Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-25T06:44:06.745Z Has data issue: false hasContentIssue false

30 - Tooth development and regeneration

from Part V - Animal models and clinical applications

Published online by Cambridge University Press:  05 February 2015

Weibo Zhang
Affiliation:
Tufts University
Pamela C. Yelick
Affiliation:
Tufts University
Peter X. Ma
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Tooth development

Each tooth, even though it looks simple, is an organ with complex structure and consists of multiple types of tissues (Ten Cate, 1998). Dentin is the main component, which is a hard and avascular tissue with a small hollow tubular inside. Enamel is the hardest tissue of the whole living body, protecting the dentin underneath by covering the crown dentin. Cementum, including cellular and acellular cementum, is present on the surface of root dentin. Other than those three types of hard tissue, a tooth also contains dental pulp, the highly vascularized soft tissue that acts as nutrition source and biosensor, as well as periodontal ligament (PDL), the tissue with well-organized collagen bundles that anchors the tooth to the surrounding alveolar bone. Among those tissues, only enamel is from the epithelium. The rest of the dental tissues are all from the neural crest-cell-derived mesenchyme (Nanci, 2007). The sequential and reciprocal interactions between the oral epithelium and the cranial neural crest-derived mesenchyme are essential to control tooth formation, including their size, number, and shape (Thesleff and Nieminen, 1996).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, S., Yamaguchi, S., Watanabe, A., Hamada, K. and Amagasa, T. 2008. Hard tissue regeneration capacity of apical pulp derived cells (APDCs) from human tooth with immature apex. Biochem. Biophys. Res. Commun., 371, 90–3.CrossRefGoogle ScholarPubMed
About, I. 2011. Dentin regeneration in vitro: the pivotal role of supportive cells. Adv. Dent. Res., 23, 320–4.CrossRefGoogle ScholarPubMed
Abukawa, H., Zhang, W., Young, C. S. et al. 2009. Reconstructing mandibular defects using autologous tissue-engineered tooth and bone constructs. J. Oral. Maxillofac. Surg., 67, 335–47.CrossRefGoogle ScholarPubMed
Andreeva, E. R., Pugach, I. M., Gordon, D. and Orekhov, A. N. 1998. Continuous subendothelial network formed by pericyte-like cells in human vascular bed. Tissue Cell, 30, 127–35.CrossRefGoogle ScholarPubMed
Arnold, W. H., Naumova, K. I., Naumova, E. A. and Gaengler, P. 2008. Comparative qualitative and quantitative assessment of biomineralization of tooth development in man and zebrafish (Danio rerio). Anat. Rec. (Hoboken), 291, 571–6.CrossRefGoogle Scholar
Atieh, M. A., Payne, A. G., Duncan, W. J., De Silva, R. K. and Cullinan, M. P. 2010. Immediate placement or immediate restoration/loading of single implants for molar tooth replacement: a systematic review and meta-analysis. Int. J. Oral Maxillofac. Implants, 25, 401–15.Google ScholarPubMed
Bartlett, J. D., Dwyer, S. E., Beniash, E., Skobe, Z. and Payne Ferreira, T. L. 2005. Fluorosis: a new model and new insights. J. Dent. Res., 84, 832–6.CrossRefGoogle ScholarPubMed
Bjorndal, L. and Mjör, I. A. 2001. Pulp–dentin biology in restorative dentistry. Part 4: dental caries – characteristics of lesions and pulpal reactions. Quintessence Int., 32, 717–36.Google ScholarPubMed
Branemark, P. I., Hansson, B. O., Adell, R. et al. 1977. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand. J. Plast. Reconstr. Surg. Suppl., 16, 1–132.Google ScholarPubMed
Bregni, M., Ciceri, F. and Peccatori, J. 2011. Allogeneic stem cell transplantation for metastatic renal cell cancer (RCC). J. Cancer, 2, 347–9.CrossRefGoogle Scholar
Brennan, D. S., Spencer, A. J. and Roberts-Thomson, K. F. 2008. Tooth loss, chewing ability and quality of life. Qual. Life Res., 17, 227–35.CrossRefGoogle ScholarPubMed
Cai, J., Cho, S. W., Ishiyama, M. et al. 2009. Chick tooth induction revisited. J. Exp. Zool. B. Molec. Dev. Evol., 312, 465–72.CrossRefGoogle Scholar
Cassidy, N., Fahey, M., Prime, S. S. and Smith, A. J. 1997. Comparative analysis of transforming growth factor-β isoforms 1–3 in human and rabbit dentine matrices. Arch. Oral Biol., 42, 219–23.CrossRefGoogle ScholarPubMed
Chai, Y., Bringas, P., Shuler, C. et al. 1998. A mouse mandibular culture model permits the study of neural crest cell migration and tooth development. Int. J. Dev. Biol., 42, 87–94.Google Scholar
Chamberlain, J., Yamagami, T., Colletti, E. et al. 2007. Efficient generation of human hepatocytes by the intrahepatic delivery of clonal human mesenchymal stem cells in fetal sheep. Hepatology, 46, 1935–45.CrossRefGoogle ScholarPubMed
Cho, S. W., Lee, H. A., Cai, J. et al. 2007. The primary enamel knot determines the position of the first buccal cusp in developing mice molars. Differentiation, 75, 441–51.CrossRefGoogle ScholarPubMed
Cordeiro, M. M., Dong, Z., Kaneko, T. et al. 2008. Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J. Endod., 34, 962–9.CrossRefGoogle ScholarPubMed
Demirer, T., Barkholt, L., Blaise, D. et al. 2008. Transplantation of allogeneic hematopoietic stem cells: an emerging treatment modality for solid tumors. Nat. Clin. Pract. Oncol., 5, 256–67.CrossRefGoogle ScholarPubMed
Devlin, H. and Sloan, P. 2002. Early bone healing events in the human extraction socket. Int. J. Oral Maxillofac. Surg., 31, 641–5.CrossRefGoogle ScholarPubMed
Driessens, F. C. M. and Wöltgens, J. H. M. 1986. Tooth Development and Caries. Boca Raton, FL: CRC Press.Google Scholar
Duailibi, M. T., Duailibi, S. E., Young, C. S. et al. 2004. Bioengineered teeth from cultured rat tooth bud cells. J. Dent. Res., 83, 523–8.CrossRefGoogle ScholarPubMed
Duailibi, S. E., Duailibi, M. T., Zhang, W. et al. 2008. Bioengineered dental tissues grown in the rat jaw. J. Dent. Res., 87, 745–50.CrossRefGoogle ScholarPubMed
Feng, J., Mantesso, A., De Bari, C., Nishiyama, A. and Sharpe, P. T. 2011. Dual origin of mesenchymal stem cells contributing to organ growth and repair. Proc. Nat. Acad. Sci. USA, 108, 6503–8.CrossRefGoogle Scholar
Glass, R. L. and Zander, H. A. 1949. Pulp healing. J. Dent. Res., 28(2), 97–110.CrossRefGoogle ScholarPubMed
Goldberg, M., Farges, J. C., Lacerda-Pinheiro, S. et al. 2008. Inflammatory and immunological aspects of dental pulp repair. Pharmacol. Res., 58, 137–47.CrossRefGoogle ScholarPubMed
Goldman, H. M. 1950. The development of physiologic gingival contours by gingivoplasty. Oral Surg. Oral Med. Oral Pathol., 3, 879–88.CrossRefGoogle ScholarPubMed
Gotlieb, E. L., Murray, P. E., Namerow, K. N., Kuttler, S. and Garcia-Godoy, F. 2008. An ultrastructural investigation of tissue-engineered pulp constructs implonted within endoscopically treated teeth. J. Am. Dent. Assoc., 139(4), 457–65.CrossRefGoogle Scholar
Gronthos, S., Mankani, M., Brahim, J., Robey, P. G. and Shi, S. 2000. Post-natal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Nat. Acad. Sci. USA, 97, 13625–30.CrossRefGoogle Scholar
Harris, M. P., Hasso, S. M., Ferguson, M. W. and Fallon, J. F. 2006. The development of archosaurian first-generation teeth in a chicken mutant. Curr. Biol., 16, 371–7.CrossRefGoogle Scholar
Haurani, F. I., Repplinger, E. and Tocantins, L. M. 1960. Attempts at tranplantation of human bone marrow in patients with acute leukemia and other marrow depletion disorders. Am. J. Med., 28, 794–806.CrossRefGoogle ScholarPubMed
Heile, A. and Brinker, T. 2011. Clinical translation of stem cell therapy in traumatic brain injury: the potential of encapsulated mesenchymal cell biodelivery of glucagon-like peptide-1. Dialogues Clin. Neurosci., 13, 279–86.Google ScholarPubMed
Heyeraas, K. J., Sveen, O. B. and Mjor, I. A. 2001. Pulp–dentin biology in restorative dentistry. Part 3: pulpal inflammation and its sequelae. Quintessence Int., 32, 611–25.Google ScholarPubMed
Hirata, T. M., Ishkitiev, N., Yaegaki, K. et al. 2010. Expression of multiple stem cell markers in dental pulp cells cultured in serum-free media. J. Endod., 36, 1139–44.CrossRefGoogle ScholarPubMed
Honda, M. J., Fong, H., Iwatsuki, S., Sumita, Y. and Sarikaya, M. 2008. Tooth-forming potential in embryonic and post-natal tooth bud cells. Med. Molec. Morphol., 41, 183–92.CrossRefGoogle Scholar
Honda, M. J., Tsuchiya, S., Sumita, Y., Sagara, H. and Ueda, M. 2007. The sequential seeding of epithelial and mesenchymal cells for tissue-engineered tooth regeneration. Biomaterials, 28, 680–9.CrossRefGoogle ScholarPubMed
Hu, B., Nadiri, A., Kuchler-Bopp, S. et al. 2006a. Tissue engineering of tooth crown, root, and periodontium. Tissue Eng., 12, 2069–75.CrossRefGoogle ScholarPubMed
Hu, B., Unda, F., Bopp-Kuchler, S. et al. 2006b. Bone marrow cells can give rise to ameloblast-like cells. J. Dent. Res., 85, 416–21.CrossRefGoogle ScholarPubMed
Huang, G. T., Gronthos, S. and Shi, S. 2009. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J. Dent. Res., 88, 792–806.CrossRefGoogle ScholarPubMed
Huang, G. T., Yamaza, T., Shea, L. D. et al. 2010. Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng. Part A, 16, 605–15.CrossRefGoogle Scholar
Huysseune, A. 2006. Formation of a successional dental lamina in the zebrafish (Danio rerio): support for a local control of replacement tooth initiation. Int. J. Dev. Biol., 50, 637–43.CrossRefGoogle ScholarPubMed
Huysseune, A. and Sire, J. Y. 2004. The role of epithelial remodelling in tooth eruption in larval zebrafish. Cell Tissue Res., 315, 85–95.CrossRefGoogle ScholarPubMed
Huysseune, A., Van Der Heyden, C. and Sire, J. Y. 1998. Early development of the zebrafish (Danio rerio) pharyngeal dentition (Teleostei, Cyprinidae). Anat. Embryol. (Berlin), 198, 289–305.CrossRefGoogle Scholar
Hwang, D. H., Jeong, S. R. and Kim, B. G. 2011. Gene transfer mediated by stem cell grafts to treat CNS injury. Expert Opin. Biol. Ther., 11, 1599–610.CrossRefGoogle ScholarPubMed
Ikeda, E., Morita, R., Nakao, K. et al. 2009. Fully functional bioengineered tooth replacement as an organ replacement therapy. Proc. Nat. Acad. Sci. USA, 106, 13475–80.CrossRefGoogle ScholarPubMed
Inanc, B., Elcin, A. E. and Elcin, Y. M. 2009. In vitro differentiation and attachment of human embryonic stem cells on periodontal tooth root surfaces. Tissue Eng. Part A, 15, 3427–35.CrossRefGoogle ScholarPubMed
Inoue, T., Osada, H., Shiigai, T., Fujiseki, M. and Shimono, M. 1993. An experimental study of osteogenesis by autografted dental pulp, periodontal ligament, and bone marrow in vivo. Bull Tokyo Dent. Coll., 34, 183–90.Google ScholarPubMed
Jernvall, J. and Jung, H. S. 2000. Genotype, phenotype, and developmental biology of molar tooth characters. Am. J. Phys. Anthropol., Suppl., 31, 171–90.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Just, U. and Cross, M. 2008. Stem cells, tissue regeneration and repair. Cells Tissues Organs, 188, 5.CrossRefGoogle ScholarPubMed
Karaoz, E., Dogan, B. N., Aksoy, A. et al. 2010. Isolation and in vitro characterisation of dental pulp stem cells from natal teeth. Histochem. Cell Biol., 133, 95–112.CrossRefGoogle ScholarPubMed
Karp, J. M. and Leng Teo, G. S. 2009. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell, 4, 206–16.CrossRefGoogle ScholarPubMed
Kawano, S., Saito, M., Handa, K. et al. 2004. Characterization of dental epithelial progenitor cells derived from cervical-loop epithelium in a rat lower incisor. J. Dent Res., 83, 129–33.CrossRefGoogle Scholar
Khaled, E. G., Saleh, M., Hindocha, S., Griffin, M. and Khan, W. S. 2011. Tissue engineering for bone production – stem cells, gene therapy and scaffolds. Open Orthop. J., 5(Suppl. 2), 289–95.CrossRefGoogle ScholarPubMed
Khosla, S., Westendorf, J. J. and Modder, U. I. 2010. Insights from normal bone remodeling and stem cell-based therapies for bone repair. Stem Cells, 28, 2124–8.CrossRefGoogle ScholarPubMed
Kim, J. Y., Xin, X., Moioli, E. K. et al. 2010a. Regeneration of dental-pulp-like tissue by chemotaxis-induced cell homing. Tissue Eng. Part A, 16, 3023–31.CrossRefGoogle ScholarPubMed
Kim, K., Lee, C. H., Kim, B. K. and Mao, J. J. 2010b. Anatomically shaped tooth and periodontal regeneration by cell homing. J. Dent Res., 89, 842–7.CrossRefGoogle ScholarPubMed
Kronfeld, R. J. 1935. Condition of the bone tissue of the alveolar process below the periodontal pockets. J. Periodontol., 6, 22–9.CrossRefGoogle Scholar
Langer, R. and Vacanti, J. P. 1993. Tissue engineering. Science, 260, 920–6.CrossRefGoogle ScholarPubMed
Laughlin, M. J., Barker, J., Bambach, B. et al. 2001. Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors. N. Engl. J. Med., 344, 1815–22.CrossRefGoogle ScholarPubMed
Lee, J. S., Hong, J. M., Moon, G. J. et al. 2010. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells, 28, 1099–106.CrossRefGoogle ScholarPubMed
Linden, F. P. G. M. V. D. and Duterloo, H. S. 1976. Development of the Human Dentition: An Atlas, Hagerstown, MD: Harper and Row.Google Scholar
Matoba, S., Tatsumi, T., Murohara, T. et al. 2008. Long-term clinical outcome after intramuscular implantation of bone marrow mononuclear cells (Therapeutic Angiogenesis by Cell Transplantation [TACT] trial) in patients with chronic limb ischemia. Am. Heart J., 156, 1010–18.CrossRefGoogle ScholarPubMed
Melfi, R. C. and Permar, D. 1988. Permar’s Oral Embryology and Microscopic Anatomy: A Textbook for Students in Dental Hygiene. Philadelphia, PA: Lea and Febiger.Google Scholar
Mitsiadis, T. and Luder, H. 2011. Genetic basis for tooth malformations: from mice to men and back again. Clin Genet., 80(4), 319–29.CrossRefGoogle Scholar
Miura, M., Gronthos, S., Zhao, M. 2003. SHED: stem cells from human exfoliated deciduous teeth. Proc. Nat. Acad. Sci. USA, 100, 5807–12.CrossRefGoogle ScholarPubMed
Mjör, I. A. and Ferrari, M. 2002. Pulp–dentin biology in restorative dentistry. Part 6: reactions to restorative materials, tooth-restoration interfaces, and adhesive techniques. Quintessence Int., 33, 35–63.Google ScholarPubMed
Mooney, D. J., Powell, C., Piana, J. and Rutherford, B. 1996. Engineering dental pulp-like tissue in vitro. Biotechnol. Prog., 12, 865–8.CrossRefGoogle ScholarPubMed
Morsczeck, C., Moehl, C., Gotz, W. et al. 2005. In vitro differentiation of human dental follicle cells with dexamethasone and insulin. Cell Biol. Int., 29, 567–75.CrossRefGoogle ScholarPubMed
Mulligan, T. W. and Niemiec, B. A. 2001. Endodontic treatment of vital pulp tissue. Clin. Tech. Small Anim. Pract., 16, 159–67.CrossRefGoogle ScholarPubMed
Nakao, K., Morita, R., Saji, Y. 2007. The development of a bioengineered organ germ method. Nature Methods, 4, 227–30.CrossRefGoogle ScholarPubMed
Nanci, A. 2007. Ten Cate’s Oral Histology: Development, Structure, and Function. St. Louis, MO: Mosby, Inc.Google Scholar
Ning, F., Guo, Y., Tang, J. et al. 2010. Differentiation of mouse embryonic stem cells into dental epithelial-like cells induced by ameloblasts serum-free conditioned medium. Biochem. Biophys. Res. Commun., 394, 342–7.CrossRefGoogle ScholarPubMed
Nör, J. E., Peters, M. C., Christensen, J. B. et al. 2001. Engineering and characterization of functional human microvessels in immunodeficient mice, Lab. Invest., 81, 453–63.CrossRefGoogle ScholarPubMed
Nosrat, I. V., Widenfalk, J., Olson, L. and Nosrat, C. A. 2001. Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury. Dev. Biol., 238, 120–32.CrossRefGoogle ScholarPubMed
Nourbakhsh, N., Soleimani, M., Taghipour, Z. et al. 2011. Induced in vitro differentiation of neural-like cells from human exfoliated deciduous teeth-derived stem cells. Int. J. Dev. Biol., 55, 189–95.CrossRefGoogle ScholarPubMed
Ohazama, A., Modino, S. A., Miletich, I. and Sharpe, P. T. 2004. Stem-cell-based tissue engineering of murine teeth. J. Dent. Res., 83, 518–22.CrossRefGoogle ScholarPubMed
Okita, K., Ichisaka, T. and Yamanaka, S. 2007. Generation of germline-competent induced pluripotent stem cells. Nature, 448, 313–17.CrossRefGoogle ScholarPubMed
Peinemann, F., Grouven, U., Kroger, N. et al. 2009. Unrelated donor stem cell transplantation in acquired severe aplastic anemia: a systematic review. Haematologica, 94, 1732–42.CrossRefGoogle ScholarPubMed
Peterkova, R., Peterka, M., Viriot, L. and Lesot, H. 2002. Development of the vestigial tooth primordia as part of mouse odontogenesis. Connect. Tissue Res., 43, 120–8.CrossRefGoogle ScholarPubMed
Prusa, A. R. and Hengstschlager, M. 2002. Amniotic fluid cells and human stem cell research: a new connection. Med. Sci. Monit., 8, RA253–7.Google ScholarPubMed
Quinones, C. R., Casellas, J. C. and Caffesse, R. G. 1996. Guided periodontal tissue regeneration (GPTR): an update. Pract. Periodontics Aesthet. Dent., 8, 169–80; quiz 182.Google ScholarPubMed
Rappeport, J. M., O’Reilly, R. J., Kapoor, N. and Parkman, R. 2010. Hematopoietic stem cell transplantation for severe combined immune deficiency or what the children have taught us. Immunol. Allergy Clin. North Am., 30, 17–30.CrossRefGoogle ScholarPubMed
Rinaldi, J. C. and Arana-Chavez, V. E. 2010. Ultrastructure of the interface between periodontal tissues and titanium mini-implants. Angle Orthod., 80, 459–65.CrossRefGoogle ScholarPubMed
Roberts-Clark, D. J. and Smith, A. J. 2000. Angiogenic growth factors in human dentine matrix. Arch. Oral Biol., 45, 1013–16.CrossRefGoogle ScholarPubMed
Schwarz, S. C. and Schwarz, J. 2010. Translation of stem cell therapy for neurological diseases. Transl. Res., 156, 155–60.CrossRefGoogle ScholarPubMed
Selden, H. S. 2002. Apexification: an interesting case. J. Endod., 28, 44–5.CrossRefGoogle Scholar
Sessarego, N., Parodi, A., Podesta, M. et al. 2008. Multipotent mesenchymal stromal cells from amniotic fluid: solid perspectives for clinical application. Haematologica, 93, 339–46.CrossRefGoogle ScholarPubMed
Shah, N., Logani, A., Bhaskar, U. and Aggarwal, V. 2008. Efficacy of revascularization to induce apexification/apexogenesis in infected, nonvital, immature teeth: a pilot clinical study. J. Endod., 34, 919–25; discussion 1157.CrossRefGoogle Scholar
Shalabi, M. M., Wolke, J. G., Cuijpers, V. M. and Jansen, J. A. 2007. Evaluation of bone response to titanium-coated polymethyl methacrylate resin (PMMA) implants by X-ray tomography. J. Mater. Sci. Mater. Med., 18, 2033–9.CrossRefGoogle ScholarPubMed
Shi, S. and Gronthos, S. 2003. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J. Bone. Miner. Res., 18, 696–704.CrossRefGoogle ScholarPubMed
Sloan, A. J. and Smith, A. J. 1999. Stimulation of the dentine–pulp complex of rat incisor teeth by transforming growth factor-β isoforms 1–3 in vitro. Arch. Oral Biol., 44, 149–56.CrossRefGoogle ScholarPubMed
Song, Y., Yan, M., Muneoka, K. and Chen, Y. 2008. Mouse embryonic diastema region is an ideal site for the development of ectopically transplanted tooth germ. Dev. Dyn., 237, 411–16.CrossRefGoogle ScholarPubMed
Sonoyama, W., Liu, Y., Fang, D. et al. 2006. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One, 1, e79.CrossRefGoogle ScholarPubMed
Stappenbeck, T. S. and Miyoshi, H. 2009. The role of stromal stem cells in tissue regeneration and wound repair. Science, 324, 1666–9.CrossRefGoogle ScholarPubMed
Strauer, B. E. and Steinhoff, G. 2011. 10 years of intracoronary and intramyocardial bone marrow stem cell therapy of the heart: from the methodological origin to clinical practice. J. Am. Coll. Cardiol., 58, 1095–104.CrossRefGoogle ScholarPubMed
Takahashi, K., Okita, K., Nakagawa, M. and Yamanaka, S. 2007. Induction of pluripotent stem cells from fibroblast cultures. Nature Protoc., 2, 3081–9.CrossRefGoogle ScholarPubMed
Takahashi, K. and Yamanaka, S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–76.CrossRefGoogle ScholarPubMed
Takei, K., Inoue, T., Shimono, M. and Yamamura, T. 1988. An experimental study of dentinogenesis in autografted dental pulp in rats. Bull. Tokyo Dent. Coll., 29, 9–19.Google ScholarPubMed
Tamaoki, N., Takahashi, K., Tanaka, T. et al. 2010. Dental pulp cells for induced pluripotent stem cell banking. J. Dent. Res., 89, 773–8.CrossRefGoogle ScholarPubMed
Tarle, S. A., Shi, S. and Kaigler, D. 2011. Development of a serum-free system to expand dental-derived stem cells: PDLSCs and SHEDs. J. Cell. Physiol., 226, 66–73.CrossRefGoogle ScholarPubMed
Ten Cate, A. R. 1998. Oral Histology: Development, Structure, and Function, St. Louis, MO: Mosby.Google Scholar
Thesleff, I. 2003. Epithelial–mesenchymal signalling regulating tooth morphogenesis. J. Cell Sci., 116, 1647–8.CrossRefGoogle ScholarPubMed
Thesleff, I., Keranen, S. and Jernvall, J. 2001. Enamel knots as signaling centers linking tooth morphogenesis and odontoblast differentiation. Adv. Dent. Res., 15, 14–18.CrossRefGoogle ScholarPubMed
Thesleff, I. and Nieminen, P. 1996. Tooth morphogenesis and cell differentiation. Curr. Opin. Cell. Biol., 8, 844–50.CrossRefGoogle ScholarPubMed
Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S. et al. 1998. Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–7.CrossRefGoogle ScholarPubMed
Tran-Hung, L., Laurent, P., Camps, J. and About, I. 2008. Quantification of angiogenic growth factors released by human dental cells after injury. Arch. Oral Biol., 53, 9–13.CrossRefGoogle ScholarPubMed
Tran-Hung, L., Mathieu, S. and About, I. 2006. Role of human pulp fibroblasts in angiogenesis. J. Dent. Res., 85, 819–23.CrossRefGoogle ScholarPubMed
Trope, M. 2010. Treatment of the immature tooth with a non-vital pulp and apical periodontitis. Dent. Clin. North Am., 54, 313–24.CrossRefGoogle ScholarPubMed
Trubiani, O., Orsini, G., Zini, N. et al. 2008. Regenerative potential of human periodontal ligament derived stem cells on three-dimensional biomaterials: a morphological report. J. Biomed. Mater. Res. A., 87, 986–93.CrossRefGoogle ScholarPubMed
Vaahtokari, A., Aberg, T. and Thesleff, I. 1996. Apoptosis in the developing tooth: association with an embryonic signaling center and suppression by EGF and FGF-4. Development, 122, 121–9.Google ScholarPubMed
Van Besien, K. 2009. Allogeneic stem cell transplantation in follicular lymphoma: recent progress and controversy. Hematol. Am. Soc. Hematol. Educ. Program, 610–18.
Van der Heyden, C. and Huysseune, A. 2000. Dynamics of tooth formation and replacement in the zebrafish (Danio rerio) (Teleostei, Cyprinidae). Dev. Dyn., 219, 486–96.3.0.CO;2-Z>CrossRefGoogle Scholar
Van der Heyden, C., Wautier, K. and Huysseune, A. 2001. Tooth succession in the zebrafish (Danio rerio). Arch. Oral Biol., 46, 1051–8.CrossRefGoogle Scholar
Wang, L., Shen, H., Zheng, W. et al. 2011. Characterization of stem cells from alveolar periodontal ligament. Tissue Eng. Part A, 17, 1015–26.CrossRefGoogle ScholarPubMed
West, J. 2006. Endodontic update 2006. J. Esthet. Restor. Dent., 18, 280–300.CrossRefGoogle ScholarPubMed
Yamagishi, K., Onuma, K., Suzuki, T. et al. 2005. Materials chemistry: a synthetic enamel for rapid tooth repair. Nature, 433, 819.CrossRefGoogle ScholarPubMed
Yamamoto, H., Kim, E. J., Cho, S. W. and Jung, H. S. 2003. Analysis of tooth formation by reaggregated dental mesenchyme from mouse embryo. J. Electron Microsc. (Tokyo), 52, 559–66.CrossRefGoogle ScholarPubMed
Yan, X., Qin, H., Qu, C. et al. 2010. iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells Dev., 19, 469–80.CrossRefGoogle ScholarPubMed
Yao, S., Pan, F., Prpic, V. and Wise, G. E. 2008. Differentiation of stem cells in the dental follicle. J. Dent. Res., 87, 767–71.CrossRefGoogle ScholarPubMed
Young, C. S., Terada, S., Vacanti, J. P. et al. 2002. Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J. Dent. Res., 81, 695–700.CrossRefGoogle ScholarPubMed
Yu, J., Vodyanik, M. A., Smuga-Otto, K. et al. 2007. Induced pluripotent stem cell lines derived from human somatic cells. Science, 318, 1917–20.CrossRefGoogle ScholarPubMed
Zander, H. A. 1939. Reaction of the pulp to calcium hydroxide. J. Dent. Res. 18, 373–437.CrossRefGoogle Scholar
Zhang, W., Abukawa, H., Troulis, M. J. et al. 2009. Tissue engineered hybrid tooth-bone constructs. Methods, 47, 122–8.CrossRefGoogle ScholarPubMed
Zhang, W., Ahluwalia, I. P. and Yelick, P. C. 2010. Three dimensional dental epithelial–mesenchymal constructs of predetermined size and shape for tooth regeneration. Biomaterials, 31, 7995–8003.CrossRefGoogle ScholarPubMed
Zhang, W., Walboomers, X. F., Shi, S., Fan, M. and Jansen, J. A. 2006a. Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation. Tissue Eng., 12, 2813–23.CrossRefGoogle ScholarPubMed
Zhang, W., Walboomers, X. F., Van Kuppevelt, T. H. et al. 2006b. The performance of human dental pulp stem cells on different three-dimensional scaffold materials. Biomaterials, 27, 5658–68.CrossRefGoogle ScholarPubMed
Zhao, L., Weir, M. D. and Xu, H. H. 2010. An injectable calcium phosphate–alginate hydrogel–umbilical cord mesenchymal stem cell paste for bone tissue engineering. Biomaterials, 31, 6502–10.CrossRefGoogle ScholarPubMed
Zhao, S., Sloan, A. J., Murray, P. E., Lumley, P. J. and Smith, A. J. 2000. Ultrastructural localisation of TGF-β exposure in dentine by chemical treatment. Histochem. J., 32, 489–94.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×