Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-20T01:32:43.141Z Has data issue: false hasContentIssue false

1 - The concept of microstructural sequence exemplified by mollusc shells and coral skeletons

Similarity of growth mode and skeletogenesis at the micrometer scale

Published online by Cambridge University Press:  10 January 2011

Jean-Pierre Cuif
Affiliation:
Université de Paris-Sud II, Orsay
Yannicke Dauphin
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
James E. Sorauf
Affiliation:
State University of New York, Binghamton
Get access

Summary

At the time that Heinz Lowenstam began an investigation bearing on the different minerals that living organisms can produce, only a dozen or so biogenic minerals were known. Thirty years later, their number surpasses 60. Well before the appearance of the synthesis uniting the essential data that had been established during the 1980s (Lowenstam and Weiner 1989), Lowenstam had proposed (1981) a fundamental distinction concerning the mode of formation of biogenic minerals, and more particularly the precision of the controls on their deposition exerted by the producing organism. Lowenstam proposed then to distinguish the “matrix-mediated minerals,” characterized by formation very precisely controlled by the action of an organic component specifically produced, and those that, although equally produced by a living organism, are developed in a more autonomous way; they are only “biologically induced.” In these last, mineral elements can be developed according to methods and arrangements quite close to those that can be observed in purely chemical precipitated materials.

Among the calcified structures belonging to this category were placed the calcareous skeletons produced by corals. This opposition between molluscan shells, examples of “matrix-mediated minerals,” and coral skeletal carbonate has remained generally accepted and very recently has still been formulated in reference journals (Veis 2005). This is however, truly surprising. The precision of the biological control on the skeleton by the coral polyps had been well established at the end of the nineteenth century by M. Ogilvie (1895, 1896), who carried out a pioneering study of the specific arrangements of the fibrous aragonite units there.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×