. Hist. Nat. Paris, Sér. A, 40: 189–206.Google Scholar
Bütschli, O. (1901) Einige beobachtungen über Kiesel-und Kalknadelm von Spongien. Z. Wiss. Zool. 69: 235–286.Google Scholar
Butterfield, N. J. (1990) Organic preservation of non-mineralizing organisms and the taphonomy of the Burgess Shale. Paleobiology 16: 272–286.CrossRefGoogle Scholar
Cachon, J., Cachon, M. (1972) Les modalités du dépôt de la silice chez les radiolaires. Archiv fur Protistenkunde 114: 1–13.Google Scholar
Cameron, J. N. (1989) Post-molt calcification in the blue crab Callinectes sapidus: timing and mechanism. J. Exp. Biol. 143: 285–304.Google Scholar
Carpenter, K. (2007) How to make a fossil: Part 2. Dinosaur mummies and other soft tissues. J. Paleont. Sci. C.07.002, 23pp.
Carpenter, S. J., Lohmann, K. C. (1992) Sr/Mg ratios of modern marine calcite: empirical indicators of ocean chemistry and precipitation rate. Geochim. Cosmochim. Acta 56: 1837–1849.CrossRefGoogle Scholar
Carpenter, S. J., Lohmann, K. C. (1995) δ18O and δ13C values of modern brachiopod shells. Geochim. Cosmochim. Acta 59: 3749–3764.CrossRefGoogle Scholar
Carpenter, W. (1845) On the microscopic structure of shells: Part I. Br. Assoc. Adv. Sci., rep. 14: 1–24.Google Scholar
Carpenter, W. (1847) On the microscopic structure of shells: Part II. Br. Assoc. Adv. Sci., rep. 17: 93–134.Google Scholar
Carr, A., Kemp, A., Tibbetts, I.et al. (2006) Microstructure of pharyngeal tooth enameloid in the parrotfish Scarus rivulatus (Pisces: Scaridae). J. Microsc. 221(1): 8–16.CrossRefGoogle Scholar
Carter, H. J. (1879) On the structure of Stromatopora. Ann. Mag. Nat. Hist., ser. 5(4): 253–265.CrossRefGoogle Scholar
Cary, L. R. (1918) The Gorgonacea as a factor in the formation of a coral reef. Carnegie Inst. Wash., Pap. Mar. Biol. 9: 341–362.Google Scholar
Castaing, R., Slodzian, G. (1962) Microanalyse par émission ionique secondaire. J. Microscopie 1: 395–410.Google Scholar
Cayeux, L. (1916) Introduction à l'étude pétrographique des roches sédimentaires. Mém. Carte Géol. France, vol. 1 texte, vol. 2 atlas.
Chave, K. E. (1954) Aspects of the biogeochemistry of magnesium: 1. Calcareous marine organisms. J. Geol. 62: 266–283.CrossRefGoogle Scholar
Chave, K. E. (1984) Physics and chemistry of biomineralization. Annu. Rev. Earth Planet. Sci. 12: 203–205.CrossRefGoogle Scholar
Checa, A. G., Esteban-Delgado, F. J., Ramirez-Rico, J.et al. (2009a) Crystallographic reorganization of the calcitic prismatic layer of oysters. J. Struct. Biol. doi: 10.1016/j.jsb.2009.06.009.CrossRef
Checa, A. G., Ramirez-Rico, J., Gonzalez-Segura, A.et al. (2009b) Nacre and false nacre (foliated aragonite) in extant monoplacophorans (=Tryblidiia: Mollusca). Naturwissenschaften 96: 111–122.CrossRefGoogle Scholar
Chen, C. A., Odorico, D., Ten Lohuis, M.et al. (1995) Systematic relationships within the Anthozoa (Cnidaria, Anthozoa) using the 5″ end of the 28S rRNA. Mol. Phylogen. Evol. 4(2): 175–183.CrossRefGoogle Scholar
Child, A. M. (1995) Towards an understanding of the decomposition of bone in the archaeological environment. J. Archaeol. Sci. 22: 165–174.CrossRefGoogle Scholar
Chombard, C., Tillier, A., Boury-Esnault, N.et al. (1997) Polyphyly of “sclerosponges” (Porifera, Demospongiae) supported by 28S ribosomal sequences. Biol. Bull. (Woods Hole) 193: 359–367.CrossRefGoogle ScholarPubMed
Clarke, F. W., Wheeler, W. C. (1915) The composition of brachiopod shells. Proc. Nat. Acad. Sci. USA 1(5): 262–266.CrossRefGoogle ScholarPubMed
Clarke, F. W., Wheeler, W. C. (1922) The inorganic constituents of marine invertebrates. U.S. Geol. Surv. Prof. Pap. 124, p. 62.Google Scholar
Cobabe, E. A., Pratt, L. M. (1995) Molecular and isotopic compositions of lipids in bivalve shells: a new prospect for molecular palaeontology. Geochim. Cosmochim. Acta. 59(1): 87–95.CrossRefGoogle Scholar
Cohen, A. L., McConnaughey, T. A. (2003) Geochemical perspectives on coral mineralization. In Mineralogy & Geochemistry: Biomineralization, Dove, P. M., Yoreo, J. J. & Weiner, S. (eds.). Washington DC: Mineralogical Society of America, Vol. 54, pp. 151–187.Google Scholar
Cohen, A. L., Gaetani, G. A., Lundäl, V. T.et al. (2006) Compositional variability in a cold-water scleractinian, Lophelia pertusa: new insights into “vital effects”. Geochem. Geophys. Geosyst. 7: doi: 10.1029/2006GC001354.CrossRefGoogle Scholar
Cölfen, H. (2007) Non classical crystallization. In Biomineralization from Paleontology to Material Sciences. Proc. 9th Int. Symp. on Biomineralization, Arias, J. L. & Fernandez, M. S. (eds.). Santiago: Editorial Universitaria Santiago, pp. 515–526.Google Scholar
Cölfen, H., Antonietti, M. (2008) Mesocrystals and Nonclassical Crystallization. New York: Wiley, 276pp.CrossRefGoogle Scholar
Collins, M. J., Curry, G. B., Muyzer, G.et al. (1988) Serotaxonomy of skeletal macromolecules in living terebratulid brachiopods. In Immunological Approaches in Geological Research, Muyzer, G. (ed.). Meppel, The Netherlands: Krips repro., pp. 41–59.Google Scholar
Collins, M. J., Muyzer, G., Westbroek, P.et al. (1991) Preservation of fossil biopolymeric structures: conclusive immunological evidence. Geochim. Cosmochim. Acta 55: 2253–2257.CrossRefGoogle Scholar
Collins, M. J., Riley, M. S., Child, A. M.et al. (1995a) A basic mathematical simulation of the chemical degradation of ancient collagen. J. Archaeol. Sci. 22: 175–183.CrossRefGoogle Scholar
Collins, M. J., Child, A. M., Riley, M. S.et al. (1995b) Comparing the survival of the bone proteins osteocalcin and collagen. In Organic Geochemistry: Developments and Applications to Energy, Climate, Environment and Human History, 17th Int. Meet. Organic Geochem., San Sebastian, 4–8 Sept. 1995, Grimalt, J. O. & Dorronsoro, C. (eds.), AIGOA, pp. 719–722.Google Scholar
Collins, M. J., Nielsen-Marsh, C. M., Hiller, J.et al. (2002) The survival of organic matter in bone: a review. Archaeometry 44(3): 383–394.CrossRefGoogle Scholar
Compère, P., Jaspar-Versali, M. F., Goffinet, G. (2002) Glycoproteins from the cuticle of the atlantic shore crab Carcinus maenas: I. electrophoresis and western-blot analysis by use of lectins. Biol. Bull. 202: 61–73.CrossRefGoogle ScholarPubMed
Constantz, B. R. (1986) Coral skeleton construction: a physiochemically dominated process. Palaios 1: 152–157.CrossRefGoogle Scholar
Constantz, B., Weiner, S. (1988) Acidic macromolecules associated with the mineral phase of Scleractinian coral skeletons. J. Exp. Zool. 248: 253–258.CrossRefGoogle Scholar
Corrigan, J. J. (1969) D-amino acids in animals. Science 164: 142–149.CrossRefGoogle ScholarPubMed
Costlow, J. D.. (1956) Shell development in Balanus improvisus Darwin. J. Morph. 99: 359–415.CrossRefGoogle Scholar
Crawford, S. A., Higgins, M. J., Mulvaney, P.et al. (2001) Nanostructure of the diatom frustule as revealed by atomic force and scanning electron microscopy. J. Phycol. 37: 543–557.CrossRefGoogle Scholar
Crenshaw, M. A. (1972a) The inorganic composition of molluscan extrapallial fluid. Biol. Bull. 143: 506–512.CrossRefGoogle ScholarPubMed
Crenshaw, M. A. (1972b) The soluble matrix from Mercenaria mercenaria shell. Biomineralization 6: 6–11.Google Scholar
Crenshaw, M. A. (1980) Mechanisms of shell formation and dissolution. In Skeletal Growth of Aquatic Organisms, Rhoads, D. C. & Lutz, R. A. (eds.). New York: Plenum Press, pp. 115–132.CrossRefGoogle Scholar
Crenshaw, M. A., Ristedt, H. (1975) The histochemical localization of reactive groups in septal nacre from Nautilus pompilius L. In The Mechanisms of Mineralization in the Invertebrates and Plants, Watabe, N. & Wilbur, K. M. (eds.). Belle Baruch Library of Marine Science, Number 5. Columbia, SC: University of South Carolina Press, pp. 355–367.Google Scholar
Croce, G., Frache, A., Milanesio, M.et al. (2003) Fibre diffraction study of spicules from marine sponges. Microsc. Res. Tech. 62: 378–381.CrossRefGoogle Scholar
Croce, G., Frache, A., Milanesio, M.et al. (2004) Structural characterization of siliceous spicules from marine sponges. Biophysical J. 86: 526–534.CrossRefGoogle ScholarPubMed
Cuif, J. P. (1965) Microstructure du genre Gigantostylis Frech. C. R. Acad. Sc. Paris 261: 1046–1049.Google Scholar
Cuif, J. P. (1972) Recherches sur les Madréporaires du Trias: I. Famille des Stylophyllidae. Bull. Mus. Natn. Hist. Nat. Paris, Sér. 3, 97: 211–291.Google Scholar
Cuif, J. P. (1973) Mise en évidence des premières sclérosponges fossiles dans le Trias des Dolomites. C. R. Acad. Sci. Paris, Sér. D, 277: 2333–2336.Google Scholar
Cuif, J. P. (1974) Recherches sur les Madréporaires du Trias: II. Astraeoida. Révision des genres Montlivaltia et Thecosmilia. Etude de quelques types structuraux du Trias de Turquie. Bull. Mus. Natn. Hist. Nat. Paris, Sér. 3, 275: 293–400.Google Scholar
Cuif, J. P. (1975a) Caractères et affinités de Gallitellia, nouveau genre de madréporaires du Ladino-carnien des Dolomites. In: 2ème Congr. Int. Cnidaires Fossiles, Paris. Mém. B.R.G.M. 89: 256–263.Google Scholar
Cuif, J. P. (1975b) Recherches sur les Madréporaires du Trias: III. Etude des structures pennulaires chez les madréporaires triasiques. Bull. Mus. Natn. Hist. Nat. Paris, 3è Sér., 44: 45–127.Google Scholar
Cuif, J. P. (1975c) Caractères morphologiques, microstructuraux et systématiques des Pachythecalidae, nouvelle famille de Madréporaires triasiques. Geobios 8(3): 157–180.CrossRefGoogle Scholar
Cuif, J. P. (1976) Recherches sur les madréporaires du Trias: IV. Formes cério-méandroides et thamnastéroides du Trias des Alpes et du Taurus sud-anatolien. Bull. Mus. Natn. Hist. Nat. Paris, Sér. 3, 381: 65–196.Google Scholar
Cuif, J. P. (1977) Arguments pour une relation phylétique entre les madréporaires paléozoiques et ceux du Trias. Implications de l'analyse microstructurale des Madréporaires triasiques. Mém. Soc. Geol. Fr. N. S. 56(129): 1–54.Google Scholar
Cuif, J. P. (1980) Microstructure versus morphology in the skeleton of triassic scleractinian corals. Acta Palaeont. Pol. 25(3–4): 361–374.Google Scholar
Cuif, J. P. (1983) Chaetetida à microstructure sphérolitique dans le Trias supérieur de Turquie. C. R. Acad. Sc. Paris, Sér. II, 296: 1469–1472.Google Scholar
Cuif, J. P., Dauphin, Y. (1994) La perliculture polynésienne: recherche sur les facteurs de qualité des produits. Revue de Gemmologie A.F.G. 120: 2–5.Google Scholar
Cuif, J. P., Dauphin, Y. (1996) Occurrence of mineralization disturbances in nacreous layers of cultivated pearls produced by Pinctada margaritifera var. Cumingi from French Polynesia. Comparison with reported shell alterations. Aquatic Liv. Res. 9: 187–193.Google Scholar
Cuif, J. P., Dauphin, Y. (1998) Microstructural and physico-chemical characterizations of the “centers of calcification” in the septa of some recent Scleractinian corals. Paläont. Zeit. 72 (3/4): 257–270.CrossRefGoogle Scholar
Cuif, J. P., Dauphin, Y. (2005a) The environmental recording unit in coral skeletons: a synthesis of structural and chemical evidences for a biochemically driven, stepping-growth process in fibres. Biogeosciences 2: 61–73.CrossRefGoogle Scholar
Cuif, J. P., Dauphin, Y. (2005b) The two-step mode of growth in the scleractinian coral skeletons from the micrometre to the overall scale. J. Struct. Biol. 150: 319–331.CrossRefGoogle ScholarPubMed
Cuif, J. P., Gautret, P. (1991) Taxonomic value of microstructural features in calcified skeletons of fossil sponges. In Fossil and Recent Sponges, Reitner, J. & Keupp, H. (eds.) Berlin: Springer Verlag, pp. 159–169.CrossRefGoogle Scholar
Cuif, J. P., Raguideau, A. (1982) Observations sur l'origine de l'individualité cristallographique des prismes de Pinna nobilis L. C. R. Acad. Sc. Paris, Sér. II, 295: 415–418.Google Scholar
Cuif, J. P., Dauphin, Y., Lefèvre, R. (1977) Rapport de la localisation du strontium, magnesium et sodium avec la minéralisation et la microstructure de trois rostres d'Aulacocerida triasiques. C. R. Acad. Sc. Paris, Sér. D 285: 1033–1036.Google Scholar
Cuif, J. P., Dauphin, Y., Denis, A.et al. (1980) Continuité et périodicité du réseau organique intra-prismatique dans le test de Pinna muricata L. (Lamellibranche). C. R. Acad. Sc. Paris D 290: 759–763.Google Scholar
Cuif, J. P., Denis, A., Gaspard, D. (1981) Recherche d'une méthode d'analyse ultrastructurale des tests carbonatés d'invertebrés. Bull. Soc. Géol. Fr. 9, 28, 5: 525–534.CrossRefGoogle Scholar
Cuif, J. P., Dauphin, Y., Denis, A.et al. (1983) Etude des caractéristiques de la phase minérale dans les structures prismatiques du test de quelques mollusques. Bull. Mus. Natn. Hist. Nat. Paris, 4è Sér. A 3: 679–717.Google Scholar
Cuif, J. P., Dauphin, Y., Denis, A.et al. (1987) Résultats récents concernant l'analyse des biocristaux carbonatés: implications biologiques et sédimentologiques. Bull. Soc. Géol. Fr., Sér. 8 III(2): 269–288.Google Scholar
Cuif, J. P., Gautret, P., Laghi, G. F.et al. (1990) Recherche sur la fluorescence UV du squelette aspiculaire chez les Démosponges calcitiques triasiques. Geobios 23(1): 21–31.CrossRefGoogle Scholar
Cuif, J. P., Gautret, P., Marin, F. (1991) Correlation between the size of crystals and the molecular weight of organic fractions in the soluble matrices of mollusc, coral and sponge carbonate skeletons. In Mechanisms and Phylogeny of Mineralization in Biological Systems, Suga, S. & Nakahara, H. (eds.). New York: Springer Verlag, pp. 391–395.CrossRefGoogle Scholar
Cuif, J. P., Denis, A., Gautret, P.et al. (1992) Recherches sur l'altération diagénetique des biominéralisations carbonatées: évolution de la phase organique intrasquelettique dans des polypiers aragonitiques de Madréporaires du Cénozoique (Bassin de Paris) et du Trias supérieur (Dolomites et Turquie). C. R. Acad. Sc. Paris, Sér. II, 314: 1097–1102.Google Scholar
Cuif, J. P., Dauphin, Y., Denis, A.et al. (1996) The organo-mineral structure of coral skeletons: a potential source of new criteria for Scleractinian taxonomy. Bull. Inst. Océanogr. Monaco, special issue 14(4): 359–367.Google Scholar
Cuif, J. P., Dauphin, Y., Gautret, P. (1997a) Biomineralization features in scleractinian coral skeletons: source of new taxonomic criteria. Bol. R. Soc. Esp. Hist. Nat. (Sec. Geol.) 92(1–4): 129–141.Google Scholar
Cuif, J. P., Dauphin, Y., Denis, A.et al. (1997b) Facteurs de la diagenèse précoce des biominéraux: exemple d'un polypier de Porites de Nouvelle Calédonie. Geobios 20: 171–179.CrossRefGoogle Scholar
Cuif, J. P., Dauphin, Y., Freiwald, A.et al. (1999a) Biochemical markers of zooxanthellae symbiosis in soluble matrices of skeleton of 24 Scleractinia species. Comp. Biochem. Physiol. A 123(3): 269–278.CrossRefGoogle Scholar
Cuif, J. P., Dauphin, Y., Gautret, P. (1999) Compositional diversity of soluble mineralizing matrices in some recent coral skeletons compared to fine-scale growth structures of fibres: discussion of consequences for biomineralization and diagenesis. Int. J. Earth Sciences 88: 582–592.CrossRefGoogle Scholar
Cuif, J. P., Dauphin, Y., Denis, A. (2003) Biomineralization patterns in fibres and centres of calcification in coral skeletons. In Biomineralization (BIOM2001): Formation, Diversity, Evolution and Application, Kobayashi, I. & Ozawa, H. (eds.). Kanagawa: Tokai University Press, pp. 45–49.Google Scholar
Cuif, J. P., Dauphin, Y., Doucet, J.et al. (2003a) XANES mapping of organic sulfate in three scleractinian coral skeletons. Geochim. Cosmochim. Acta 67(1): 75–83.CrossRefGoogle Scholar
Cuif, J. P., Lecointre, G., Perrin, C.et al. (2003b) Patterns of septal biomineralization in Scleractinia compared with their 28S rRNA phylogeny: a dual approach for a new taxonomic framework. Zool. Scripta 32(5): 459–473.CrossRefGoogle Scholar
Cuif, J. P., Dauphin, Y., Berthet, P.et al. (2004) Associated water and organic compounds in coral skeletons: quantitative thermogravimetry coupled to infrared absorption spectrometry. Geochem. Geophys. Geosyst. 5(11): doi: 10.1029/2004/GC000783.CrossRefGoogle Scholar
Cuif, J. P., Ball, A. D., Dauphin, Y.et al. (2008a) Structural, mineralogical, and biochemical diversity in the lower part of the pearl layer of cultivated seawater pearls from Polynesia. Microsc. Microanal. 14: 405–417.CrossRefGoogle ScholarPubMed
Cuif, J. P., Dauphin, Y., Farre, B.et al. (2008b) Distribution of sulphated polysaccharides within calcareous biominerals indicates a widely shared layered growth-mode for the invertebrate skeletons and suggests a two-step crystallization process for the mineral growth units. Mineral. Mag. 72(1): 233–237.CrossRefGoogle Scholar
Cuif, J. P., Dauphin, Y., Meibom, A.et al. (2008c) Fine-scale growth patterns in coral skeletons: biochemical control over crystallization of aragonite fibres and assessment of early diagenesis. In Biogeochemical Controls on Palaeoceanographic Environmental Proxies, Austin, W. E. N. & James, R. H. (eds.), Geol. Soc. Lond. Spec. Pub. 303: 87–96.
Currey, J. D., Nichols, D. (1967) Absence of organic phase in echinoderm calcite. Nature 214: 81–83.CrossRefGoogle Scholar
Curry, G. B., Quinn, R., Collins, M. J.et al. (1991) Immunological responses from brachiopod skeletal macromolecules: a new technique for assessing taxonomic relationships using shells. Lethaia 24: 399–407.CrossRefGoogle Scholar
Cusack, M., Williams, A. (2001) Chemico-structural differentiation of the organo-calcitic shells of Rhynchonellate brachiopods. In Brachiopods Past and Present, Brunton, C. H. C., Cocks, L. R. M. & Long, S. L. (eds.), The Systematics Association, Sp. Vol. Ser. 63., Chapter 3. London: Taylor & Francis, pp. 17–27.Google Scholar
Cusack, M., Williams, A., Buckman, J. O. (1999) Chemico-structural evolution of linguloid brachiopod shells. Palaeontology 42(5):799–840.CrossRefGoogle Scholar
Cusack, M., Fraser, A. C., Stachel, T. (2003) Magnesium and phosphorus distribution in the avian eggshell. Comp. Biochem. Physiol. B 134: 63–69.CrossRefGoogle ScholarPubMed
Cusack, M., Dalbeck, P., Lee, M. R.et al. (2007) Carbonate EBSD: a new tool for understanding shell growth and ancient visual systems. Scanning 29(2): 84–85.Google Scholar
Cusack, M., Dauphin, Y., Cuif, J. P.et al. (2008a) Micro-XANES mapping of sulphur and its association with magnesium and phosphorus in the shell of the brachiopod, Terebratulina retusa. Chem. Geol. 253: 172–179.CrossRefGoogle Scholar
Cusack, M., Parkinson, D., Perez-Huerta, A.et al. (2008b) Relationship between δ18O and minor element composition of Terebratalia transversa. Trans. R. Soc. Edinburgh 98: 443–449.Google Scholar
Cusack, M., Pérez-Huerta, A., Chung, P.et al. (2008c) Oxygen isotope equilibrium in brachiopod shell fibres in the context of biological control. Miner. Mag. 72(1): 239–242.CrossRefGoogle Scholar
Cusack, M., Dauphin, Y., Chung, P.et al. (2008d) Multiscale structure of calcite fibres of the shell of the brachiopod Terebratulina retusa. J. Struct. Biol. 164: 96–100.CrossRefGoogle ScholarPubMed
Cushman, J. A. (1925) An introduction to the morphology and classification of the Foraminifera. Smithsonian Misc. Coll. 77(4): 1–75.Google Scholar
Dalbeck, P., Cusack, M. (2006) Crystallography (Electron Backscatter Diffraction) and chemistry (Electron Probe Microanalysis) of the avian eggshell. Cryst. Growth Design 6(11): 2558–2562.CrossRefGoogle Scholar
Dauphin, Y. (1979) Organisation microstructurale de l'os de seiche (Cephalopoda – Dibranchiata). C. R. Acad. Sc. Paris, Sér. D 288: 619–622.Google Scholar
Dauphin, Y. (1981) Microstructures des coquilles de Céphalopodes: II. La seiche (Dibranchiata, Decapoda). Palaeontographica A 176: 35–51.Google Scholar
Dauphin, Y. (1983) Microstructure du phragmocône du genre triasique Aulacoceras (Cephalopoda – Coleoidea): remarques sur les homologies des tissus coquilliers chez les Céphalopodes. N. Jb. Geol. Paläont. Abh. 165(3): 418–437.Google Scholar
Dauphin, Y. (1984) Microstructures des coquilles de Céphalopodes: IV. Le “rostre” de Belosepia (Dibranchiata). Paläont. Zeit. 58(1–2): 99–117.CrossRefGoogle Scholar
Dauphin, Y. (1985a) Implications of a microstructural comparison in some fossil and recent coleoid cephalopod shells. Palaeontographica A 191(1–3): 69–83.Google Scholar
Dauphin, Y. (1985b) Microstructural studies on cephalopod shells: V. The apical part of Beloptera (Dibranchiata, Tertiary). N. Jb. Geol. Paläont. Abh. 170(3): 323–341.Google Scholar
Dauphin, Y. (1986a) Microstructural studies on Cephalopod shells: VII. The rostrum of Vasseuria (Dibranchiata). Revue de Paléobiologie 5(1): 47–56.Google Scholar
Dauphin, Y. (1986b) Microstructures des coquilles de Céphalopodes: VI. La partie apicale de Belopterina (Coleoidea). Bull. Mus. Natn. Hist. Nat. Paris, 4è Sér. 8, sect. C, 1: 53–75.Google Scholar
Dauphin, Y. (1989a) Implications de l'analyse chimique élémentaire de dents de reptiles actuels et fossiles. C. R. Acad. Sci. Paris, Sér. II 309: 927–932.Google Scholar
Dauphin, Y. (1989b) Microstructures et morphologie fonctionnelle: exemple de l'émail dentaire. Revue de Paleobiologie 8(2): 357–363.Google Scholar
Dauphin, Y. (1990) Microstructures et composition chimique des coquilles d'oeufs d'oiseaux et de reptiles: 1. Oiseaux actuels. Palaeontographica A 214(1/2): 1–12.Google Scholar
Dauphin, Y. (1991) Chemical composition of reptilian teeth: 2. Implications for paleodiets. Palaeontographica A 219(4/6): 97–105.Google Scholar
Dauphin, Y. (1996) The organic matrix of coleoid cephalopod shells: molecular weights and isoelectric properties of the soluble matrix in relation to biomineralization processes. Mar. Biol. 125(3): 525–529.Google Scholar
Dauphin, Y. (1998) Comparaison de l'état de conservation des phases minérales et organiques d'os fossiles. Implications pour les reconstitutions paléoenvironnementales et phylétiques. Ann. Paléontol. 84(2): 215–239.CrossRefGoogle Scholar
Dauphin, Y. (1999a) Infrared spectra and elemental composition in recent biogenic calcites: relationships between the ν4 band wavelength and Sr and Mg concentrations. Appl. Spectrosc. 53(2): 184–190.CrossRefGoogle Scholar
Dauphin, Y. (1999b) Evolution des teneurs en Mg de la dentine des dents à croissance continue de mammifères au cours des différentes phases de la formation d'un site fossilifère. N. Jb. Geol.Paläont. Mh. 2: 101–121.Google Scholar
Dauphin, Y. (2001a) Comparative studies of skeletal soluble matrices from some scleractinian corals and molluscs. Int. J. Biol. Macromol. 28: 293–304.CrossRefGoogle ScholarPubMed
Dauphin, Y. (2001b) Caractéristiques de la phase organique soluble des tests aragonitiques des trois genres de céphalopodes actuels. N. Jb. Geol. Paläont. Mh. 2: 103–123.Google Scholar
Dauphin, Y. (2001c) Nanostructures de la nacre des tests de céphalopodes actuels. Paläont. Zeit. 75(1): 113–122.CrossRefGoogle Scholar
Dauphin, Y. (2002a) Structures, organo-mineral compositions and diagenetic changes in biominerals. Curr. Opin. Colloid Interface Sci. 7: 133–138.CrossRefGoogle Scholar
Dauphin, Y. (2002b) Implications de la diversité de composition des phases organiques solubles extraites des squelettes carbonatés. Bull. Soc. Géol. Fr. 173(4): 307–315.CrossRefGoogle Scholar
Dauphin, Y. (2002c) Fossil organic matrices of the Callovian aragonitic ammonites from Lukow (Poland): location and composition. Int. J. Earth Sci. 91: 1071–1080.CrossRefGoogle Scholar
Dauphin, Y. (2003) Soluble organic matrices of the calcitic prismatic shell layers of two pteriomorphid bivalves: Pinna nobilis and Pinctada margaritifera. J. Biol. Chem. 278(17): 15 168–15 177.CrossRefGoogle ScholarPubMed
Dauphin, Y. (2005) Biomineralization. In Encyclopedia of Inorganic Chemistry, King, R. B. (ed.). New York: Wiley & Sons, Vol. I, pp. 391–404.Google Scholar
Dauphin, Y. (2006a) Mineralizing matrices in the skeletal axes of two Corallium species (Alcyonacea). Comp. Biochem. Physiol. A 145: 54–64.CrossRefGoogle Scholar
Dauphin, Y. (2006b) Structure and composition of the septal nacreous layer of Nautilus macromphalus L. (Mollusca, Cephalopoda). Zoology 109: 85–95.CrossRefGoogle Scholar
Dauphin, Y. (2008) The nanostructural unity of mollusc shells. Mineral. Mag. 72(1): 243–246.CrossRefGoogle Scholar
Dauphin, Y., Cuif, J. P. (1980) Implications systématiques de l'analyse microstructurale des rostres de trois genres d'Aulacocerida triasiques (Cephalopoda-Coleoidea). Palaeontographica A169: 28–50.Google Scholar
Dauphin, Y., Denis, A. (2000) Structure and composition of the aragonitic crossed lamellar layers in six species of Bivalvia and Gastropoda. Comp. Biochem. Physiol. A 126: 367–377.CrossRefGoogle ScholarPubMed
Dauphin, Y., Denys, C. (1994) Teneurs en Mg de la dentine et mode de croissance des dents: le cas des Rongeurs et des Lagomorphes. C. R. Acad. Sci. Paris, Sér. II 318: 705–711.Google Scholar
Dauphin, Y., Dufour, E. (2003) Composition and properties of the soluble organic matrix of the otolith of a marine fish: Gadus morhua Linne, 1758 (Teleostei, Gadidae). Comp. Biochem. Physiol. A 134: 551–561.CrossRefGoogle Scholar
Dauphin, Y., Keller, J. P. (1982) Mise en évidence d'un type microstructural coquillier spécifique des Céphalopodes dibranchiaux. C. R. Acad. Sci. Paris, Sér. II 294: 409–412.Google Scholar
Dauphin, Y., Kervadec, G. (1994) Comparaison des diagenèses subies par les phases minérale et protéique soluble des tests de Mollusques Céphalopodes Coleoides. Palaeontographica A232(4/6): 85–98.Google Scholar
Dauphin, Y., Marin, F. (1995) The compositional analysis of recent cephalopod shell carbohydrates by Fourier transform infrared spectrometry and high performance anion exchange-pulsed amperometric detection. Experientia 51: 278–283.CrossRefGoogle Scholar
Dauphin, Y., Perrin, C. (1992) Mise en évidence de la présence de matière organique dans un ciment d'aragonite botryoidale par spectrométrie infrarouge à transformée de Fourier (FTIR). N. Jb. Geol. Paläont. Abh. 186(3): 301–319.Google Scholar
Dauphin, Y., Williams, C. T. (2007) The chemical compositions of dentine and enamel from recent reptile and mammal teeth: variability in the diagenetic changes of fossil teeth. Cryst. Eng. Comm. 9: 1252–1261.CrossRefGoogle Scholar
Dauphin, Y., Cuif, J. P., Mutvei, H.et al. (1989a) Mineralogy, chemistry and ultrastructure of the external shell layer in ten species of Haliotis with reference to Haliotis tuberculata (Mollusca: Archaeogastropoda). Bull. Geol. Inst. Univ. UppsalaN.S 15: 7–38.Google Scholar
Dauphin, Y., Denys, C., Denis, A. (1989b) Les mécanismes de formation des gisements de microvertébrés: 2. Composition chimique élémentaire des os et dents de rongeurs provenant de pelotes de régurgitation. Bull. Mus. Natn. Hist. Nat. Paris, Sect. A, Zoologie, 4è Sér. 11(1): 253–269.Google Scholar
Dauphin, Y., Kowalski, C., Denys, C. (1994) Assemblage data and bone and teeth modifications as an aid to paleoenvironmental interpretations of the open-air pleistocene site of Tighenif (Algeria). Quaternary Research 42: 340–342.CrossRefGoogle Scholar
Dauphin, Y., Gautret, P., Cuif, J. P. (1996) Evolution diagénetique de la composition chimique des aragonites biogéniques chez les spongiaires, coraux et céphalopodes triasiques du Taurus lycien (Turquie). Bull. Soc. Géol. Fr. 167(2): 247–256.Google Scholar
Dauphin, Y., Denys, C., Kowalski, K. (1997) Analysis of accumulations of rodent remains: role of the chemical composition of skeletal elements. N. Jb. Geol. Paläont. Abh. 203(3): 295–315.Google Scholar
Dauphin, Y., Denis, A., Denys, C. (1999) Diagenèse des micromammifères de trois niveaux du Plio-Pleistocène de Tighenif (Algérie): comparaison avec des pelotes actuelles de régurgitation de rapaces. Kaupia 9: 35–51.Google Scholar
Dauphin, Y., Cuif, J. P., Doucet, J.et al. (2003a) In situ chemical speciation of sulfur in calcitic biominerals and the simple prism concept. J. Struct. Biol. 142: 272–280.CrossRefGoogle ScholarPubMed
Dauphin, Y., Cuif, J. P., Doucet, J.et al. (2003b) In situ mapping of growth lines in the calcitic prismatic layers of mollusc shells using X-ray absorption near-edge structure (XANES) spectroscopy at the sulphur edge. Mar. Biol. 142: 299–304.CrossRefGoogle Scholar
Dauphin, Y., Guzman, N., Denis, A.et al. (2003c) Microstructure, nanostructure and composition of the shell of Concholepas concholepas (Gastropoda, Muricidae). Aquat. Liv. Res. 16: 95–103.CrossRefGoogle Scholar
Dauphin, Y., Andrews, P., Denys, C.et al. (2003d) Structural and chemical bone modifications in a modern owl pellet assemblage from Olduvai Gorge (Tanzania). J. Taphonomy 1(4): 209–231.Google Scholar
Dauphin, Y., Cuif, J. P., Salomé, M.et al. (2005) Speciation and distribution of sulfur in a mollusk shell as revealed by in situ maps using X-ray absorption near-edge structure (XANES) spectroscopy at the S K-edge. Am. Mineral. 90: 1748–1758.CrossRefGoogle Scholar
Dauphin, Y., Cuif, J. P., Salomé, M.et al. (2006) Microstructures and chemical composition of giant avian eggshells. Anal. Bioanal. Chem. 386: 761–771.CrossRefGoogle Scholar
Dauphin, Y., Williams, C. T., Salomé, M.et al. (2007a) Microstructures and compositions of multilayered shells of Haliotis (Mollusca, Gastropoda). In Biomineralization: From Paleontology to Materials Science. Proc. 9th Inter. Symp. Biomin., Arias, J. L. & Fernandez, M. S. (eds.). Santiago: Editorial Universitaria Santiago, pp. 265–272.Google Scholar
Dauphin, Y., Montuelle, S., Quantin, C.et al. (2007b) Estimating the preservation of tooth structures: towards a new scale of observation. J. Taphonomy 5(1): 43–56.Google Scholar
Dauphin, Y., Williams, C. T., Barskov, I. S. (2007c) Aragonitic rostra of the Turonian belemnitid Goniocamax: arguments from diagenesis. Acta Palaeont. Pol. 52(1): 85–97.Google Scholar
Dauphin, Y., Ball, A. D., Cotte, M.et al. (2008a) Structure and composition of the nacre–prism transition in the shell of Pinctada margaritifera (Mollusca, Bivalvia). Anal. Bioanal. Chem. 390: 1659–1169.CrossRefGoogle Scholar
Dauphin, Y., Cuif, J. P., Williams, C. T. (2008b) Soluble organic matrices of aragonitic skeletons of Merulinidae (Cnidaria, Anthozoa). Comp. Biochem. Physiol. B 150: 10–22.CrossRefGoogle Scholar
Dauphin, Y., Massard, P., Quantin, C. (2008c) In vitro diagenesis of teeth of Sus scrofa (Mammalia, Suidae): micro- and nanostructural alterations and experimental dissolution. Palaeogeog. Palaeocl. Palaeoecol. 266: 134–141.CrossRefGoogle Scholar
Davis, A. K., Hildenbrand, M. (2008) Molecular processes of biosilicification in diatoms. In Metal Ions in Life Science: 4. Biomineralization. From Nature to Application, Sigel, A., Sigel, H. & Sigel, R. K. O. (eds.). Chichester, UK: Wiley, pp. 255–294.Google Scholar
Davis, K. J., Dove, P. M., Yoreo, J. J. (2000) The role of Mg2+ as an impurity in calcite growth. Science 290(5494): 1134–1137.CrossRefGoogle ScholarPubMed
Davis, K. J., Dove, P. M., Wasylenski, L. E.et al. (2004) Morphological consequences of differential Mg2+ incorporation at structurally distinct steps on calcite. Am. Mineral. 89: 714–720.CrossRefGoogle Scholar
Jong, E. W., Westbroek, P., Westbroek, J. F. (1974) Preservation of antigenic properties in macromolecules over 70 myr old. Nature 252: 63–64.CrossRefGoogle Scholar
Jong, E. W., Bosch, L., Westbroek, P. (1976) Isolation and characterization of a Ca2+ binding polysaccharide associated with coccoliths of Emiliania huxleyi (Lohmann) Kamptner. Eur. J. Biochem. 70: 611–621.CrossRefGoogle ScholarPubMed
Niro, M. J., Weiner, S. (1988) A chemical, enzymatic and spectroscopic characterization of “collagen” and other organic fractions. Geochim. Cosmochim. Acta 52: 2415−2424.Google Scholar
Debrenne, F. (1992) Diversification of Archaeocyatha. In Origin and Early Evolution of the Metazoa, Lipps, J. H. & Signor, P. W. (eds.). New York: Plenum Press, pp. 425–443.CrossRefGoogle Scholar
Deflandres, G. (1936). Microfossiles des silex crétacés. Première partie. Généralités – Flagellés. Ann. Paléont. 25: 151–191.Google Scholar
Degens, E. T. (1979) Why do organisms calcify? Chem. Geol. 25: 257–269.CrossRefGoogle Scholar
Degens, E. T., Johannesson, B. W., Meyer, R. W. (1967) Mineralization processes in Molluscs and their paleontological significance. Naturwissenschaften 54: 638–640.CrossRefGoogle ScholarPubMed
Degens, E. T., Deuser, W. G., Haedrich, R. L. (1969) Molecular structure and composition of fish otoliths. Mar. Biol. 2: 105–113.CrossRefGoogle Scholar
Dendinger, J. E., Alterman, A. (1983) Mechanical properties in relation to chemical constituents of postmolt cuticle of the blue crab, Callinectes sapidus. Comp. Biochem. Physiol. A 75(3): 421–424.CrossRefGoogle Scholar
Denys, C., Kowalski, K., Dauphin, Y. (1992) Mechanical and chemical alterations of skeletal tissues in a recent Saharian accumulation of faeces from Vulpes rueppelli (Carnivora, Mammalia). Acta Zool. Cracov. 35(2): 265–283.Google Scholar
Denys, C., Williams, T., Dauphin, Y.et al. (1996) Diagenetical changes in Pleistocene small mammal bones from Olduvai Bed I. Palaeogeogr. Palaeoclimatol. Palaeoecol. 126: 121–134.CrossRefGoogle Scholar
Diekwisch, T. G. H., Berman, B. J., Anderton, X.et al. (2002) Membranes, minerals, and proteins of developing vertebrate enamel. Microsc. Res. Tech. 59: 373–395.CrossRefGoogle ScholarPubMed
Dodd, J. R. (1967) Magnesium and strontium in calcareous skeletons: a review. J. Paleontol. 41(6): 1313–1329.Google Scholar
Dodson, P., Wexlar, D. (1979) Taphonomic investigations of owl pellets. Paleobiology 5: 275–284.CrossRefGoogle Scholar
Donovan, D. T. (1964) Cephalopod phylogeny and classification. Biol. Rev. 39: 259–287.CrossRefGoogle Scholar
Doroudi, M. S., Southgate, P. C. (2003) Embryonic and larval development of Pinctada margaritifera (Linnaeus, 1758). Moll. Res. 23: 101–107.Google Scholar
Dos Santos, P. R., Added, N., Rizzutto, M. A.et al. (2006) Measurement of Sr/Ca ratio in bones as a temperature indicator. Braz. J. Phys. 36(4), doi: 10.1590/S0103–97332006000800012.Google Scholar
Doyle, P., Donovan, D. T., Nixon, M. (1994) Phylogeny and systematics of the Coleoidea. The University of Kansas Paleontological Contributions n.s 5: 1–15.Google Scholar
Drach, P. (1939) Mue et cycle d'intermue chez les Crustacés Décapodes. Ann. Inst. Océanog. Monaco. 19: 103.Google Scholar
Drever, J. I. (1988) Geochemistry of Natural Waters, 2nd edn. Englewood Cliffs, NJ: Prentice-Hall, 388pp.Google Scholar
Dufour, E., Capetta, H., Denis, A.et al. (2000) La diagenèse des otolithes par la comparaison des données microstructurales, minéralogiques et géochimiques: application aux fossiles du Pliocène du Sud-Est de la France. Bull. Soc. Géol. France 175(5): 521–532.CrossRefGoogle Scholar
Dunham, R. J. (1970) Stratigraphic reefs versus ecologic reefs. Am. Assoc. Petrol. Geol. Bull. 54: 1931–1932.Google Scholar
Eckert, C., Schröder, H. C., Brandt, D.et al. (2006) A histochemical and electron microscopic analysis of the spiculogenesis in the demosponge Suberites domuncula. J. Histochem. Cytochem. 54: 1031–1040.CrossRefGoogle ScholarPubMed
Ehrenberg, C. G. (1836) Beobachtungen ueber die organisation der armpolypen. Mitt. Naturf. Ges. Berlin 2: 27–29.Google Scholar
Ehrenberg, C. G. (1838) Die Infusionsthierchen als vollkommene Organismen. Leipzig: Woss, 547pp., 64pl.Google Scholar
Ehrlich, H., Eresrkovsky, A. V., Vyalikh, D. V.et al. (2005) Collagen in natural fibres of deep-sea glass sponge. In Biomineralization: From Paleontology to Materials Science, Arias, J. L. & Fernandez, M. S. (eds.). Santiago: Editorial Universitaria Santiago, pp. 439–448.Google Scholar
Elderfield, H., Ganssen, G. (2000) Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios. Nature 405: 442–445.CrossRefGoogle ScholarPubMed
Elliot, M., Menocal, P. B., Linsley, B. K.et al. (2003) Environmental controls on the stable isotopic composition of Mercenaria mercenaria: potential application to paleoenvironmental studies. Geochem. Geophys. Geosyst. 4(7): 1056, doi: 10.1029/2002GC000425.CrossRefGoogle Scholar
Endo, K., Curry, G. B., Quinn, R.et al. (1994) Re-interpretation of Terebratulide phylogeny based on immunological data. Palaeontology 37(2): 349–373.Google Scholar
England, J., Cusack, M., Lee, M. R. (2006) Magnesium and sulphur in the calcite shells of two Brachiopods, Terebratulina retusa and Novocrania anomala. Lethaia 40: 2–10.CrossRefGoogle Scholar
England, F., Cusack, M., Dalbeck, P.et al. (2007) Comparison of the crystallographic structure of semi nacre and nacre by electron backscatter diffraction. Cryst. Growth Des. 7(2): 307–310.CrossRefGoogle Scholar
Enlow, D. H. (1963) Principles of Bone Remodeling. Springfield, IL: C. C. Thomas Pub., 123pp.Google Scholar
Epstein, S., Buchsbaum, R., Lowenstam, H. A.et al. (1951) Carbonate-water isotopic temperature scale. Geol. Soc. Am. Bull. 62: 417–426.CrossRefGoogle Scholar
Epstein, S., Buchsbaum, R., Lowenstam, H. A.et al. (1953) Revised carbonate-water isotopic temperature scale. Geol. Soc. Am. Bull. 64: 1315–1326.CrossRefGoogle Scholar
Erben, H. K. (1972) Uber die Bildung und das Wachstum von Perlmutt. Biomineralization 4: 16–36.Google Scholar
Erben, H. K., Watabe, N. (1974) Crystal formation and growth in bivalve nacre. Nature 248: 128–130.CrossRefGoogle Scholar
Ezaki, Y. (1997) The Permian coral Numidiaphyllum: new insight into anthozoan phylogeny and Triassic scleractinian origin. Paleontology 40: 1–14.Google Scholar
Ezaki, Y. (2000) Paleoecological and phylogenetic implications of a new scleractiniomorph genus from Permian sponge reefs, south China. Paleontology 43: 199–217.CrossRefGoogle Scholar
Falini, G., Albeck, S., Weiner, S.et al. (1996) Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271: 67–69.CrossRefGoogle Scholar
Farre, B., Dauphin, Y. (2009) Lipids from the nacreous and prismatic layers of two Pteriomorpha Mollusc shells. Comp. Biochem. Physiol. B 152: 103–109.CrossRefGoogle ScholarPubMed
Fearnhead, R. W. (1979) Matrix-mineral relationships in enamel tissues. J. Dent. Res. 58(B): 909–916.CrossRefGoogle ScholarPubMed
Feigl, F. (1937) Qualitative Analysis by Spot Test. New York: Nordmann Pub. Co., pp. 161–163.Google Scholar
Fernandez, M. S., Araya, M., Arias, J. L. (1997) Eggshells are shaped by a precise spatio-temporal arrangement of sequentially deposited macromolecules. Matrix Biol. 16: 13–20.CrossRefGoogle ScholarPubMed
Fernández-Jalvo, Y., Andrews, P. (1992) Small mammal taphonomy of Gran Dolina, Atapuerca (Burgos), Spain. J. Archaeol. Sci. 19: 407–428.CrossRefGoogle Scholar
Fischer, J. C. (1970) Révision et essai de classification des Chaetetida (Cnidaria) post-paléozoiques. Ann. Paléontol. Inv. 61(2): 151–220.Google Scholar
Fratzl, P., Schreiber, S., Boyde, A. (1996) Characterization of bone mineral crystals in horse radius by small angle X-ray diffraction. Calcif. Tissue Int. 58: 341–346.CrossRefGoogle Scholar
Frech, F. (1890) Die Korallen fauna der Trias: I. Die Korallen der Juvavischen Triasprovinz. Palaeontographica 7(1): 116.Google Scholar
Freeman, J. A., Wilbur, K. M. (1948) Carbonic anhydrase in molluscs. Biol. Bull. 94: 55–59.CrossRefGoogle ScholarPubMed
Freiwald, A., Wilson, J. (1998) Taphonomy of modern deep cold-water coral reefs. Historical Biol. 13: 37–52.CrossRefGoogle Scholar
Frémy, E. (1855) Recherches chimiques sur les os. Ann. Chim. Paris, Sér.13 43: 47–107.Google Scholar
Frérotte, B., Raguideau, A., Cuif, J. P. (1983) Dégradation in vitro d'un test carbonaté d'invertébrés, Crassostrea gigas (Thunberg), par action de cultures bactériennes. Intérêt pour l'analyse ultrastructurale. C. R. Acad. Sci. Paris, Sér. II 297: 383–388.Google Scholar
Fricke, M., Volkmer, D. (2007) Crystallization of calcium carbonate beneath insoluble monolayers: suitable models of mineral–matrix interactions in biomineralization? Top. Curr. Chem. 270: 1–41.CrossRefGoogle Scholar
Fripiat, F., Corvaisier, R., Navez, J.et al. (2009) Measuring production–dissolution rates of marine biogenic silica by 30Si-isotope dilution using a high-resolution sector field inductively coupled plasma mass spectrometer. Limnol. Oceanogr.: Methods 7: 470–478.CrossRefGoogle Scholar
Fu, G., Valiiaveetil, S., Wopenka, B.et al. (2005) CaCO3 biomineralization: acidic 8-kDa proteins isolated from aragonitic abalone shell nacre can specifically modify calcite crystal morphology. Biomacromolecules 6: 1289–1298.CrossRefGoogle ScholarPubMed
Füchtbauer, H., Hardie, L. A. (1976) Experimentally determined homogeneous distribution coefficients for precipitated magnesian calcites: application to marine carbonate cements. Geol. Soc. Am. Abst. Prog. 8: 877.Google Scholar
Füchtbauer, H., Hardie, L. A. (1980) Comparison of experimental and natural magnesian calcites. International Society of Sedimentologists Meeting Abstracts (Bochum), pp. 167–169.
Fukami, H., Chen, C. A., Budd, N.et al. (2008) Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria). Plus One 3(9): 3222, doi: 0.1371/journal.pone.0003222.CrossRefGoogle Scholar
Furla, P., Galgani, I., Durand, I.et al. (2000) Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J. Exp. Biol. 203: 3445–3457.Google ScholarPubMed
Furuhashi, T., Schwartzinger, C., Miksik, I.et al. (2009) Molluscan shell evolution with review of shell calcification hypothesis. Comp. Biochem. Physiol. B 154: 351–371.CrossRefGoogle ScholarPubMed
Gaetani, G. A., Cohen, A. L. (2006) Element partitioning during precipitation of aragonite from seawater: a framework for understanding paleoproxies. Geochim. Cosmochim. Acta 70: 4617–4634.CrossRefGoogle Scholar
Gaffey, S. (1988) Water in skeletal carbonates. Sedim. Petrol. 58(3): 397–414.Google Scholar
Garrone, R. (1969) Collagen, spongin and mineral skeleton in sponge Haliclona rosea (Demospongiae, Haplosclerina). J. Microscopy 8: 581–598.Google Scholar
Gautret, P. (1985) Recherche sur la valeur taxonomique des caractéristiques du squelette carbonaté aspiculaire des Spongiaires. Thèse Doctorat Faculté des Sciences, Université Paris-Sud Orsay, 230pp.
Gautret, P., Cuif, J. P., Stolarski, J. (2000) Organic component of the skeleton of scleractinian corals: evidence from in situ Acridine Orange staining. Acta Palaeont. Pol. 45(2): 107–118.Google Scholar
Gautron, J., Hincke, M. T., Mann, K.et al. (2001) Ovocalyxin-32, a novel chicken eggshell matrix protein. J. Biol. Chem. 276(42): 39 243–39 252.CrossRefGoogle ScholarPubMed
Gayathri, S., Lakshminarayanan, R., Weaver, J. C.et al. (2007) In vitro study of magnesium-calcite biomineralization in the skeletal materials of the seastar Pisaster giganteus. Chem. Eur. J. 13: 3262–3268.CrossRefGoogle ScholarPubMed
Gessner, C. (1565) De Omni Rerum Fossilivm, Lapidvm et Gemmarvm maximè, figuris & similitudinibus Liber: non solùm Medicis, sed omnibus rerum Naturae ac Philologiae studiosis, vtilis & iucundus futurus. Zurich, 368pp.
Gilkeson, C. F. (1997) Tubules in Australian marsupials. In Tooth Enamel Microstructure, Koenigswald, W. v. & Sander, P. M. (eds.). Rotterdam: Balkema, pp. 113–122.Google Scholar
Gillis, J. A., Donoghue, P. C. J. (2007) The homology and phylogeny of Chondrichthyan tooth enameloid. J. Morph. 268: 33–49.CrossRefGoogle ScholarPubMed
Giraud, M. M. (1977) Rôle du complexe chitino-protéique et de l'anhydrase carbonique dans la calcification tégumentaire de Carcinus maenas L. Thèse Doctorat Faculté des Sciences, Biologie animale: mention cytologie, Université de Paris VI, 77pp.
Giraud-Guille, M. M., Belamie, E., Mosser, M. (2004) Organic and mineral networks in carapaces, bones and biomimetic materials. C. R. Palevol. 3: 503–513.CrossRefGoogle Scholar
Gladfelter, E. H. (1982) Skeletal development in Acropora cervicornis: I. Patterns of calcium carbonate accretion in the axial corallite. Coral Reefs 1: 45–51.CrossRefGoogle Scholar
Glazer, A. N., Apell, G. S., Hixson, C. S.et al. (1976) Biliproteins of cyanobacteria and Rhodophyta: homologous family of photosynthetic accessory pigments. Proc. Nat. Acad. Sci. USA 73: 428–431.CrossRefGoogle ScholarPubMed
Glimcher, M. J. (2006) Bone: nature of calcium phosphate crystals and cellular, structural, and physical chemical mechanisms in their formation. In Reviews in Mineralogy and Geochemistry: Medical Mineralogy and Geochemistry, Sahai, N. & Schoonen, M. A. A. (eds.). Washington DC: Mineralogical Society of America, Vol. 64, pp. 223–282.Google Scholar
Goodwin, D. H., Flessal, K. W., Schöne, B. R.et al. (2001) Cross-calibration of daily growth increments, stable isotope variation, and temperature in the Gulf of California bivalve mollusk Chione cortezi: implications for paleoenvironmental analysis. Palaios 16: 387–398.2.0.CO;2>CrossRefGoogle Scholar
Goreau, T. (1956) Histochemistry of mucopolysaccharide-like substances and alkaline phosphatase in Madreporaria. Nature 4518: 1029–1030.CrossRefGoogle Scholar
Gotliv, B. A., Aaddadi, L., Weiner, S. (2003) Mollusk shell acidic proteins: in search of individual functions. ChemBioChem 4: 522–529.CrossRefGoogle ScholarPubMed
Goulletquer, P., Wolowicz, M. (1989) The shell of Cardium edule, Cardium glaucum and Ruditapes philippinarium: organic content, composition and energy value, as determined by different methods. J. Mar. Biol. Ass. U.K. 69: 563–572.CrossRefGoogle Scholar
Grachev, M. A., Denikina, N. N., Belikov, S. I.et al. (2002) Elements of the active center of silicon transporters in diatoms. Mol. Biol. (Mosk) 36: 534–536.CrossRefGoogle Scholar
Grassmann, O., Neder, R. B., Putnis, A.et al. (2003) Biomimetic control of crystal assembly by growth in an organic hydrogel network. Am. Mineral. 88(4): 647–652.CrossRefGoogle Scholar
Greenfield, E., Wilson, D. C., Crenshaw, M. A. (1984) Ionotropic nucleation of calcium carbonate by molluscan matrix. Am. Zool. 24: 925–932.CrossRefGoogle Scholar
Grefsrud, E. S., Dauphin, Y., Cuif, J. P.et al. (2008) Modifications in microstructure of cultured and wild scallop shells (Pecten maximus). J. Shellfish Res. 27(4): 633–642.CrossRefGoogle Scholar
Grégoire, C. (1960) Further studies on structure of the organic components in mother-of-pearl, especially in Pelecypods. Bull. Inst. R. Sci. Nat. Belg. 36(23): 1–22.Google Scholar
Grégoire, C. (1961) Sur la structure de la nacre septale des Spirulidae, étudiée au microscope électronique. Arch. Internat. Physiol. Bioch. 49(3): 374–377.Google Scholar
Grégoire, C. (1967) Sur la structure des matrices organiques des coquilles de mollusques. Biol. Rev. 42: 653–687.CrossRefGoogle Scholar
Grégoire, C. (1972a) Experimental alteration of the Nautilus shell by factors involved in diagenesis and in metamorphism: Part III. Thermal and hydrothermal changes in the organic and mineral components of the mural mother-of-pearl. Bull. Inst. R. Sci. Nat. Belg. 48(6): 1–85.Google Scholar
Grégoire, C. (1972b) Structure of the molluscan shell. In Chemical Zoology, Mollusca, Florkin, M. & Scheer, B. T. (eds.). New York: Academic Press, Vol. 7, pp. 45–145.Google Scholar
Grégoire, C., Duchateau, G., Florkin, M. (1955) La trame protidique des nacres et des perles. Ann. Inst. Océanogr. 31: 1–36.Google Scholar
Griesshaber, E., Schmahl, W. W., Neuser, R. D.et al. (2007) Crystallographic texture and microstructure of terebratulide brachiopod shell calcite: an optimized materials design with hierarchical architecture. Am. Mineral. 92: 722–734.CrossRefGoogle Scholar
Griesshaber, E., Kelm, K., Sehrbrock, A.et al. (2009) Amorphous calcium carbonate in the shell material of the brachiopod Megerlia truncata. Eur. J. Mineral. 21: 715–723.CrossRefGoogle Scholar
Grobben, K. (1908) Die systematsiche Einteilung des Tierreiches. Verh. Bot. Ges. Osterreich 58: 491–511.Google Scholar
Gross, W. (1934) Die typen des mikroskopischen Knochenbaues bei fossilen Stegocephalen und Reptilien. Zeit. Anatomie 103: 731–764.CrossRefGoogle Scholar
Gunatilaka, A. (1975) The chemical composition of some carbonate secreting marine organisms from Connemara. Proc. R. I. A. Sect. B 75: 543–556.Google ScholarPubMed
Gussone, N., Böhm, F., Eisenhauer, A.et al. (2005) Calcium isotope fractionation in calcite and aragonite. Geochim. Cosmochim. Acta 69(18): 4485–4494.CrossRefGoogle Scholar
Gustomesov, V. A. (1976) Basic aspects of belemnoid phylogeny and systematic. Paleont. J. 2: 170–179.Google Scholar
Gustomesov, V. A. (1978) The pre-Jurassic ancestry of the Belemnitida and the evolutionary changes in the Belemnoidea at the boundary between the Triassic and the Jurassic (in Russian). Paleont. J. 3: 3–13.Google Scholar
Guzmann, N., Ball, A. D., Cuif, J. P.et al. (2007) Subdaily growth patterns and organo-mineral nanostructure of the growth layers in the calcitic prisms of the shell of Concholepas concholepas Bruguière, 1789 (Gastropoda, Muricidae). Microsc. Microanal. 13(5): 397–403.Google Scholar
Haeckel, E. (1862) Die Radiolarian (rhizopoda Radiara). Eine Monographie. Berlin: Reimer, 2 vol.Google Scholar
Haeckel, E. (1896) Systematische Phylogenie. Wirbellose Tiere. Berlin: G. Reimer, pp. 1–720.Google Scholar
Hämmerling, J. (1931) Entwicklung und Formbildungsvermögen von Acetabularia mediterranea: I. Die normale Entwicklung. Biol. ZbL. 51: 633–647.Google Scholar
Hämmerling, J. (1963) Nucleo-cytoplasmic interactions in Acetabularia and other cells. Ann. Rev. Pl. Physiol. 14: 65–92.CrossRefGoogle Scholar
Hansen, H. J. (1999) Shell construction in Foraminifera. In Modern Foraminifera, Sen Gupta, B. K. (ed.). Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 57–70.CrossRefGoogle Scholar
Hardie, L. A. (1996) Secular variation in seawater chemistry: an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. Geology 24(3): 279–283.2.3.CO;2>CrossRefGoogle Scholar
Hare, P. E. (1963) Amino acids in the proteins from aragonite and calcite in the shells of Mytilus californianus. Science 139: 216–217.CrossRefGoogle ScholarPubMed
Harris, R. C. (1965) Trace element distribution in molluscan skeletal material: I. Magnesium, iron, manganese, and strontium. Bull. Mar. Sci. 15(2): 265–273.Google Scholar
Hartmann, W. D. (1982) Porifera. In Synopsis and Classification of Living Organisms, Parker, S. P. (ed.). New York: McGraw-Hill, Vol. 1, pp. 641–666.Google Scholar
Hartman, W. D., Goreau, T. F. (1970) Jamaican coralline sponges: their morphology, ecology, and fossil relatives. Symp. Zool. Soc. London 25: 205–243.Google Scholar
Hartman, W. D., Goreau, T. F. (1975) A Pacific tabulate sponge, living representative of a new order of sclerosponges. Postilla 167: 1–21.CrossRefGoogle Scholar
Hay, W. W., Towe, K. M., Wright, R. C. (1963) Ultramicrostructure of some selected foraminiferal tests. Micropaleontology 9(2): 171–195.CrossRefGoogle Scholar
Hazelaar, S., Strate, H. J., Gieskes, W. W. C.et al. (2005) Monitoring rapid valve formation in the pinnate diatom Navicula salinarum. J. Phycology 4: 354–358.CrossRefGoogle Scholar
Heckel, P. H. (1974) Carbonate buildings in the geological record: a review. Soc. Econ. Pal. Min. Spec. Publ. 18: 90–154.Google Scholar
Hedges, R. E. (2002) Bone diagenesis: an overview of processes. Archaeometry 44(3): 319–328.CrossRefGoogle Scholar
Heider, A. R. (1886) Korallenstudien. Zeitsch. der. Wissensch. Zoolog. 46: 507–535.Google Scholar
Henisch, H. K. (1988) Crystals in Gels and Liesengang Rings. Cambridge: Cambridge University Press, 197pp.CrossRefGoogle Scholar
Hickson, S. J. (1911) On Ceratopora, the type of a new family of Alcyonaria. Proc. R. Soc. London B 84: 195–200.CrossRefGoogle Scholar
Hildebrand, M., Volcani, B. E., Gassmann, W.et al. (1997) A gene family of silicon transporters. Nature 385: 688–689.CrossRefGoogle ScholarPubMed
Hildebrand, M., Dahlin, M. K., Volcani, B. E. (1998) Characterization of a silicon transporter gene family in Cylindrotheca fusiformis: sequences, expression analysis, and identification of homologs in other diatoms. Mol. Gen. Genet. 260: 480–486.CrossRefGoogle ScholarPubMed
Hill, D. (1956) Rugosa. In: Moore 1956, Hill, D. 1956. In Treatise on Invertebrate Paleontology, Part F, Coelenterata, Moore, R. C. (ed.). Lawrence, KS: Geological Society of America and University of Kansas Press, pp. F234–F324 (revised 1981).Google Scholar
Hincke, M. T. (1995) Ovalbumin is a component of the chicken eggshell matrix. Connect. Tissue Tes. 31: 227–233.CrossRefGoogle ScholarPubMed
Hincke, M. T., Tsang, C. P., Courtney, M.et al. (1995) Purification and immunochemistry of a soluble matrix protein of the chicken eggshell (ovocleidin 17). Calc. Tissue Int. 56: 578–583.CrossRefGoogle Scholar
Hincke, M. T., Gautron, J., Tsang, C. P. W.et al. (1999) Molecular cloning and ultrastructural localization of the core protein of an eggshell matrix proteoglycan, ovocleidin-116. J. Biol. Chem. 274(16): 32 915–32 923.CrossRefGoogle ScholarPubMed
Hincke, M. T., Saint, Maurice M., Nys, Y.et al. (2000) Eggshell proteins and shell strength: molecular biology of eggshell matrix proteins and industry applications. In CAB Intern. 2000, Egg Nutrition and Biotechnology, Sim, J. S., Nakai, S. & Guenter, W. (eds.). Wallingford, UK: CAB International, pp. 447–461.Google Scholar
Hodge, A. J. (1967) Structure at the electron microscopic level. In Treatise on Collagen, Ramachandran, G. N. (ed.). Orlando, FL: Academic Press, Vol. 1, pp. 185–205.Google Scholar
Hodge, A. J., Petruska, J. A. (1963) Recent studies with the electron microscope on ordered aggregates of the tropocollagen macromolecule. In Aspects of Protein Structure, Ramachandran, G. N. (ed.). New York: Academic Press, Vol. 1, pp. 289–300.Google Scholar
Hoek, C., Mann, D. G., Jahns, H. M. (1995) Algae: An Introduction to Phycology. Cambridge: Cambridge University Press, 623pp.Google Scholar
Hollande, A., Enjumet, M. (1960) Cytologie, évolution et systématique des Sphaeroidés (Radiolaires). Archiv. Mus. Natn. Hist. Nat., Sér. 7(7): 1–134.Google Scholar
Hooke, R. (1665) Micrographia: or some physiological descriptions of minute bodies made by magnifying glasses with observations and inquiries thereupon. London: J. Martin & J. Allestry, 488pp.
Hooker, J. D. (1847) Algae. In Flora Antarctica. London: Reeve Broths, pp. 454–502.Google Scholar
Houlbrèque, F., Meibom, A., Cuif, J. P.et al. (2009) Strontium-86 labelling experiments show spatially heterogeneous skeletal formation in the scleractinian coral Porites porites. Geophys. Res. Let. 36, L04604, doi: 10.1029/2008GL036782.CrossRefGoogle Scholar
Huxley, T. H. (1879) On the classification and the distribution of the crayfishes. Proc. Zool. Soc. London 46(1): 751–788.Google Scholar
Iler, R. K. (1979) The Chemistry of Silica: Solubility, Polymerization, Colloidal and Surface Properties and Biochemistry. New York: J. Wiley and Sons, 866pp.Google Scholar
Inage, T., Shimokawa, H., Teranishi, Y.et al. (1989) Immuno-cytochemical demonstration of amelogenins and enamelins secreted by ameloblasts during the secretory and maturation stages. Arch. Histol. Cytol. 52(3): 213–229.CrossRefGoogle Scholar
Iwata, K. (1981) Ultrastructure and calcification of the shell of Lingula unguis Linné (Inarticulate Brachiopod). J. Fac. Sci. Hokkaido Univ., Ser. IV 20: 33–65.Google Scholar
Jackson, D. J., McDougall, C., Green, K.et al. (2006) A rapidly evolving secretome builds and patterns a sea shell. BMC Biol., doi: 10.1186/1741–7007–4–40.CrossRef
James, N. P. (1983) Reef environments. Am. Assoc. Petrol. Geol. Mem. 33: 345–462.Google Scholar
Jefferies, R. P. S. (1986) The Ancestry of the Vertebrates. London: British Museum (Natural History), 376pp.Google Scholar
Jeletzky, J. A. (1966) Comparative morphology, phylogeny and classification of fossil Coleoidea. University of Kansas Paleontological Contributions 7: 1–162.Google Scholar
Jell, J. S. (1980) Skeletogenesis of newly settled planulae of the hermatypic coral Porites lutea. Acta Palaeont. Polonica 25(3–4): 311–320.Google Scholar
Jeuniaux, C. (1965) Chitine et phylogénie: application d'une méthode enzymatique de dosage de la chitine. Bull. Soc. Chim. Biol. 47(12): 2267–2278.Google Scholar
Johnston, I. S. (1977) Aspects of the structure of a skeletal organic matrix, and the process of skeletogenesis in the reef-coral Pocillopora damicornis. In Proceedings of 3rd Int. Coral Reef Symp. Miami, FL: Univiversity of Miami, pp. 447–453.Google Scholar
Johnston, I. S. (1980) The ultrastructure of skeletogenesis in hermatypic corals. Int. Review Cytology 67: 171–214.CrossRefGoogle Scholar
Jones, C. W. (1979) The microstructure and genesis of sponge biominerals. In Biologie des Spongiaires, Colloques Internationaux du C.N.R.S., Lévi, S. & Boury-Esnault, N. (eds.). Paris: C.N.R.S., Vol. 291, pp. 425–447.Google Scholar
Jones, D. L., Knauth, L. (1979) Oxygen isotopic and petrographic evidence relevant to the origin of the Arkansas Novaculite. J. Sedim. Pet. 49: 581–597.Google Scholar
Jonsson, M., Fredriksson, S., Jontell, M.et al. (1978) Isoelectric focusing of the phosphoproteins of rat incisor dentin in ampholine and acid pH gradients. Evidence for carrier ampholyte-protein complexes. J. Chromatography 157: 235–242.CrossRefGoogle ScholarPubMed
Jope, M. (1971) Constituents of brachiopod shells. In Comprehensive Biochemistry, Florkin, M. & Stotz, E. W. (eds.). Amsterdam: Elsevier, Vol. 26, pp. 749–784.Google Scholar
Jope, M. (1973) The protein of brachiopod shell: V. N-Terminal end groups. Comp. Biochem. Physiol. 45B: 17–24.Google Scholar
Juillet-Leclerc, A., Reynaud, S., Rollion-Bard, C.et al. (2009) Oxygen isotopic signature of the skeletal microstructures in cultured corals: identification of vital effects. Geochim. Cosmochim. Acta 73: 5320–5332.CrossRefGoogle Scholar
Kaufman, P. B., Dayanandan, P., Takeoka, Y.et al. (1981) Silica in shoots of higher plants. In Silicon and Siliceous Structures in Biological Systems, Simpson, T. L. & Volcani, B. E. (eds.). New York: Springer Verlag, pp. 409–449.CrossRefGoogle Scholar
Kawakami, I. K. (1952) Mantle regeneration in pearl oyster (Pinctada martensii) J. Fuji Pearl Inst. 2(2): 1–4.Google Scholar
Keith, M. L., Weber, J. N. (1965) Systematic relationships between carbon and oxygen isotopes in carbonates deposited by modern corals and algae. Science 150: 498–501.CrossRefGoogle ScholarPubMed
Kidder, D. L., Erwin, D. H. (2001) Secular distribution of biogenic silica through the Phanerozoic: comparison of silica replaced fossils and bedded cherts at the series Level. J. Geology 109(4): 509–522.CrossRefGoogle Scholar
Killian, C. E., Wilt, F. H. (1996) Characterization of the proteins comprising the integral matrix of Strongylocentrotus purpuratus embryonic spicules. J. Biol. Chem. 271(15): 9150–9159.CrossRefGoogle ScholarPubMed
Kim, H. M., Rey, C., Glimcher, M. J. (1996) X-ray diffraction, electron microscopy, and Fourier transform infrared spectroscopy of apatite crystals isolated from chicken and bovine calcified cartilage. Calcif. Tissue Int. 59: 58–63.CrossRefGoogle ScholarPubMed
Kingsley, R. J., Tsuzaki, M., Watabe, N.et al. (1990) Collagen in the spicule organic matrix of the gorgonian Leptogorgia virgulata. Biol. Bull. 179: 207–213.CrossRefGoogle ScholarPubMed
Kinsmann, D. J. J., Holland, H. D. (1969) The co-precipitation of cations with CaCO3: IV. The co-precipitation of Sr2+ with aragonite between 16° and 96°C. Geochim. Cosmochim. Acta 33: 1–17.CrossRefGoogle Scholar
Kirkpatrick, R. (1910) On a remarkable Pharetronid sponge from Christmas Island. Proc. R. Soc. B 83: 124–133.CrossRefGoogle Scholar
Kitano, Y., Hood, D. W. (1965) The influence of organic material on the polymorphic crystallization of calcium carbonate. Geochim. Cosmochim. Acta 29: 29–41.CrossRefGoogle Scholar
Kitano, Y., Kanamori, N., Tokuyama, A. (1969) Effects of organic matter on solubilities and crystal form of carbonates. Am. Zool. 9: 681–688.CrossRefGoogle Scholar
Klein, R. T., Lohmann, K. C., Thayer, C. W. (1996a) Sr/Ca and 13C/12C ratios in skeletal calcite of Mytilus trosulus: proxies of metabolic rate, salinity and carbon isotopic composition of seawater. Geochim. Cosmochim. Acta 60: 4207–4221.CrossRefGoogle Scholar
Klein, R. T., Lohmann, K. C., Thayer, C. W. (1996b) Bivalve skeletons record sea-surface temperature and salinity via Mg/Ca and 18O/16O ratios. Geology 24: 415–418.2.3.CO;2>CrossRefGoogle Scholar
Klepal, W., Barnes, H. (1975a) A histological and scanning electron microscope study of the formation of the wall plates in Chthamalus depressus (Poli). J. Exp. Mar. Biol. Ecol. 20(2):183–198.CrossRefGoogle Scholar
Klepal, W., Barnes, H. (1975b) The structure of the wall plate in Chthamalus depressus. J. Exp. Mar. Biol. Ecol. 20: 265–285.CrossRefGoogle Scholar
Klug, C., Schulz, H., Baets, K. (2009) Red Devonian trilobites with green eyes from Morocco and the silicification of the trilobite exoskeleton. Acta Palaeont. Polonica 54(1): 117–123.CrossRefGoogle Scholar
Kobayashi, I. (1980) Various patterns of biomineralization and its phylogenetic significances in bivalve molluscs. In The Mechanisms of Biomineralization in Animals and Plants, Omori, M. & Watabe, N. (eds.). Kanagawa: Tokai University Press, pp. 145–155.Google Scholar
Koch, G. (1886) Ueber das Verhältniss von Skelet und Weichtheilen bei den Madreporaren. Morph. Jahrb. 12: 154–162.Google Scholar
Koch, P. L., Tuross, N., Fogel, M. L. (1997) The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. J. Archaeol. Sc. 24: 417–429.CrossRefGoogle Scholar
Koenigswald, W. v., Sander, P. M. (1997) Glossary of terms used for enamel microstructures. In Tooth Enamel Structure, Koenigswald, W. & Sander, P. M. (eds.). Rotterdam: Balkema, pp. 267–280.Google Scholar
Kragh, M., Molbak, L., Andersen, S. O. (1997) Cuticular proteins from the lobster, Homarus americanus. Comp. Biochem. Physiol. B 118: 147–154.CrossRefGoogle ScholarPubMed
Krampitz, G., Witt, W. (1979) Biochemical aspects of biomineralization. Topics Curr. Chem. 78: 57–144.CrossRefGoogle ScholarPubMed
Krampitz, G., Engels, J., Cazaux, C. (1976) Biochemical studies on water-soluble proteins and related components of gastropod shells. In The Mechanisms of Mineralization in the Invertebrates and Plants, Watabe, N. & Wilbur, K. M. (eds.). The Belle Baruch Library in Marine Science, Number 5. Columbia, SC: University of South Carolina Press, pp. 155–173.Google Scholar
Krampitz, G., Weise, K., Potz, A.et al. (1977) Calcium-binding peptide in dinosaur eggshells. Naturwissenschaften 64: 583.CrossRefGoogle Scholar
Kröger, N., Deutzmann, R., Sumper, M. (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286: 1129–1132.Google ScholarPubMed
Kröger, N., Deutzmann, R., Bergsdorf, R.et al. (2000) Species specific polyamines from diatoms control silica morphology. Proc. Nat. Acad. Sci. USA 97: 14 133–14 138.CrossRefGoogle ScholarPubMed
Krumbein, W. E. (1974) On the precipitation of aragonite on the surface of marine bacteria. Naturwissenschaften 61(4): 167.CrossRefGoogle ScholarPubMed
Kunioka, D., Shirai, K., Takahata, N.et al. (2006) Microdistribution of Mg/Ca, Sr/Ca, and Ba/Ca ratios in Pulleniatina obliquiloculata test by using a NanoSIMS: implication for the vital effect mechanism. Geochem. Geophys. Geosyst. 7: Q12P20, doi: 10.1029/2006GC001280.CrossRefGoogle Scholar
Lacaze-Duthiers, H. (1864) Histoire naturelle du corail. J. Exp. Zool. 371pp.
Lamnie, D., Bain, M. M., Wess, T. J. (2005) Microfocus X-ray scattering investigations of eggshell nanostructure. J. Synchrotron Rad. 12: 721–726.CrossRefGoogle Scholar
Landis, W. J., Song, M. J., Leith, A.et al. (1993) Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high voltage electron microscopic tomography and graphic image reconstruction. J. Struct. Biol. 110: 39–54.CrossRefGoogle ScholarPubMed
Landis, W. J., Hodgens, K. J., Min, J. A.et al. (1996) Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging. J. Struct. Biol. 117: 24–35.CrossRefGoogle ScholarPubMed
Geros, R. Z., Pan, C. M., Suga, S.et al. (1985) Crystallo-chemical properties of apatite in Atremate brachiopod shells. Calc. Tissue Intern. 37: 98–100.Google Scholar
Goff, R., Gauvrit, G., Pinczon du Sel, G.et al. (1998) Age group determination by analysis of the cuttlebone of the cuttlefish Sepia officinalis L. In: Reproduction in the Bay of Biscay. J. Moll. Studies 64: 183–193.CrossRefGoogle Scholar
Lecompte, M. (1951) Les stromatoporoïdes du Dévonien moyen et supérieur du bassin de Dinant. 1è partie. Inst. R. Sci. Nat. Belg., Mém. 116: 1–215.Google Scholar
Lecompte, M. (1952) Les stromatoporïdes du Dévonien moyen et supérieur du bassin de Dinant. 2è partie. Inst. R. Sci. Nat. Belg., Mém. 117: 219–358.Google Scholar
Lécuyer, C., O'Neil, J. R. (1994) Composition isotopique (H, O) de l'eau en inclusion dans les carbonates biogéniques. Bull. Soc. Géol. Fr. 165(6): 573–581.Google Scholar
Lee-Thorp, J., Sponheimer, M. (2003) Three case studies used to reassess the reliability of fossil bone and enamel isotope signals for paleodietary studies. J. Anthrop. Archaeol. 22: 208–216.CrossRefGoogle Scholar
Lemberg, J. (1892) Zur microchemischen Untersuchung einiger Minerale. Zeit. Deutschen Geologischen Gesellschaft 40: 357–359.Google Scholar
Leo, R. F. (1975) Silicification of wood. Ph.D. dissertation. Harvard University, Cambridge, MA.Google Scholar
Lévi, C. (1973) Systématique de la classe des Demospongiaria (Démosponges). In Traité de Zoologie, Spongiaires, Grassé, P. P. (ed.). Paris: Masson & Cie, pp. 577–632.Google Scholar
Lévi, C., Barton, J. L., Guillemet, C.et al. (1989) A remarkably strong natural glassy rod: the anchoring spicule of the Monorhaphis sponge. J. Mat. Sci. Letters 8: 337–339.CrossRefGoogle Scholar
Levi-Kalisman, Y., Falini, G., Addadi, L.et al. (2001) Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using cryo-TEM. J. Struct. Biol. 135: 8–17.CrossRefGoogle ScholarPubMed
Liao, S. S., Cui, F. Z., Zhang, W. (2005) Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite. J. Applied Biomaterials B 69(2): 158–165.Google Scholar
Linde, A. (1889) Dentin matrix proteins: composition and possible functions in calcification. Anat. Rec. 224: 154–166.CrossRefGoogle Scholar
Lippmann, F. (1960) Versuche zur Aufklarung der Bildungsbedingungen von Calcit and Aragonit. Fortschr. Mineral. 38: 156–161.Google Scholar
Lisitzin, A. P. (1972) Sedimentation in the World Ocean. Tulsa: Society of Economic Paleontologists and Mineralogists, Special Publication No. 17, 218pp.CrossRefGoogle Scholar
Livingston, B. T., Kilian, C. E., Wilt, F.et al. (2006) A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus. Developmental Biology 300: 335–348.CrossRefGoogle ScholarPubMed
Livingstone, D. A. (1963) Chemical composition of rivers and lakes. In: Data on geochemistry, 6th edition. U.S. Geol. Surv. Prof. Paper 440, Chapter G, 64pp.Google Scholar
Loeblich, A. R., Tappan, H. (1964) Foraminifera classification and evolution. J. Geol. Soc. India 5: 5–39.Google Scholar
Loeblich, A. R., Tappan, H. (1974) Recent advances in the classification of the Foraminiferida. In Foraminifera, Hedley, R. H. & Adams, C. G. (eds.). London: Academic Press, Vol. 1, 276pp.Google Scholar
Longinelli, A. (1984) Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatological research? Geochim. Cosmochim. Acta 48: 385–390.CrossRefGoogle Scholar
Lough, J. M. (2004) A strategy to improve the contribution of coral data to high-resolution paleoclimatology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 204: 115–143.CrossRefGoogle Scholar
Lowenstam, H. A. (1954) Factors affecting the aragonite: calcite ratios in carbonate-secreting marine organisms. J. Geol. 62: 284–322.CrossRefGoogle Scholar
Lowenstam, H. A. (1961) Mineralogy, O18/O16 ratios, and strontium and magnesium contents of recent and fossil brachiopods and their bearing on the history of oceans. J. Geol. 69: 241–260.CrossRefGoogle Scholar
Lowenstam, H. A. (1963) Biologic problems relating to the composition and diagenesis of sediments. In The Earth Sciences: Problems and Progress in Current Research, Donnelly, T. W. (ed.). Chicago, IL: University of Chicago Press, pp. 137–195.Google Scholar
Lowenstam, H. A. (1981) Minerals formed by organisms. Science 211: 1126–1131.CrossRefGoogle ScholarPubMed
Lowenstam, H. A., Weiner, S. (1989) On Biomineralization. Oxford: Oxford University Press, 324pp.Google Scholar
Luquet, G., Testenière, O., Graf, F. (1996) Characterization and n-terminal sequencing of a calcium-binding protein from the calcareous concretion organic matrix of the terrestrial crustacean Orchestia cavimana. Biochim. Biophys. Acta 1293(2): 272–276.CrossRefGoogle ScholarPubMed
Lyell, C. (1830–1833) Principles of Geology. London: J. Murray, 3 vol.Google Scholar
Machii, A. (1968) Histological studies on the pearl-sac formation. Bull. Natl. Pearl Res. Lab. 13: 1489–1539.Google Scholar
Macintyre, I. G., Bayer, F. M., Logan, M. A.et al. (2000) Possible vestige of early phosphatic biomineralization in gorgonian octocorals. Geology 28(5): 455–458.2.0.CO;2>CrossRefGoogle Scholar
Mackenzie, F. T., Pigott, J. D. (1981) Tectonic controls of Phanerozoic sedimentary rock cycling. J. Geol. Soc. Lond. 38: 183–196.CrossRefGoogle Scholar
Magdans, U., Gies, H. (2004) Single crystal structure analysis of sea urchin spine calcites: systematic investigations of the Ca/Mg distribution as a function of habitat of the sea urchin and the sample location in the spine. Eur. J. Mineral. 16: 261–268.CrossRefGoogle Scholar
Maliva, R. G., Siever, R. (1988a) Diagenetic replacement controlled by force of crystallization. Geology 16(8): 688–691.2.3.CO;2>CrossRefGoogle Scholar
Maliva, R. G., Siever, R. (1988b) Mechanism and controls of silicification of fossils in limestones. J. Geology 96(4): 387–398.CrossRefGoogle Scholar
Maliva, R. G., Knoll, A. H., Siever, R. (1989) Secular change in chert distribution: a reflection of evolving biological precipitation in the silica cycle. Palaios 4: 519–532.CrossRefGoogle Scholar
Manigault, P. (1939) Recherche sur le calcaire chez les Mollusques: Phosphatases et précipitations calciques. Thèse, Faculté des Sciences, Université de Paris, 331pp.
Mann, K., Macek, B., Olsen, J. V. (2006) Proteomic analysis of the acid-soluble organic matrix of the chicken calcified eggshell layer. Proteomics 6: 3801–3810.CrossRefGoogle ScholarPubMed
Mann, S., Heywood, B. R., Rajam, S.et al. (1989) Interfacial control of nucleation of calcium carbonate under organized stearic acid monolayers. Proc. R. Soc. London A 423(1865): 457–471.CrossRefGoogle Scholar
Mao-Che, L., Golubic, S., Campion-Alsumard, T.et al. (2001) Developmental aspects of biomineralization in the Polynesian pearl oyster Pinctada margaritifera var. cumingi. Oceanol. Acta 24: 35–49.Google Scholar
Marin, F., Dauphin, Y. (1992) Malformations de la couche nacrée de l'huitre perlière Pinctada margaritifera (L.) de la Polynésie française: rapports entre altérations microstructurales et composition en acides aminés. Annales Sciences Naturelles. Zoologie 13(4): 157–168.Google Scholar
Marin, F., Muyzer, G., Dauphin, Y. (1994) Caractérisations électrophorétique et immunologique des matrices organiques solubles des tests de deux Bivalves Ptériomorphes actuels, Pinna nobilis L. et Pinctada margaritifera (L.). C. R. Acad. Sci. Paris, Sér. II 318: 1653–1659.Google Scholar
Marschal, C., Garrabou, J., Harmelin, J. G.et al. (2004) A new method for measuring growth and age in the precious red coral Corallium rubrum (L.). Coral Reefs 23: 423–432.CrossRefGoogle Scholar
Martill, D. M., Wilby, P. R. (1994) Lithified prokaryotes associated with fossil soft-tissues from the Santana Formation (Cretaceous) of Brazil. Kaupia 2: 71–77.Google Scholar
Martin, J. W., Davis, G. E. (2001) An Updated Classification of the Recent Crustacea. Los Angeles, CA: Natural History Museum of Los Angeles County, Science Series, Vol. 39, 134pp.Google Scholar
Masters-Helfman, P., Bada, J. L. (1976) Aspartic acid racemisation in dentine as a measure of ageing. Nature 262: 279–281.CrossRefGoogle Scholar
Masuda, F., Hirano, M. (1980) Chemical composition of some modern marine pelecypod shells. Sci. Rept. Inst. Geosc., Univ. Tsukuba, sect. B, 1: 163–177.Google Scholar
Matter, P., Davidson, F. D., Wyckoff, R. W. G. (1969) The composition of fossil oyster shell proteins. Proc. Nat. Acad. Sci. USA 64(3): 970–972.CrossRefGoogle ScholarPubMed
McClintock, Turbeville J., Schulz, J. R., Raff, R. A. (1994) Deuterostome phylogeny and the sister group of the chordates: evidence from molecules and morphology. Mol. Biol. Evol. 11: 648–655.Google Scholar
McConnaughey, T. (1989a) 13C and 18O isotope disequilibrium in biological carbonates: I. Patterns. Geochim. Cosmochim. Acta 53: 151–162.CrossRefGoogle Scholar
McConnaughey, T. (1989b) 13C and 18O isotope disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects. Geochim. Cosmochim. Acta 53: 163–171.CrossRefGoogle Scholar
McConnell, D. (1963) Inorganic constituents of the shell of the living brachiopod Lingula. Geol. Soc. Am. Bull. 74: 363–364.CrossRefGoogle Scholar
McCrea, J. M. (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J. Chem. Phys. 18: 849–857.CrossRefGoogle Scholar
McGregor, H. V., Gagan, M. K. (2003) Diagenesis and geochemistry of Porites corals from Papua New Guinea: implications for paleoclimate reconstruction. Geochim. Cosmochim. Acta 37: 2147–2156.CrossRefGoogle Scholar
McLaren, D. J. (1970) Time, life and boundaries. Presid. Address at the Pal. Soc. Am. J. Paleontology 44: 801–815.Google Scholar
McMillan, J., Miller, D. J. (1990) Highly repeated DNA sequences in the scleractinian coral genus Acropora: evaluation of cloned repeats as taxonomic probes. Mar. Biol. 104: 483–487.CrossRefGoogle Scholar
Medina, M., Weil, E., Szmant, A. M. (1999) Examination of the Montastraea annularis species complex (Cnidaria: Scleractinia) using ITS1 and CO1 sequences. Mar. Biotechnol. 1: 89–97.CrossRefGoogle Scholar
Meenakshi, V. R., Hare, P. E., Wilbur, K. M. (1971) Amino acids of the organic matrix of neogastropod shells. Comp. Biochem. Physiol. B 40: 1037–1043.CrossRefGoogle Scholar
Meibom, A., Cuif, J. P., Hillion, F.et al. (2004) Distribution of magnesium in coral skeleton. Geophys. Res. Lett. 31: L23306, doi: 10.1029/2044GL021313.CrossRefGoogle Scholar
Meibom, A., Yurimoto, H., Cuif, J. P.et al. (2006) Vital effects in coral skeletal composition display strict three-dimensional control. Geophys. Res. Lett. 33: L11608, doi: 10.1029/2006GL025968.CrossRefGoogle Scholar
Meibom, A., Mostefaoui, S., Cuif, J. P.et al. (2007) Biological forcing controls the chemistry of reef-building coral skeleton. Geophys. Res. Lett. 34: L02601, doi: 10.1029/2006GL028657.CrossRefGoogle Scholar
Meldrum, F. C., Cölfen, H. (2008) Controlling mineral morphologies and structures in biological and synthetic systems. Chem. Rev. 108(11): 4332–4432.CrossRefGoogle ScholarPubMed
Meldrum, N. U., Roughton, F. J. (1933) The state of carbon dioxide in blood. J. Physiol. 80(2): 143–170.CrossRefGoogle Scholar
Melnikova, G. K. (2001) Coelenterata. In Atlas of the Triassic Invertebrates from Pamir, Rozanov, A. U. & Severev, R. V. (eds.). Moscow: Nauka, pp. 1–80 (in Russian).Google Scholar
Meyers, W. J. (1977) Chertification in the Mississippian Lake Valley Formation, Sacramento Mountains, New Mexico. Sedimentology 24: 75–105.CrossRefGoogle Scholar
Milliman, J. D. (1974) Marine carbonates. In Recent Sedimentary Carbonates. Berlin: Springer-Verlag, Vol. 1, 375pp.CrossRefGoogle Scholar
Milne-Edwards, H., Haime, J. (1857) Histoire Naturelle des Coralliaires ou Polypes Proprement Dits. Tome 2: Classification et Description des Zoanthaires Sclerodermés de la Section des Madréporaires Apores. Paris: Librairie Encyclopédique Roret, 633pp.Google Scholar
Minchin, E. A. (1909) Sponges spicules: a summary of the present knowledge. Ergebnisse und Fortschritte der Zoologie 2: 171–274.Google Scholar
Mitterer, R. M. (1978) Amino acid composition and metal binding capability of the skeletal protein of corals. Bull. Marine Sci. 28(1): 173–180.Google Scholar
Montanaro-Gallitelli, E. (1973) Microstructure and septal arrangement in a primitive Triassic coral. Boll. Soc. Paleont. Ital. 12: 8–22.Google Scholar
Mori, K. (1976) A new sclerosponge from Ngargol, Palau Island, and its fossil relatives. Tohoku Univ. Sci. Report 2, Ser. Geol. 46: 1–9.Google Scholar
Morse, J. W., Mackenzie, F. T. (1990) Geochemistry of sedimentary carbonates. In Developments in Sedimentology. Amsterdam: Elsevier, Vol. 48, 696pp.Google Scholar
Moss, M. L. (1977) Skeletal tissues in sharks. Am. Zool. 17: 335–342.CrossRefGoogle Scholar
Moss-Salentijn, L., Moss, M. L., Yuan, M. S. (1997) The ontogeny of mammalian enamel. In Tooth Enamel Structure, Koenigswald, W. & Sander, P. M. (eds.). Rotterdam: Balkema, pp. 5–30.Google Scholar
Moynier de Villepoix, R. (1892) Note sur le mode de production des formations calcaires du test des Mollusques. Mém. Soc. Biol. 4: 35–42.Google Scholar
Mucci, A., Morse, J. W. (1983) The incorporation of Mg2+ and Sr2+ into calcite overgrowths: influence of growth rate and solution composition. Geochim. Cosmochim. Acta 47: 217–233.CrossRefGoogle Scholar
Mugiya, Y. (1965) Calcification in fish and shell-fish: IV. The differences in nitrogen content between the translucent and opaque zones of otolith in some fish. Bull. Jpn. Soc. Sci. Fish. 31: 896– 901.CrossRefGoogle Scholar
Müller, W. E. G. (2003) The origin of Metazoan complexity: Porifera as integrated animals. Integr. Comp. Biol. 43: 3–10.CrossRefGoogle ScholarPubMed
Müller, W. E. G., Boreiko, A., Wang, X.et al. (2007a) Silicateins, the major biosilica forming enzymes present in demosponges: protein analysis and phylogenetic relationship. Gene 395(12): 62–71.CrossRefGoogle ScholarPubMed
Müller, W. E. G., Eckert, C., Kropf, K.et al. (2007b) Formation of giant spicules in the deep-sea hexactinellid Monorhaphis chuni Schulze 1904: electron microscopic and biochemical studies. Cell Tissue Res. 329: 363–378.CrossRefGoogle ScholarPubMed
Müller, W. E. G., Wang, X., Burghard, Z.et al. (2009) Bio-sintering processes in hexactinellid sponges: fusion of biosilica in giant basal spicules from Monorhaphis chuni. J. Struct. Biol. 168: 548–561.CrossRefGoogle Scholar
Münster, G. (1841) Beïträge zur Geognosie und Petrefacteden kunde des südöstlichen Tirols. Berlin: Planzenthiere, Bd. 1, pp. 25–39.Google Scholar
Murshed, M., Harmey, D., Millan, J. L.et al. (2005) Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev. 19: 1093–1104.CrossRefGoogle ScholarPubMed
Muscatine, L., Porter, J. W. (1977) Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27: 454–460.CrossRefGoogle Scholar
Muscatine, L., Goiran, C., Land, L.et al. (2005) Stable isotopes (δ13C and δ15N) of organic matrix from coral skeletons. Proc. Nat. Acad. Sci. USA 102(5): 1525–1530.CrossRefGoogle Scholar
Mutvei, H. (1964) On the shells of Nautilus and Spirula with notes on the shell secretion in non cephalopod mollusks. Arkiv Zool. 16(14): 221–278.Google Scholar
Mutvei, H. (1970) Ultrastructure of the mineral and organic components of molluscan nacreous layers. Biomineralization 2: 48–72.Google Scholar
Mutvei, H. (1977) The nacreous layer in Mytilus, Nucula, and Unio (Bivalvia). Calcif. Tissue Res. 24: 11–18.CrossRefGoogle Scholar
Mutvei, H. (1978) Ultrastructural characteristics of the nacre of some Gastropods. Zoologica Scripta 7: 287–296.CrossRefGoogle Scholar
Mutvei, H. (1979) On the internal structures of the nacreous tablets in molluscan shells. Scanning Electron Microscopy II: 451–462.Google Scholar
Mutvei, H., Dauphin, Y., Cuif, J. P. (1985) Observations sur l'organisation de la couche externe du test des Haliotis (Gastropoda): un cas exceptionnel de variabilité minéralogique et microstructurale. Bull. Mus. Natn. Hist. Nat. Paris, Sér. 4, sect. A 1: 73–91.Google Scholar
Nakahara, H. (1979) An electron microscope study of the growing surface of nacre in two gastropod species, Turbo cornutus and Tegula pfeifferi. Venus 38(3): 205–211.Google Scholar
Nakahara, H. (1983) Calcification of gastropod nacre. In Biomineralization and Biological Metal Accumulation, Westbroek, P. & Jong, E. W. (eds.). Dordrecht, The Netherlands: Reidl D. Publishers, pp. 225–230.CrossRefGoogle Scholar
Nakahara, H., Bevelander, G., Kakai, M. (1982) Electron microscopic and amino acid studies on the outer and inner shell layers of Haliotis rufescens. Venus 41(1): 33–46.Google Scholar
Necker de Saussure, L. A. (1839) Note sur la nature minéralogique des coquilles terrestres, fluviatiles et marines. Ann. Sci. Nat. Sér. 2 (Zoologie) 9: 52–55.Google Scholar
Nelson, D. M., Treguer, P., Brzezinski, M. A.et al. (1995) Production and dissolution of biogenic silica in the ocean: revised global estimates, comparisons with regional data and relationship to biogenic sedimentation. Glob. Biogeochem. Cycle 9: 359–372.CrossRefGoogle Scholar
Neville, A. C. (1975) Biology of the Arthropod Cuticle. Berlin: Springer-Verlag, 448pp.CrossRefGoogle Scholar
Newell, N. D. (1967) Revolution in the history of life. Geol. Soc. Am. spec. pap. 89: 63–91.Google Scholar
Nicholson, H. A. (1886) On some new or imperfectly known species of Stromatoporoids. II. Ann. Mag. Nat. Hist. Ser. 5(18): 8–22.Google Scholar
Nissen, H. U. (1963) Röntgengefügeanalyse am Kalzit von Echinodermenskeletten. N. Jb. Geol. Abh. 117: 230–234.Google Scholar
Noll, W. (1934) Geochemie des Strontiums. Chem. d. Erde 8: 507–600.Google Scholar
Nothdurft, L. D., Webb, G. (2007) Microstructure of common reef-building coral genera Acropora, Pocillopora, Goniastrea and Porites: constraints on spatial resolution in geochemical sampling. Facies 53: 1–26.CrossRefGoogle Scholar
Nudelman, F., Gotliv, B. A., Addadi, L.et al. (2006) Mollusk shell formation: mapping the distribution of organic matrix components underlying a single aragonitic tablet in nacre. J. Struct. Biol. 153: 176–187.CrossRefGoogle ScholarPubMed
Nudelman, N., Chen, H. H., Goldberg, H. A.et al. (2007) Lessons from biomineralization: comparing the growth strategies of mollusc shell prismatic and nacreous layers in Atrina rigida. Faraday Discuss. 136(9), doi: 10.1039/b704418f.CrossRefGoogle ScholarPubMed
Odum, H. T. (1957) Biochemical deposition of strontium. Inst. Marine Sci. 4: 38–114.Google Scholar
Ogilvie, M. M. (1895) Microscopic and systematic study of madreporarian types of corals. Proc. R. Soc. London 59: 9–18.CrossRefGoogle Scholar
Ogilvie, M. M. (1896) Microscopic and systematic study of madreporarian types of corals. Phil. Trans. R. Soc. London B 187: 83–345.CrossRefGoogle Scholar
Ohde, S., Kitano, Y. (1984) Co-precipitation of strontium with marine Ca-Mg carbonates. J. Geochem. 18: 143–146.CrossRefGoogle Scholar
Oliver, W. A. (1980) On the relationship between Rugosa and Scleractinia. Acta Palaeontol. Pol. 25(3–4): 395–402.Google Scholar
Oliver, W. A., Coates, A. (1987) Phylum Cnidaria. In Fossil Invertebrates, Boardman, R. S., Cheetham, A. H. & Rowell, A. J. (eds.). Oxford: Blackwell Scient. Pub., pp. 140–193.Google Scholar
Osborn, J. W. (1965) The nature of the Hunter-Schreger bands in enamel. Arch. Oral Biol. 10: 929–993.CrossRefGoogle ScholarPubMed
Ouizat, S., Barroug, A., Legrouri, A.et al. (1999) Adsorption of bovine serum albumin on poorly crystalline apatite: influence of maturation. Mater. Res. Bull. 34: 2279–2289.CrossRefGoogle Scholar
Owen, R., Kennedy, H., Richardson, C. A. (2002) Isotopic partitioning between scallop shell calcite and seawater: effect of shell growth rate. Geochim. Cosmochim. Acta 66(10): 1727–1737.CrossRefGoogle Scholar
Oxman, D. S., Barnett-Johnson, R., Smith, M. E.et al. (2007) The effect of vaterite deposition on sound reception, otolith morphology, and inner ear sensory epithelia in hatchery-reared Chinook salmon. Can. J. Fish. Aquat. Sci. 64(11): 1469–1478.CrossRefGoogle Scholar
Pappenhöfer, G. A., Harris, R. P. (1979) Laboratory cultures of marine holozooplankton and its contribution to studies of marine planktonic food webs. Adv. Marine Biol. 16: 211–299.CrossRefGoogle Scholar
Parkinson, D., Curry, G. B., Cusack, M.et al. (2005) Shell structure, patterns and trends of oxygen and carbon stable isotopes in modern brachiopod shells. Chemical Geol. 219: 193–235.CrossRefGoogle Scholar
Pasteris, J. D., Wopenka, B., Freeman, J. J.et al. (2004) Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials. Biomaterials 25: 229–238.CrossRefGoogle Scholar
Pasteris, J. D., Yoder, C. H., Rogers, K. D.et al. (2007) Bone apatite: the secret is in the carbonate. Geol. Soc. Am., Ann. Meet. Denver 39(6): 295.Google Scholar
Paul, C. R. C. (1979) Early echinoderm radiation. In The Origin of Major Invertebrate Groups, House, M. R. (ed.), Systematics Association, Special Publication 21. New York: Academic Press, pp. 72–88.Google Scholar
Paul, C. R. C. (1988) The phylogeny of the cystoids. In Echinoderm Phylogeny and Evolutionary Biology, Paul, C. R. C. & Smith, A. B. (eds.). Oxford: Clarendon Press, pp. 199–213.Google Scholar
Pérez-Huerta, A., Cusack, M., Jeffries, T.et al. (2008) High resolution distribution of magnesium and strontium and the evaluation of Mg/Ca thermometry in recent brachiopod shells. Chem. Geol. 247: 229–241.CrossRefGoogle Scholar
Peters, W. (1972) Occurrence of chitin in Mollusca. Comp. Biochem. Physiol. B 41: 541–550.Google Scholar
Petit, H. (1978) Recherches sur des séquences d'évènements périostracaux lors de l'élaboration de la coquille d'Amblema plicata Conrad, 1834. Thèse, Laboratoire de Zoologie, Université de Bretagne occidentale, 76pp.
Pingitore, N. E., Meitzner, G., Love, K. M. (1995) Identification of sulfate in natural carbonates by X-ray absorption spectroscopy. Geochim. Cosmochim. Acta 59(12): 2477–2483.CrossRefGoogle Scholar
Pisa, M., Jammet, C., Laurent, D. (2002) First steps of otolith formation of the zebrafish: role of glycogen? Cell Tissue Res. 310: 163–168.Google Scholar
Poole, D. F. G. (1967) Phylogeny of tooth tissues: enameloid and enamel in recent vertebrates, with a note on the history of cementum. In Structural and Chemical Organization of Teeth, Miles, A. E. W. (ed.). New York: Academic Press, Vol. I, pp. 111–149.Google Scholar
Popp, B. N., Podosek, F. A., Brannon, J. C.et al. (1986) 87Sr/86Sr ratios in Permo-Carboniferous sea water from the analyses of well-preserved brachiopod shells. Geoch. Cosmochim. Acta 50(7): 1321–1328.CrossRefGoogle Scholar
Pratoomchat, B., Sawangwong, P., Guedes, R.et al. (2002) Cuticle ultrastructure changes in the crab Scylla serrata over the molt cycle. J. Exp. Biol. 293: 414–426.Google ScholarPubMed
Pratz, E. (1882) Über die verwandschaftlichen Beziehungen einiger Korallengattungen mit hauptsächlicher Berücksichtigung ihrer Septalstructur. Palaeontographica 29: 81–122.Google Scholar
Prenant, M. (1925) Contributions à l'étude cytologique du calcaire. Bull. Biol. Fr. Belg. 58: 403–434.Google Scholar
Putnis, A., Prieto, M., Fernández-Díaz, L. (1995) Fluid supersaturation and crystallisation in porous media. Geol. Mag. 132: 1–13.CrossRefGoogle Scholar
Puura, I., Nemliher, J. (2001) Apatite varieties in recent and fossil linguloid brachiopod shells. In Brachiopods, Past and Present, Brunton, C. H. C., Cocks, L. R. M., Long, S. M. & Long, S. L. (eds.). London: Taylor & Francis, pp. 7–16.Google Scholar
Puverel, S. (2004) La biominéralisation chez les coraux Scléractiniaires. Etude de la matrice organique et des transports ioniques. Thèse, Université de Nice – Sophia Antipolis, mémoire du centre scientifique de Monaco, 178pp.
Qi, W. (1984) An Anisian coral fauna in Guizhou, South China. In: Fourth International Symposium on Fossil Cnidaria, Washington D.C., August 1983, Palaeontographica Americana 54: 187–190.Google Scholar
Raabe, D., Romano, P., Sachs, C.et al. (2006) Microstructure and crystallographic texture of the chitin-protein network in the biological composite material of the exoskeleton of Homarus americanus. Mater. Sci. Eng. A 421: 143–153.CrossRefGoogle Scholar
Raczynski, J., Ruprecht, A. L. (1974) The effect of digestion on the osteological composition of owl pellets. Acta Ornithologica 14: 25–38.Google Scholar
Ranner, H., Ladriére, O., Navez, J.et al. (2005) Do echinoderms store temperature changes in their skeleton? Geophys. Res. Abstr. 7: 01098, 1607–7962/gra/EGU05-A-01098.Google Scholar
Raup, D. M. (1962) Crystallographic data in echinoderm classification. Systematic Zoology 11(3): 97–108.Google Scholar
Raup, D. M., Sepkowski, J. J. (1982) Mass extinctions in the marine fossil record. Science 215: 1501–1503.Google ScholarPubMed
Rauzer-Chernousova, D. M., Fursenko, A. V. (1959) The sub-class Foraminifera. Osnovy Paleontologii, Moscow Izd. Akad SSSR, 12–211.
Read, B. A., Wahlund, T. M. (2007) Molecular approach to Emiliana huxleuyi coccolith formation. In Handbook of Biomineralization: Biological Aspects and Structure Formation, Behrens, P. & Beaeuerlein, E. (eds.). Weinheim, Germany: Wiley-VCH, pp. 227–240.CrossRefGoogle Scholar
Reidel, P. (1991) Triassic corals of the Tethys: stratigraphical range, diversity patterns, evolutionary trends and their significance as reef building organisms. Mitt. Ges. Geol. Bergbaustud. Österr. 37: 97–118.Google Scholar
Reiswig, H. M. (1971) The axial symmetry of sponge spicules and its phylogenetic significance. Cahiers Biol. Mar. 12: 505–514.Google Scholar
Reitner, J. (1991) Phylogenetic aspects and new descriptions of spicule-bearing Hadromerid sponges with a secondary calcareous skeleon (Tetractinomorpha, Demospongiae). In Fossil and Recent Sponges, Reitner, J. & Keupp, F. (eds.). Berlin: Springer, pp. 179–211.CrossRefGoogle Scholar
Reitner, J., Engeser, T. (1987) Skeletal structures and habitats of recent and fossil Acanthochaetetes (subclass Tetractinomorpha, Demospongiae, Porifera). Coral Reefs 6: 151–157.CrossRefGoogle Scholar
Reitner, J., Wörheide, G. (2002) Non-lithistid fossil Demospongiae: origin of their paleobiodiversity and highlights in history of preservation. In Systema Porifera: A Guide to the Classification of Sponges, Hooper, J. N. A. & Soest, R. W. M. (eds.). New York: Kluwer Akademic/Plenum Pub., pp. 52–68.CrossRefGoogle Scholar
Rensberger, J. M. (1997) Mechanical adaptation in enamel. In Tooth Enamel Microstructure, Koenigswald, W. & Sander, P. M. (eds.). Rotterdam: Balkema, pp. 237–257.Google Scholar
Richards, A. G. (1951) The Integuments of Arthropods. Minneapolis, MN: University of Minnesota Press, 324pp.Google Scholar
Ricqlès, A. (1975) Recherches paléohistologiques sur les os longs des tétrapodes: VII. Sur la classification, la signification fonctionelle et l'histoire des tissus osseux des tétrapodes. 1è partie: structures. Annales de Paléontol. 61: 49–149.Google Scholar
Robach, J. S., Stock, S. R., Veis, A. (2005) Transmission electron microscopy characterization of macromolecular domain cavities and microstructure of single-crystal calcite tooth plates of the sea urchin Lytechinus variegatus. J. Struct. Biol. 151: 18–29.Google ScholarPubMed
Roche, J., Ranson, G., Eysseric-Lafon, M. (1951) Sur la composition des scléroprotéines des coquilles des mollusques (conchiolines). C. R. Séances Soc. Biol. Fr. 145(19–20): 1474–1477.Google Scholar
Rollion-Bard, C. (2001) Variability of oxygen isotopes in Porites corals: development and implications of stable isotopes (B, C and O) microanalysis by ion microprobe. Thèse, Institute National Polytechnique de Lorraine, Nancy, 165pp.
Rollion-Bard, C., Blamart, D., Cuif, J. P.et al. (2003) Microanalysis of C and O isotopes of azooxanthellate and zooxanthellate corals by ion microprobe. Coral Reefs 22: 405–415.CrossRefGoogle Scholar
Rollion-Bard, C., Blamart, D., Cuif, J. P.et al. (2010) In situ measurements of oxygen isotopic composition in deep-sea coral, Lophelia pertusa: re-examination of the current geochemical models of biomineralization. Geochim. Cosmochim. Acta 74: 1338–1349.CrossRefGoogle Scholar
Romano, S. L., Cairns, S. D. (2000) Molecular phylogenetic hypotheses for the evolution of scleractinian corals. Bull. Mar. Sci. 67: 1043–1068.Google Scholar
Romano, S. L., Palumbi, S. R. (1996) Evolution of scleractinian corals inferred from molecular systematics. Science 271: 640–642.CrossRefGoogle Scholar
Romano, S. L., Palumbi, S. R. (1997) Molecular evolution of a portion of the mitochondrial 16S ribosomal gene region in scleractinian corals. J. Mol. Evol. 45: 397–411.CrossRefGoogle ScholarPubMed
Roniewicz, E., Stolarski, J. (1999) Evolutionary trends in the epithecate scleractinian corals. Acta Paleont. Pol. 44: 131–166.Google Scholar
Rose, G. (1858) Über die heteromorphen Zustände des kohlensauren Kalkerde: II. Vorkommer des Aragonits und Kalkspaths in der orgnaischen Natur. Abhandl. König. Akad. Wiss. Berlin, Abt. Physik 81: 63–111.
Rosenberg, G. D. (1980) An ontogenic approach to the environmental significance of bivalve shell chemistry. In Skeletal Growth of Aquatic Organisms. Biological Records of Environmental Change, Rhoads, D. C. & Lutz, R. A. (eds.). New York: Plenum Press, pp. 133–168.CrossRefGoogle Scholar
Rosenberg, G. D., Hughes, W. W., Tkachuk, R. D. (1989) Shell form and metabolic gradients in the mantle of Mytilus edulis. Lethaia 22(3): 229–344.CrossRefGoogle Scholar
Rousseau, M., Bedouet, L., Lati, E.et al. (2006) Restoration of stratum corneum with nacre lipids. Comp. Bichem. Physiol. B 145: 1–9.Google ScholarPubMed
Rudall, K. M. (1963) The chitin/protein complexes of insect cuticles. Adv. Insect Physiol. 1: 257–313.CrossRefGoogle Scholar
Runcorn, S. K. (1966) Change in the moment of inertia of the Earth as a result of a growing core. In The Earth-Moon System, Marsden, B. G. & Cameron, A. G. W. (eds.). New York: Plenum Press, pp. 82–92.CrossRefGoogle Scholar
Sakae, T., Suzuki, K., Kozawa, Y. (1997) A short review of studies on chemical and physical properties of enamel. In Tooth Enamel Structure, Koenigswald, W. & Sander, P. M. (eds.). Rotterdam: Balkema, pp. 31–39.Google Scholar
Samata, T. (1990) Ca-binding glycoproteins in molluscan shells with different types of ultrastructure. The Veliger 33(2): 190–201.Google Scholar
Samata, T., Sanguansri, P., Cazaux, C.et al. (1980) Biochemical studies on components of mollusc shells. In The Mechanisms of Biomineralization in Animals and Plants, Proc. 3rd Intern. Biomin. Symp., Omori, M. & Watabe, N. (eds.). Kanagawa: Tokai University Press, pp. 37–47.Google Scholar
Sandberg, P. A. (1983) An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature 305: 19–22.CrossRefGoogle Scholar
Sandford, F. (2003) Physical and chemical analysis of the siliceous skeletons in six sponges of two groups (Demospongiae and Hexactinellida). Microsc. Res. Tech. 62: 336–355.CrossRefGoogle Scholar
Sasagawa, I. (2002) Mineralization patterns in Elasmobranch fish. Microsc. Res. Techn. 59: 396–402.CrossRefGoogle ScholarPubMed
Sasagawa, I., Ishiyama, M. (1999) The features of enameloid formation during odontogenesis in teleosts. In Dental Morphology, Mayhall, J. T. & Heikkinen, T. (eds.). Oulu, Finland: Oulu University Press, pp. 285–292.Google Scholar
Sasagawa, I., Ishiyama, M. (2005) Fine structural and cytochemical mapping of enamel organ during the enameloid formation stages in gars, Lepisosteus oculatus, Actinopterigii. Arch. Oral Biol. 50: 373–391.CrossRefGoogle Scholar
Sasaki, T. (1990) Cell biology of tooth enamel formation. In Monographs in Oral Science, Myers, H. M. (ed.). Basel: Karger, pp. 1–204.Google Scholar
Satchell, P. G., Aanderton, X., Ryu, O. H.et al. (2002) Conservation and variation in enamel protein distribution during vertebrate tooth development. J. Exp. Zool. (Mol. Dev. Evol.) 294: 91–106.CrossRefGoogle ScholarPubMed
Satchell, P. G., Shuler, C. F., Diekwisch, T. G. H. (2000) True enamel covering in teeth of the Australian lungfish Neoceratodus forsteri. Cell Tissue Res. 299: 27–37.CrossRefGoogle ScholarPubMed
Schindewolf, O. H. (1942) Zur Kentniss des Polycoelien und Plerophyllen. Berlin: Reichsamt f. Bodenforschung, 324pp.Google Scholar
Schleiden, M. (1838) Beiträge zur Phytogenesis. Leipzig: Archiv für Anatomie, Physiologie und wissenschaftliche Medicin, “Muller's Archiv”, pp. 137–176.Google Scholar
Schlossenberger, J. E. (1856) Erster Versuch einer Allgemeiner und Vergleichenden Thier-Chemie. Leipzig & Heidelberg: Winter, 364pp.Google Scholar
Schmahl, W. W., Griesshaber, E., Neuser, R.et al. (2004) The microstructure of the fibrous layer of Terebratulide brachiopod shell calcite. Eur. J. Mineral. 16: 693–697.CrossRefGoogle Scholar
Schmahl, W. W., Griesshaber, E., Merkel, C.et al. (2008) Hierarchical fibre composite structure and micromechanical properties of phosphatic and calcitic brachiopod shell biomaterials: an overview. Min. Mag. 72(2): 541–562.CrossRefGoogle Scholar
Schmid, A-M., Schultz, D. (1979) Wall morphogenesis in diatoms: deposition of silica by cytoplasmic vesicles. Protoplasma 100: 267–288.CrossRefGoogle Scholar
Schmidt, W. J. (1924) Die Bausteine des Tierkorpers in Polarisiertem Lichte. Bonn: Cohen Verlag, 528pp.Google Scholar
Schmidt, W. J., Keil, A. (1958) Die gesunden und die erkankten Zahngewebe des Ménschen und der Wirbeltiere im Polarisationsmikroskop. Munich: C. Hanser Verlag, 386pp.Google Scholar
Schoeninger, M. J., Deniro, M. J. (1982) Carbon isotope ratios of apatite from fossil bone cannot be used to reconstruct diets of animals. Nature 197: 577–578.CrossRefGoogle Scholar
Schröder, H. C., Natalio, F., Shukoor, I.et al. (2007) Apposition of silica lamellae during growth of spicules in the demosponge Suberites dommuncula: biological/biochemical studies and chemical/biomimetical confirmation. J. Struct. Biol. 159: 324–334.CrossRefGoogle ScholarPubMed
Schroder, J. H., Purser, B. H. (1986) Reef Diagenesis. Berlin: Springer-Verlag, 455pp.CrossRefGoogle Scholar
Schroeder, J. H., Dworki, K. E. J., Papike, J. J. (1969) Primary protodolomite in echinoid skeletons. Geol. Soc. Am. Bull. 80: 1613–1616.CrossRefGoogle Scholar
Schubert, J. K., Kidder, D., Erwin, D. H. (1997) Silica replaced fossils through the Phanerozoic. Geology 25: 1031–1034.2.3.CO;2>CrossRefGoogle Scholar
Schwab, D. W., Shore, R. E. (1971) Fine structure and composition of a siliceous sponge spicule. Biol. Bull. 140: 125–136.CrossRefGoogle Scholar
Schwann, T. (1839) Mikroskopische Untersuchungen über die Übereinstimmung in der Struktur und dem Wachstum der Thiere und Pflanzen. Berlin: Reimer Buchhandlung, 268pp.Google Scholar
Schweitzer, M. H., Wittmeyer, J. L., Homer, J. R. (2007) Soft tissue and cellular preservation in vertebrate skeletal elements from the Cretaceous to present. Proc. R. Soc. London B 274: 183–197.CrossRefGoogle ScholarPubMed
Segar, D. A., Collins, J. D., Riley, J. P. (1971) The distribution of the major and some minor elements in marine animals: Part II. Molluscs. J. Mar. Biol. Ass. U.K. 51: 131–136.CrossRefGoogle Scholar
Sharp, Z. D., Atudorei, V., Furrer, H. (2000) The effect of diagenesis on oxygen isotope ratios of biogenic phosphates. Am. J. Sci. 300: 222–237.CrossRefGoogle Scholar
Shimizu, K., Cha, J., Stucky, G. D.et al. (1998) Silicatein alpha: Cathepsin L-like protein in sponge biosilica. Proc. Nat. Acad. Sci. USA 95: 6234–6238.CrossRefGoogle ScholarPubMed
Siks, I., Hsiao, B. S., Chi, B.et al. (2008) Lateral packing of mineral crystals in bone collagen fibrils. Biophys. J. 95: 1985–1992.Google Scholar
Silyn-Roberts, H., Sharp, R. M. (1985) Preferred orientation of calcite and aragonite in the reptilian eggshells. Proc. R. Soc. London B 225: 445–455.CrossRefGoogle Scholar
Simkiss, K. (1965) The organic matrix of the oyster shell. Comp. Biochem. Physiol. 16: 427–435.CrossRefGoogle ScholarPubMed
Simkiss, K. (1994) Amorphous minerals in biology. Mém. Inst. Océanogr. Monaco 14(1): 49–54.Google Scholar
Sinclair, D. J., McCulloch, M. T. (2004) Corals record low mobile barium concentrations in the Burdekin River during the 1974 flood: evidence for limited Ba supply to rivers? Palaeogeogr. Palaeoclimatol. Palaeoecol. 214: 155–174.CrossRefGoogle Scholar
Smout, A. H. (1955) Reclassification of the Rotaliidae (foraminifera). J. Wash. Acad. Sci. 45: 201–210.Google Scholar
Sorauf, J. E. (1972) Skeletal microstructure and microarchitecture in Scleractinia (Coelenterata). Paleontology 15(1): 88–107.Google Scholar
Sorauf, J. E. (1999) Skeletal microstructure, geochemistry and organic remnants in Cretaceous scleractinian corals: Santonian Gosau Beds of Gosau, Austria. J. Paleont. 74: 1029–1041.CrossRefGoogle Scholar
Sorauf, J. E., Jell, J. S. (1977) Structure and incremental growth in the ahermatypic coral Desmophyllum cristagalli from the north Atlantic. Palaeontology 20(1): 1–19.Google Scholar
Sorauf, J. E, Podoff, N. (1977) Skeletal structure in deep water ahermatypic corals. 2nd Int. Symp. Corals and Fossil Corals Reefs, Paris, 1975, mém. B.R.G.M., Vol. 89, pp. 2–11.
Sorauf, J. E., Webb, G. E. (2003) The origin and significance of zigzag microstructure in Late Paleozoic Lophophyllidium (Anthozoa, Rugosa). J. Paleontology 77(1):16–30.CrossRefGoogle Scholar
Sorby, H. C. (1879) The structure and origin of limestones. Geol. Soc. London Proc. 35: 56–95.Google Scholar
Spaeth, C. (1971) Aragonitische und calcitische Primärstrukturen im Schalenbau eines belemniten aus der englischen Unterkreide. Paläont. Zeit. 45: 33–40.CrossRefGoogle Scholar
Spaeth, C. (1975) Zur Frage der Schwimmverhaltnisse bei Belemniten in Abhangigkeit vom Primärgefuge der Hartteile. Paläont. Zeit. 49: 321–331.CrossRefGoogle Scholar
Sparks, N. H. C., Motta, P. J., Shellis, R. P.et al. (1990) An analytical electron microscopy study of iron-rich teeth from the butterflyfish (Chaetodon ornatissimus). J. Exp. Biol. 151: 371–385.Google Scholar
Stanley, G. D., Swart, P. K. (1995) Evolution of the coral-zooxanthellae symbiosis during the Triassic: a geochemical approach. Paleobiology 21(2): 179–199.CrossRefGoogle Scholar
Stanley, S. M., Hardie, L. A. (1998) Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeog. Palaeoclim. Palaeoecol. 144: 3–19.CrossRefGoogle Scholar
Stearn, C. W., Pickett, J. W. (1994) The stromatoporoid animal revisited: building the skeleton. Lethaia 27: 1–10.CrossRefGoogle Scholar
Stein, C. L. (1982) Silica recrystallization in petrified wood. J. Sediment. Petrol. 52: 1277–1282.Google Scholar
Steinmann, G. (1882) Pharetronen Studien. N. Jb. Mineral. 2: 141–191.Google Scholar
Steyger, P. S., Wiederhold, M. L. (1995) Visualization of aragonitic otoconial matrices in the newt using transmission electron microscopy. Hear. Res. 92: 184–191.CrossRefGoogle ScholarPubMed
Steyger, P. S., Wiederhold, M. L., Batten, J. (1995) The morphogenic features of otoconia during larval development of Cynops pyrrhogaster, the Japanese red-bellied newt. Hear. Res. 84(1–2): 61–71.CrossRefGoogle ScholarPubMed
Stock, C. W. (2001) Stromatoporoidea, 1926–2000. J. Paleont. 75: 1079–1089.CrossRefGoogle Scholar
Stolarski, J., Roniewicz, E. (2001) Towards a new synthesis of evolutionary relationships and classification of Scleractinia. J. Paleontology 75(6): 1090–1108.CrossRefGoogle Scholar
Stolarski, J., Russo, A. (2001) Evolution of the post-Triassic pachythecaline corals. Bull. Biol. Soc. Washington 10: 242–256.Google Scholar
Stolarski, J., Meibom, A., Radoslaw, P.et al. (2007) A Cretaceous scleractinian coral with a calcitic skeleton. Science 318: 92–94.CrossRefGoogle ScholarPubMed
Stolkowki, J. (1951a) Essai sur le déterminisme des formes minéralogiques du calcaire chez les êtres vivants (calcaires coquilliers). Ann. Biol. 27(11/12): 781–784.Google Scholar
Stolkowski, J. (1951b) Essai sur le déterminisme des formes minéralogiques du calcaire chez les êtres vivants (calcaires coquilliers). Ann. Inst. Océanogr. XXVI: 1–113.Google Scholar
Stolley, E. (1919) Die systematik der belemniten. Jahresb. d. Niedersächs. Geol. Ver. 11: 1–59.Google Scholar
Stürmer, W. (1985) A small coleoid cephalopod with soft parts from the Lower Devonian discovered using radiography. Nature 318: 53–55.CrossRefGoogle Scholar
Su, X., Kamat, S., Heuer, A. H. (2000) The structure of sea urchin spines, large biogenic single crystals of calcite. J. Mater. Sci. 35: 5545–5551.CrossRefGoogle Scholar
Suga, S., Taki, Y., Ogawa, M. (1992) Iron in the enameloid of perciform fish. J. Dent. Res. 71(6): 1316–1325.CrossRefGoogle ScholarPubMed
Sullivan, C. H., Krueger, H. W. (1981) Carbon isotope analysis of separate chemical phases in modern fossil bone. Nature 292: 333–335.CrossRefGoogle ScholarPubMed
Sumper, M., Brunner, E. (2008) Silica biomineralisation. In: Diatoms – The model organism Thalassiosira pseudonana. ChemBioChem 9: 1187–1194.CrossRefGoogle Scholar
Sumper, M., Brunner, E., Lehmann, G. (2005) Biomineralization in diatoms: characterization of novel polyamines associated with silica. FEBS Letters 579: 3765–3769.CrossRefGoogle ScholarPubMed
Sundar, V. C., Yablon, A. D., Grazul, J. L.et al. (2003) Fibre-optical features of a glass sponge. Nature 424: 899–900.CrossRefGoogle ScholarPubMed
Swanson, R., Hoegh-Guldberg, O. (1998) Amino acid synthesis in the symbiotic sea anemone Aiptasia pulchella. Mar. Biol. 13: 83–93.CrossRefGoogle Scholar
Swart, P. K. (1983) Carbon and oxygen isotope fractionation in scleractinian corals: a review. Earth Sci. Rev. 19: 51–80.CrossRefGoogle Scholar
Tadashi, S., Mugiya, Y. (1996) Biochemical properties of water-soluble otolith proteins and the immune-biochemical detection of the proteins in serum and various tissues of the tilapia Oreochromis niloticus. Fish Sci. 62: 970–976.Google Scholar
Tambutté, E. (1996) Processus de calcification d'un scléractiniaire hermatypique, Stylophora pistillata (Esper, 1797). Croissance in situ à Mururoa. Thèse Doctorat, Universite de Nice – Sophia Antipolis Fac. Sc. 292pp.
Tanaka, S., Hatano, H., Itasaka, O. (1960a) Biochemical studies on pearl: IX. Amino acid composition of conchiolin in pearl and shell. Bull. Chem. Soc. Jap. 33(4): 543–545.CrossRefGoogle Scholar
Tanaka, S., Hatano, H., Suzue, G. (1960b) Biochemical studies on pearl: VII. Fractionation and terminal amino acids of conchiolin. J. Biochem. 47(1): 117–123.CrossRefGoogle Scholar
Taylor, J. D., Krennedy, W. J., Hall, A. (1969) The shell structure and mineralogy of the Bivalvia: I. Introduction. Nuculacae – Trigonacae. Bull. Br. Mus. Nat. Hist. Zool. 3: 1–125.Google Scholar
Taylor, J. D., Kennedy, W. J., Hall, A. (1973) The shell structure and mineralogy of the Bivalvia: II. Lucinacea – Clavagellacea. Conclusions. Bull. Br. Mus. Nat. Hist. Zool. 22: 253–294.Google Scholar
Teichert, C. (1967) Major features of cephalopod evolution. In: Essays in Paleontology and Stratigraphy, Teichert, C. & Yochelson, E. L. (eds.). R. C. Moore comm., University of Kansas Special Paper, Vol. 2, pp. 162–210.
Teng, H. H., Dove, P. M., Yoreo, J. J. (2000) Kinetics of calcite growth: surface processes and relationships to macroscopic rate laws. Geochim. Cosmochim. Acta 64: 2255–2266.CrossRefGoogle Scholar
Termier, H., Termier, G. (1973) Stromatopores, Sclérosponges et Pharétrones: les Ischyrospongia. Livre Jub. M. Soulignac, Ann. Mines Géol. Tunisie 26: 285–297.Google Scholar
Thamatrakoln, K., Hildebrand, M. (2005) Approaches for functional characterization of diatom silicic acid transporters. J. Nanosci. Nanotechnol. 5: 158–166.CrossRefGoogle ScholarPubMed
Thiele, H., Awad, A. (1969) Nucleation and oriented crystallization in ionotropic gels. Biomed. Mat. Res. 3: 431–441.CrossRefGoogle ScholarPubMed
Tomàs, J., Geffen, A. J. (2003) Morphometry and composition of aragonite and vaterite otoliths of deformed laboratory reared juvenile herring. J. Fish Biology 63(6): 1383–1401.CrossRefGoogle Scholar
Tomas, J., Geffen, A. J., Allena, I. S.et al. (2004) Analysis of the soluble matrix of vaterite otoliths of juvenile herring (Clupea harengus): do crystalline otoliths have less protein? Comp. Biochem. Physiol. A 139: 301–308.CrossRefGoogle ScholarPubMed
Toots, H., Voorhies, M. R. (1965) Strontium in fossil bones and the reconstruction of food chains. Science 149: 854–885.CrossRefGoogle ScholarPubMed
Towe, K. M. (1967) Echinoderm calcite: single crystal or polycrystalline aggregate. Science 57: 1048–1050.CrossRefGoogle Scholar
Towe, K. M. (1972) Invertebrate shell structure and the organic matrix concept. Biomineralization 4: 1–7.Google Scholar
Towe, K. M., Cifelli, R. (1967) Wall ultrastructure in the calcareous foraminifera: crystallographic aspects and model for calcification. J. Paleontology 41(3): 742–762.Google Scholar
Towe, K. M., Lowenstam, H. A. (1967) Ultrastructure and development of iron mineralization in the radular teeth of Cryptochiton stelleri (Mollusca). J. Ultrastr. Res. 17: 1–13.CrossRefGoogle Scholar
Traub, W., Arad, T., Weiner, S. (1989) Three-dimensional ordered distribution of crystals in turkey tendon collagen fibers. Proc. Natl. Acad. Sci. USA 86: 9822–9826.CrossRefGoogle ScholarPubMed
Travis, D. F. (1963) Structural features of mineralization from tissue to macromolecular levels of organization in the decapod Crustacea. Ann. New York Acad. Sci. 109: 177–245.CrossRefGoogle ScholarPubMed
Travis, D. F. (1965) The deposition of skeletal structures in the crustacean: V. The histomorphological and histochemical changes associated with the development and calcification of the branchial exoskeleton in the crayfish Orconectes virilis. Hagen Acta Histochem. 20: 193–233.Google Scholar
Travis, D. F. (1968) The structure and organization of, and the relationships between the inorganic crystals and the organic matrix of the prismatic region of Mytilus edulis. J. Ultrastr. Res. 23: 183–215.CrossRefGoogle Scholar
Travis, D. F., Gonsalves, M. (1969) Comparative ultrastructure and organization of the prismatic region of two bivalves and its possible relation to the chemical mechanism of boring. Am. Zool. 9: 635–661.CrossRefGoogle Scholar
Travis, D. F., François, C. J., Bonar, L.et al. (1967) Comparative studies of the organic matrices of invertebrate mineralized tissues. J. Ultrastr. Res. 18: 518–550.CrossRefGoogle ScholarPubMed
Trequer, P., Nelson, M., Bennekom, A. J.et al. (1995) The silica balance in the world ocean: a re-estimate. Science 268: 375–379.CrossRefGoogle Scholar
Tsipursky, S. J., Buseck, P. B. (1993) Structure of magnesian calcite from sea urchins. Am. Mineral. 78: 775–781Google Scholar
Tsuji, T., Sharp, D. G., Wilbur, K. M. (1958) Studies on shell formation: VII. The submicroscopic structure of the shell of the oyster Crassostrea virginica. J. Biophys. Biochem. Cytol. 4(3): 275–279.CrossRefGoogle Scholar
Turekian, K. K., Armstrong, R. L. (1960) Magnesium, strontium and barium concentrations and calcite-aragonite ratios of some recent molluscan shells. J. Mar. Res. 18: 133–151.Google Scholar
Tzeng, W. N., Severin, K. P., Wickstrom, H.et al. (1999) Strontium bands in relation to age marks in otoliths of european eel Anguilla anguilla. Zool. Studies 38(4): 452–457.Google Scholar
Ubaghs, G. (1967) Eocrinoidea. In Treatise on Invertebrate Paleontology, part S Echinodermata 1, Moore, R. C. & Teichert, C. (eds.). Lawrence, KS: Geological Society of America and The University of Kansas, pp. 445–495.Google Scholar
Urey, H. C., Lowenstam, H. A., Epstein, S.et al. (1951) Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark and the Southeastern United States. Geol. Soc. Am. Bull. 62: 399–416.CrossRefGoogle Scholar
Vacelet, J. (1964) Etude monographique de l'éponge calcaire Pharétronide de Méditerranée, Petrobiona massiliana Vacelet & Lévi. Les Pharétronides actuelles et fossiles. Thèse Fac. Sci. Univ. Aix-Marseille, 125pp.
Vacelet, J. (1979) Description et affinités d'une éponge sphinctozoaire actuelle. In Biologie des Spongiaires. Colloque Internat. C.N.R.S. 291, Lévi, C. & Boury-Esnault, N. (eds.), Paris, pp. 483–493.Google Scholar
Vacelet, J. (1983) Les éponges hypercalcifiées, reliques des organismes constructeurs de récifs du Paléozoique et du Mésozoique. Bull. Soc. Géol. Fr. 108(4): 547–557.Google Scholar
Vacelet, J., Lévi, C. (1958) Un cas de survivance, en Méditerranée, du groupe d'éponges fossiles des Pharétronides. C. R. Acad. Sci. Paris 246: 318–320.Google Scholar
Vandermeulen, J. H., Watabe, N. (1973) Studies on reef corals: I. Skeleton formation by newly settled planula larva of Pocillopora damicornis. Mar. Biol. 23: 47–57.CrossRefGoogle Scholar
Vaughan, T., Wells, J. (1943) Revision of the suborders, families, and genera of the Scleractinia. Geol. Soc. Am., Spec. Pap. 44: 1–363.Google Scholar
Veis, A. (2005) A window on biomineralization. Science 307: 1419–1420.CrossRefGoogle ScholarPubMed
Veron, J. E. N. (1986) Corals of Australia and the Indo-Pacific. North Ryde, NSW, Australia: Australian Institute of Marine Science, 644pp.Google Scholar
Vielzeuf, D., Garrabou, J., Baronnet, A.et al. (2008) Nano to macroscale biomineral architecture of red coral (Corallium rubrum). Am. Mineral. 93(11–12): 1799–1815.CrossRefGoogle Scholar
Vinogradov, A. P. (1953) The Elementary Chemical Composition of Marine Organisms. New Haven, CT: Sears Foundation for Marine Research, Memoir 2, 647pp.Google Scholar
Volkmer, D. (2007) Biologically inspired crystallization of calcium carbonate beneath monolayers: a critical overview. In Handbook of Biomineralization. Biomimetic and Bioinspired Chemistry, Behrens, P. & Baeuerlein, E. (eds.). Weinheim, Germany: Wiley VCH, pp. 65–87.Google Scholar
Volz, W. (1896) Die Korallen fauna der Trias: II. Die Korallen der Schichten von St. Casian, in Süd-Tirol. Palaeontographica 32: 1–124.Google Scholar
Koenigswald, W., Sander, P. M. (1989) Tooth Enamel Microstructure. Rotterdam: Balkema, 280pp.Google Scholar
Voronkov, M. G., Zelchan, G. I., Lukevitz, E. (1975) Biochemie, toxikologie und farmakologie der verbindungen des silicium. In Silizium und Leben, Kuhlmann, K. R. (ed.). Berlin: Akademie Verlag, 375pp.Google Scholar
Voss-Foucart, M. F. (1968) Essais de solubilisation et de fractionnement d'une conchioline (nacre murale de Nautilus pompilius, mollusque céphalopode). Comp. Biochem. Physiol. 26: 877–886.CrossRefGoogle Scholar
Voss-Foucart, M. F., Grégoire, C. (1971) Biochemical composition and submicroscopic structure of matrices of nacreous conchiolin in fossil cephalopods (nautiloids and ammonoids) Bull. Inst. R. Sci. Nat. Belg. 47(41): 1–42.Google Scholar
Voss Foucart, M. F., Jeuniaux, C., Grégoire, C. (1974) Résistance de la chitine de la nacre du nautile (mollusque céphalopode) à l'action de certains facteurs intervenant au cours de la fossilisation. Comp. Biochem. Physiol. B 48: 447–451.Google Scholar
Vrieling, E. G., Gieskes, W. W. C., Beelen, T. P. M.et al. (2000) Nanoscale uniformity of pore architectures in diatomaceous silica: a combined small angle and wide angle X-ray scattering study. J. Phycology 36(1):146–159.CrossRefGoogle Scholar
Waagen, W., Wetzel, J. (1886) Salt-range fossils: Part 6. Productus limestone fossils – Coelenterata. Palaeont. Indica 13(1): 835–924.Google Scholar
Wada, K. (1961) Crystal growth of molluscan shells. Bull. Natl. Pearl Res. Laboratory 36(7):703–828.Google Scholar
Wada, K. (1966a) Spiral growth of nacre. Nature 211(505): 1427.CrossRefGoogle Scholar
Wada, K. (1966b) Studies on the mineralization of the calcified tissue in molluscs: XII. Specific patterns of non-mineralized layer conchiolin in amino acid composition. Bull. Jap. Soc. Scientific Fish. 32(4): 304–311.CrossRefGoogle Scholar
Wada, K. (1972) Nucleation and growth of aragonite crystals in the nacre of some bivalve molluscs. Biomineralization 6: 141–159.Google Scholar
Wada, K., Fujinuki, T. (1976) Biomineralization in bivalve molluscs with emphasis on the chemical composition of the extrapallial fluid. In The Mechanisms of Mineralization in the Invertebrates and Plants, Watabe, N. & Wilbur, K. (eds.). Columbia, SC: University of South Carolina Press, pp. 175–190.Google Scholar
Wainwright, S. A. (1964) Studies of the mineral phase of coral skeleton. Exp. Cell Res. 34: 213–230.CrossRefGoogle Scholar
Walsh, A. (1955) The application of atomic absorption spectra to chemical analysis. Spectrochim. Acta 7: 108–117.CrossRefGoogle Scholar
Walther, J. (1888) Die Korallenriffe der Sinaihalbinsel. Abhand. d. Math.-Phys. Cl. der König. Sächs. Ges. d. Wiss. 14: 438–505.Google Scholar
Walton, D., Cusack, M., Curry, G. B. (1993) Implications of the amino acid composition of recent New Zealand Brachiopods. Palaeontology 36(4): 883–896.Google Scholar
Wang, H. C. (1950) A revision of the Zoantharia Rugosa in the light of their minute skeletal structures. Phil. Trans. R. Soc. 234(B 611): 175–246.CrossRefGoogle ScholarPubMed
Waskowiak, R. (1962) Geochemische Untersuchungen an rezenter Molluskenschalen mariner Herkunft. Freiberger Forschungshefte C136: 1–155.Google Scholar
Watabe, N. (1965) Studies on shell formation: XI. Crystal-matrix relationships in the inner layers of mollusk shells. J. Ultrastr. Res. 12: 351–370.CrossRefGoogle ScholarPubMed
Watabe, N. (1990) Calcium phosphate structures in invertebrates and protozoans. In Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends, Carter, J. G. (ed.). New York: Van Nostrand Reinhold, pp. 35–44.Google Scholar
Watabe, N., Wilbur, K. M. (1960) Influence of the organic matrix on crystal type in molluscs. Nature 184: 334.CrossRefGoogle Scholar
Watanabe, T., Juillet-Leclerc, A., Cuif, J. P.et al. (2007) Recent advances in coral biomineralization with implications for paleo-climatology: a brief overview. In Elsevier Oceanography Series, Global Climate Change and Response of Carbon Cycle in the Equatorial Pacific and Indian Oceans and Adjacent Landmasses, Kawahata, H. & Awaya, Y. (eds.) 73: 239–254.
Weaver, J. C., Morse, D. E. (2003) Molecular biology of demosponge axial filaments and their role in biosilicification. Microsc. Res. Techn. 62: 356–367.CrossRefGoogle Scholar
Weaver, J. C., Pietrasanta, L. I., Hedin, N.et al. (2003) Nanostructural features of demosponge biosilica. J. Struct. Biol. 144: 271–281.CrossRefGoogle ScholarPubMed
Weaver, J. C., Aizenberg, J., Fantner, G. E.et al. (2007) Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum. J. Struct. Biol. 158: 93–106.CrossRefGoogle ScholarPubMed
Webb, G. E., Sorauf, J. E. (2002) Zigzag microstructure in rugose corals: a possible indicator of relative seawater Mg/Ca ratios. Geology 30(5): 415–418.2.0.CO;2>CrossRefGoogle Scholar
Weber, J. N., Woodhead, P. M. (1972) Temperature dependence of oxygen-18 concentration in reef coral carbonates. J. Geophys. Res. 77(3): 463–473.CrossRefGoogle Scholar
Wefer, G., Berger, W. H. (1991) Isotope paleontology: growth and composition of extant calcareous species. Mar. Geol. 100: 207–248.CrossRefGoogle Scholar
Wehmiller, J. F., Hare, P. E. (1971) Racemization of amino acids in marine sediments. Science 173: 907–911.CrossRefGoogle ScholarPubMed
Weiner, S. (1979) Aspartic acid-rich proteins: major components of the soluble organic matrix of mollusk shells. Calc. Tissue Int. 29: 163–167.CrossRefGoogle ScholarPubMed
Weiner, S. (1983) Mollusk shell formation: isolation of two organic matrix proteins associated with calcite deposition in the bivalve Mytilus californianus. Biochemistry 22: 4139–4145.CrossRefGoogle Scholar
Weiner, S. (1985) Organic matrix-like macromolecules associated with the mineral phase of sea urchin skeletal plates and teeth. J. Exp. Zool. 234: 7–15.CrossRefGoogle Scholar
Weiner, S., Hood, L. (1975) Soluble protein of the organic matrix of mollusk shells: a potential template for shell formation. Science 190: 987–989.CrossRefGoogle ScholarPubMed
Weiner, S., Traub, W. (1984) Macromolecules in mollusc shells and their functions in biomineralization. Phil. Trans. R. Soc. Lond. B 304: 425–434.CrossRefGoogle Scholar
Weiner, S., Traub, W. (1986) Organization of hydroxyapatite crystals within collagen fibrils. FEBS Lett. 206(2): 262–266.CrossRefGoogle ScholarPubMed
Weiner, S., Traub, W. (1991) Organization of crystals in bone. In Mechanisms and Phylogeny of Mineralization in Biological Systems, Suga, S. & Nakahara, H. (eds.). Tokyo: Springer Verlag, pp. 247–253.CrossRefGoogle Scholar
Weiner, S., Lowenstam, H. A., Hood, L. (1976) Characterization of 80 million year old mollusk shell proteins. Proc. Nat. Acad. Sci. USA 73 (8): 25 341–25 345.CrossRefGoogle ScholarPubMed
Weiner, S., Lowenstam, H. A., Hood, L. (1977) Discrete molecular weight components of the organic matrices of mollusc shells. J. Exp. Mar. Biol. Ecol. 30: 45–51.CrossRefGoogle Scholar
Weiner, S., Gotliv, B. A., Levi-Kalisman, Y.et al. (2003) Mollusk shell nacre: an overview of the structure and functions of the organic matrix in shell formation. In Biomineralization (BIOM2001): Formation, Diversity, Evolution and Application, Proc. 8th Int. Symp. on Biomineralization, Kobayashi, I. & Ozawa, H. (eds.). Kanagawa: Tokai University Press, pp. 8–13.Google Scholar
Weiss, I. M., Renner, C., Strigl, M. G.et al. (2002) A simple and reliable method for the determination and localization of chitin in abalone nacre. Chem. Mater. 14: 3252–3259.CrossRefGoogle Scholar
Weissenfels, N., Landschoff, H. W. (1977) Bau und Funktion des Süss-wasserschwamm Ephydratia fluviatilis L. (Porifera): IV. Die Entwicklung der monaxialen SiO2-Nadeln in Sandwich-Kulturen. Zool. Jahrb. Anat. 98: 355–371.Google Scholar
Wells, J. W. (1956) Scleractinia. In Treatise on Invertebrate Paleontology. Part F (Coelenterata), Moore, R. C. (ed.). Lawrence, KS: The University of Kansas Press, pp. F328–F344.Google Scholar
Wendt, J. (1977) Aragonite in Permian reefs. Nature 267: 335–337.CrossRefGoogle Scholar
Wendt, J. (1990) The first aragonitic rugose coral. J. Paleontology 64(3): 335–340.CrossRefGoogle Scholar
Wenzl, S., Hett, R., Richthammer, P.et al. (2008) Silacidins: highly acidic phosphopeptides from diatom shells assist in silica precipitation in vitro. Angew. Chem. Int. Ed. 47: 1729–1732.CrossRefGoogle ScholarPubMed
West, C. D. (1937) Note on the crystallography of the echinoderm skeleton. J. Paleont. 11: 458–459.Google Scholar
Wheeler, A. P., Sikes, C. S. (1984) Regulation of carbonate calcification by organic matrix. Am. Zool. 24: 933–944.CrossRefGoogle Scholar
Wheeler, A. P., George, J. W., Evans, C. A. (1981) Control of calcium carbonate nucleation and crystal growth by soluble matrix of oyster shell. Science 212: 1397–1398.CrossRefGoogle ScholarPubMed
Wheeler, A. P., Rusenko, K. W., Sikes, C. S. (1988) Organic matrix from carbonate biomineral as a regulator of mineralization. In Chemical Aspects of Mineralization, Sikes, C. S. & Wheeler, A. P. (eds.). Mobile, AL: University of South Alabama, pp. 9–13.Google Scholar
White, H. H. (1842) On fossil Xanthidia. Microsc. J. 2: 35–40.Google Scholar
Whitehouse, F. W. (1941) The Cambrian faunas of north-eastern Australia: Part 4. Early Cambrian echinoderms similar to the larval stages of recent forms. Mem. Queensl. Mus. 12: 1–28.Google Scholar
Whittington, H. B., Evitt, W. R. (1954) Silicified middle Ordovician trilobites. Geol. Soc. America Mem. 59: 137pp., 33pls.Google Scholar
Wiens, M., Mangoni, A., D'Esposito, M.et al. (2003) The molecular basis for the evolution of the metazoan bodyplan: extracellular matrix-mediated morphogenesis in marine demosponges. J. Mol. Evol. 57: 1–16.CrossRefGoogle ScholarPubMed
Williams, A., Wright, A. D. (1970) Valve structure of the Craniacea and other calcareous inarticulate brachiopods. The Paleontological Association Press, Special papers in Paleontology 7: 1–51.Google Scholar
Williams, A., Mackay, S., Cusack, M. (1992) Structure of the organo-phosphatic shell of the brachiopod Discina. Phil. Trans. R. Soc. Lond. B 337: 83–104.CrossRefGoogle Scholar
Williams, A., Cusack, M., Mackay, S. (1994) Collagenous chitinophosphatic shells of the brachiopod Lingula. Phil. Trans. Biol. Sci. 346(1316): 223–266.CrossRefGoogle Scholar
Williams, A., Carlson, S. J., Brunton, C. H. C.et al. (1996) A supra-ordinal classification of the brachiopods. Phil. Trans. R. Soc. Lond. B 351: 1171–1193.CrossRefGoogle Scholar
Williams, A., Cusack, M., Brown, K. (1999) Growth of protein-doped rhombohedra in the calcitic shell of craniid brachiopods. Proc. R. Soc. Lond. B 266: 1601–1607.CrossRefGoogle Scholar
Williams, A., Lüter, C., Cusack, M. (2001) The nature of siliceous mosaics forming the first shell of the brachiopod Discinisca. J. Struct. Biol. 134: 25–34.CrossRefGoogle ScholarPubMed
Williamson, W. C. (1860) On some histological features in the shells of the crustacea. Quart. J. Microsc. Sci. 8: 35–57.Google Scholar
Wilson, J. L. (1975) Carbonate Facies in Geologic History. Berlin: Springer, 471pp.CrossRefGoogle Scholar
Wilt, F. H., Ettensohn, C. A. (2007) The morphogenesis and biomineralization of the sea urchin larval skeleton. In Handbook of Biomineralization: Biological Aspects and Structure Formation, Bauerlein, E. (ed.). Weinheim, Germany: Wiley VCH, pp. 183–210.Google Scholar
Wilt, F. H., Killian, C. E., Livinston, B. T. (2003) Development of calcareous skeletal elements in invertebrates. Differentiation 71: 237–250.CrossRefGoogle ScholarPubMed
Wise, S. W. (1970) Microarchitecture and mode of formation of nacre (mother-of-pearl) in Pelecypods, Gastropods and Cephalopods. Eclogae Geol. Helv. 63(3): 775–797.Google Scholar
Woelkerling, W. J. (1990) An introduction. In Biology of the Red Algae, Cole, K. M. & Sheath, R. G. (eds.). Cambridge: Cambridge University Press, pp. 1–6.Google Scholar
Wopenka, B., Pasteris, J. D. (2005) A mineralogical perspective on the apatite in bone. Mater. Sci. Engin.C 25: 131–143.CrossRefGoogle Scholar
Wörheide, G. (1997) The reef cave dwelling ultraconservative coralline demosponge Astrosclera willeyana LISTER 1900 from the Indo-Pacific: Micromorphology, ultrastructure, biocalcification, isotope record, taxonomy, biogeography, phylogeny. Doctoral thesis, Fakultät für Geowissenschaften, Georg-August Universität Göttingen, p. 91.
Worms, D., Weiner, S. (1986) Mollusk shell organic matrix: Fourier transform infrared study of the acidic macromolecules. J. Exp. Zool. 237: 11–20.CrossRefGoogle Scholar
Wright, L., Schwarcz, H. (1996) Infrared and isotopic evidence for diagenesis of bone apatite at Dos Pilas, Guatemala: palaeodietary implications. J. Archaeol. Sci. 23(6): 933–944.CrossRefGoogle Scholar
Wright, P. J., Woodroffe, D. A., Gibb, F. M.et al. (2002) Verification of first annulus formation in the illicia and otoliths of white anglerfish, Lophius piscatorius using otolith microstructure. J. Mar. Sci. 59(3): 587–593.Google Scholar
Wyckoff, R. W. G. (1972) The Biochemistry of Animal Fossils. Bristol, UK: Wright Scientechnica Publications, 145pp.Google Scholar
Xu, M., Gratson, G. M., Duoss, E. B.et al. (2006) Biomimetic silicification of 3D polyamine-rich scaffolds assembled by direct ink writing. Soft Mater. 2: 205–209.CrossRefGoogle Scholar
Yatsu, N. (1902) On the development of Lingula anatina. J. Coll. Sci. Tokyo 17: 1–112.Google Scholar
Yonge, C. M. (1931) Study on the physiology of corals: Great Barrier Reef Expedition 1928–29. Scient. Rep. 11: Part 1, pp. 13–65; Part 2, pp. 83–91.Google Scholar
Young, J. R., Henriksen, K. (2003) Biomineralization within vesicles: the calcite of coccoliths. In Mineralogy & Geochemistry: Biomineralization, Dove, P. M., Yoreo, J. J. & Weiner, S. (eds.). Washington DC: Mineralogical Society of America, Vol. 54, pp. 189–215.Google Scholar
Young, S. D. (1971) Organic material from scleractinian coral skeletons: 1. Variation in composition between several species. Comp. Biochem. Physiol. B 40: 113–120.Google Scholar
Young, S. D., O'Connor, J. D., Muscatine, L. (1971) Organic material from scleractinian coral skeletons: II. Incorporation of 14C into protein, chitin and lipid. Comp. Biochem. Physiol. B 40: 945–958.CrossRefGoogle Scholar
Zelenitsky, D. K., Modesto, S. P. (2003) New information on the eggshell of ratites (Aves) and its phylogenetic implications. Can. J. Zool. 81(6): 962–970.CrossRefGoogle Scholar
Zhuravlev, A. Y. (1989) Porifean aspects of archaeocyathan skeletal function. Mem. Ass. Austral. Palaeontol. 8: 387–399.Google Scholar
Ziegler, A., Miller, B. (1997) Ultrastructure of CaCO3 deposits of terrestrial isopods (Crustacea, Oniscidea). Zoomorphology 117:181–187.CrossRefGoogle Scholar
Zittel, K. A. (1878) Studien über fossile Spongien: III. Monactinellidae, Tetractinellidae und Calcispongiae. Abhandl. d. Math-Phys. Cl. d. Kön.-Bayer. Akad. der Wissensch. XIII(2): 1–48.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×