Skip to main content Accessibility help
×
Home
  • Print publication year: 2014
  • Online publication date: February 2015

19 - Organ printing

from Part III - Hydrogel scaffolds for regenerative medicine

Summary

Introduction

Since the first successful organ transplantation with a kidney in 1954 [1], scientists have maintained the dream of being able to fabricate organs on request. Organogenesis – or the creation of organs from artificial manipulation of cells, materials, growth factors (GFs), and other organ elements – has been waiting for the appropriate technology to emerge. This futuristic technique should be capable of rebuilding the compositional and structural complexities of human tissues and organs. The recent development of bioprinting technologies (defined by their high resolution and high-speed construction) has revived interest in applying those emerging methods for organogenesis. The term “organ printing” has become standard since the 2000s [2–4]. It refers to the line of investigations related to the development of the technologies for the construction of three-dimensional (3D) structures based on the deposition of different cell lines and biochemical promoters.

Although individual tissue systems have been successfully engineered for various applications using the basic tissue engineering approach, the means for the building of complex tissues that consist of multiple cell and tissue components have not been established. This is due to various challenges encountered in the tissue building process. One of the challenges has been the inability to recreate the well-defined cellular configurations and functions of a native tissue. Living tissues contain multiple cell types and various extracellular materials arranged in specific patterns that are difficult to replicate in vitro. Thus, one important goal of tissue engineering and regenerative medicine is to develop a tissue fabrication method that allows specific control over the placement of various cells and matrices in three dimensions in order to mimic the complexity of native tissue architecture. Emerging “organ printing” or “bioprinting” methodologies are being investigated in order to create tissue-engineered constructs that initially have more defined spatial organization. The underlying hypothesis is that with these biomimetic patterns one can achieve improved therapeutic outcomes [5].

Related content

Powered by UNSILO
References
Murray, J. E. 2005. The 50th anniversary of the first successful human organ transplant. Rev. Invest. Clin., 57(2), 118–19.
Mironov, V. 2006. Toward human organ printing: Charleston Bioprinting Symposium. ASAIO J., 52(6), e27–30.
Mironov, V., Boland, T., Trusk, T., Forgacs, G. and Markwald, R. R. 2003. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol., 21(4), 157–61.
Chang, R., Nam, J. and Sun, W. 2008. Direct cell writing of 3D microorgan for in vitro pharmacokinetic model. Tissue Eng. Part C Methods, 14(2), 157–66.
Sun, W., Starly, B., Darling, A. and Gomez, C. 2004. Computer-aided tissue engineering: application to biomimetic modelling and design of tissue scaffolds. Biotechnol. Appl. Biochem., 39(Part 1), 49–58.
Sun, W., Darling, A., Starly, B. and Nam, J. 2004. Computer-aided tissue engineering: overview, scope and challenges. Biotechnol. Appl. Biochem., 39, 29–47.
Sun, W., Starly, B., Nam, J. and Darling, A. 2005. Bio-CAD modeling and its applications in computer-aided tissue engineering. Comput. Aided Design, 37(11), 1097–114.
Varady, T., Martin, R. R. and Cox, J. 1997. Reverse engineering of geometric models – an introduction. Comput. Aided Design, 29(4), 255–68.
Sun, W. and Lal, P. 2002. Recent development on computer aided tissue engineering – a review. Comput. Meth. Prog. Biol., 67(2), 85–103.
Lin, A. S. P., Barrows, T. H., Cartmell, S. H. and Guldberg, R. E. 2003. Microarchitectural and mechanical characterization of oriented porous polymer scaffolds. Biomaterials, 24(3), 481–9.
Folch, A. and Toner, M. 2000. Microengineering of cellular interactions. Ann. Rev. Biomed. Eng., 2, 227–56.
Landers, R., Hubner, U., Schmelzeisen, R. and Mulhaupt, R. 2002. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials, 23(23), 4437–47.
Muller, R. and Ruegsegger, P. 1997. Micro-tomographic imaging for the nondestructive evaluation of trabecular bone architecture. Stud. Health Technol. Inform., 40, 61–79.
Ulrich, D., Hildebrand, T., Van Rietbergen, B., Muller, R. and Ruegsegger, P. 1997. The quality of trabecular bone evaluated with micro-computed tomography, FEA and mechanical testing. Stud. Health Technol. Inform., 40, 97–112.
Van Rietbergen, B., Muller, R., Ulrich, D., Ruegsegger, P. and Huiskes, R. 1999. Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions. J. Biomech., 32(4), 443–51.
Krause, W., Handreke, K., Schuhmann-Giampieri, G. and Rupp, K. 2002. Efficacy of the iodine-free computed tomography liver contrast agent, Dy-EOB-DTPA, in comparison with a conventional iodinated agent in normal and in tumor-bearing rabbits. Invest. Radiol., 37(5), 241–7.
Watanabe, M., Shin’oka, T., Tohyama, S. et al. 2001. Tissue-engineered vascular autograft: inferior vena cava replacement in a dog model. Tissue Eng., 7(4), 429–39.
Miclăuş, G. M.-V. B. and Clipicioiu, D. 2007. New perspectives in exploring cardiac patient imaging – cardiac CT. Timişoara Med. J. 57, 162–6.
Bandettini, W. P. and Arai, A. E. 2008. Advances in clinical applications of cardiovascular magnetic resonance imaging. Heart, 94(11), 1485–95.
Sun, W. 2000. Multi-volume CAD modeling for heterogeneous object design and fabrication. J. Comput. Sci. Technol., 15(1), 27–36.
Sun, W. and Hu, X. 2002. Reasoning Boolean operation based modeling for heterogeneous objects. Comput. Aided Design, 34(6), 481–8.
Boland, T., Cui, X., Chaubey, A. et al. 2007. Precision printing of cells and biomaterials onto 3D matrices. In Proceedings of the ASME International Conference on Manufacturing Science and Engineering, pp. 77–81.
Boland, T., Tao, X., Damon, B. J. et al. 2007. Drop-on-demand printing of cells and materials for designer tissue constructs. Mater. Sci. Eng. C – Biol., 27(3), 372–6.
Cui, X. F. and Boland, T. 2008. Simultaneous deposition of human microvascular endothelial cells and biomaterials for human microvasculature fabrication using inkjet printing. In Nip24/Digital Fabrication 2008: 24th International Conference on Digital Printing Technologies, Technical Program and Proceedings, pp. 480–3.
Kesari, P., Xu, T. and Boland, T. 2005. Layer-by-layer printing of cells and its application to tissue engineering. Mater. Res. Soc. Symp. Proc., 845:111–17.
Xu, T., Gregory, C. A., Molnar, P. et al. 2006. Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials, 27(19), 3580–8.
Xu, T., Jin, J., Gregory, C. et al. 2005. Inkjet printing of viable mammalian cells. Biomaterials, 26(1), 93–9.
Narayan, R., Boland, T. and Lee, Y.-S. 2010. Printed Biomaterials: Novel Processing and Modeling Techniques for Medicine and Surgery. New York: Springer.
Odde, D. J. and Renn, M. J. 1999. Laser-guided direct writing for applications in biotechnology. Trends Biotechnol., 17(10), 385–9.
Odde, D. J. and Renn, M. J. 2000. Laser-guided direct writing of living cells. Biotechnol. Bioeng., 67(3), 312–18.
Nahmias, Y., Schwartz, R. E., Verfaillie, C. M. and Odde, D. J. 2005. Laser-guided direct writing for three-dimensional tissue engineering. Biotechnol. Bioeng., 92(2), 129–36.
Barron, J. A., Spargo, B. J. and Ringeisen, B. R. 2004. Biological laser printing of three dimensional cellular structures. Appl. Phys. A – Mater., 79(4–6), 1027–30.
Saunders, R., Gough, J. and Derby, B. 2005. Ink jet printing of mammalian primary cells for tissue engineering applications. Mater. Res. Soc. Symp. Proc., 845, 57–62.
De Coppi, P., Bartsch, G., Siddiqui, M. M. et al. 2007. Isolation of amniotic stem cell lines with potential for therapy. Nature Biotechnol., 25(1), 100–6.
Eagles, P. A., Qureshi, A. N. and Jayasinghe, S. N. 2006. Electrohydrodynamic jetting of mouse neuronal cells. Biochem. J., 394(Part 2), 375–8.
Printz, C. 2011. American Cancer Society reports progress in reducing cancer deaths. However, some groups still lag behind this trend. Cancer – Am. Cancer Soc., 117(20), 4573–4.
Asahara, T., Murohara, T., Sullivan, A. et al. 1997. Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275(5302), 964–7.
Gimble, J. M., Katz, A. J. and Bunnell, B. A. 2007. Adipose-derived stem cells for regenerative medicine. Circ. Res., 100(9), 1249–60.
Bartsch, G., Yoo, J. J., De Coppi, P. et al. 2005. Propagation, expansion, and multilineage differentiation of human somatic stem cells from dermal progenitors. Stem Cells Dev., 14(3), 337–48.
Delo, D. M., De Coppi, P., Bartsch, G. and Atala, A. 2006. Amniotic fluid and placental stem cells. Methods Enzymol., 419, 426–38.
Cutler, C. and Ballen, K. 2009. Reduced-intensity conditioning and umbilical cord blood transplantation in adults. Bone Marrow Transplant., 44(10), 667–71.
Delaney, C., Ratajczak, M. Z. and Laughlin, M. J. 2010. Strategies to enhance umbilical cord blood stem cell engraftment in adult patients. Expert Rev. Hematol., 3(3), 273–83.
Ker, E. D. P., Nain, A. S., Weiss, L. E. et al. 2011. Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment. Biomaterials, 32(32), 8097–107.
Cooper, G. M., Miller, E. D., DeCesare, G. E. et al. 2010. Inkjet-based biopatterning of bone morphogenetic protein-2 to spatially control calvarial bone formation. Tissue Eng. Part A, 16(5), 1749–59.
Ma, N. N., Chalmers, J. J., Aunins, J. G., Zhou, W. C. and Xie, L. Z.Quantitative studies of cell-bubble interactions and cell damage at different pluronic F-68 and cell concentrations. Biotechnol. Progr., 20(4), 1183–91.
Parsa, S., Gupta, M., Loizeau, F. and Cheung, K. C. 2010. Effects of surfactant and gentle agitation on inkjet dispensing of living cells. Biofabrication, 2(2), 025003.
Holtsberg, F. W., Ensor, C. M., Steiner, M. R., Bomalaski, J. S. and Clark, M. A. 2002. Poly(ethylene glycol) (PEG) conjugated arginine deiminase: effects of PEG formulations on its pharmacological properties. J. Control. Release, 80(1–3), 259–71.
Bomalaski, J. S., Holtsberg, F. W., Ensor, C. M. and Clark, M. A. 2002. Uricase formulated with polyethylene glycol (uricase-PEG 20): biochemical rationale and preclinical studies. J. Rheumatol., 29(9), 1942–9.
Engler, A. J., Sen, S., Sweeney, H. L. and Discher, D. E. 2006. Matrix elasticity directs stem cell lineage specification. Cell, 126(4), 677–89.
Guillotin, B., Souquet, A., Catros, S. et al. 2010. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials, 31(28), 7250–6.
Klebe, R. J. 1988. Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues. Exp. Cell Res., 179(2), 362–73.
Ahmed, T. A., Dare, E. V. and Hincke, M. 2008. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng. Part B Rev., 14(2), 199–215.
Cui, X. F. and Boland, T. 2009. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials, 30(31), 6221–7.
Fedorovich, N. E., Alblas, J., de Wijn, J. R. et al. 2007. Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue Eng., 13(8), 1905–25.
Wilson, W. C. and Boland, T. 2003. Cell and organ printing 1: protein and cell printers. Anat. Rec. A Discov. Molec. Cell Evol. Biol., 272(2), 491–6.
Smith, C. M., Stone, A. L., Parkhill, R. L. et al. 2004. Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Eng., 10(9–10), 1566–76.
Harkness, R. D. 1966. Collagen. Sci. Prog., 54(214), 257–74.
Stenzel, K. H., Dunn, M. W., Rubin, A. L. and Miyata, T. 1969. Collagen gels: design for a vitreous replacement. Science, 164(885), 1282–3.
Boland, T., Xu, T., Damon, B. and Cui, X. 2006. Application of inkjet printing to tissue engineering. Biotechnol. J., 1(9), 910–17.
Xu, T., Petridou, S., Lee, E. H. et al. 2004. Construction of high-density bacterial colony arrays and patterns by the ink-jet method. Biotechnol. Bioeng., 85(1), 29–33.
Xu, T., Olson, J., Zhao, W. X. et al. 2008. Characterization of cell constructs generated with inkjet printing technology using in vivo magnetic resonance imaging. J. Manuf. Sci. Technol., 130(2), 020601.
Moon, S., Hasan, S. K., Song, Y. S. et al. 2010. Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. Tissue Eng. Part C Methods, 16(1), 157–66.
Roth, E. A., Xu, T., Das, M. et al. 2004. Inkjet printing for high-throughput cell patterning. Biomaterials, 25(17), 3707–15.
Malda, J., Woodfield, T. B., van der Vloodt, F. et al. 2004. The effect of PEGT/PBT scaffold architecture on oxygen gradients in tissue engineered cartilaginous constructs. Biomaterials, 25(26), 5773–80.
Karageorgiou, V. and Kaplan, D. 2005. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 26(27), 5474–91.
Cotterill, A. M., Camacho-Hübner, C., Woods, K. et al. 1994. The insulin-like growth factor I generation test in the investigation of short stature. Acta Paediatr., 399(Suppl.), 128–30.
Cohen, D. L., Malone, E., Lipson, H. and Bonassar, L. J. 2006. Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng., 12(5), 1325–35.
Cohen, D. L., Lipton, J. I., Bonassar, L. J. and Lipson, H. 2010. Additive manufacturing for in situ repair of osteochondral defects. Biofabrication, 2(3), 035004.
LeRoux, M. A., Guilak, F. and Setton, L. A. 1999. Compressive and shear properties of alginate gel: effects of sodium ions and alginate concentration. J. Biomed. Mater. Res., 47(1), 46–53.
Shoichet, M. S., Li, R. H., White, M. L. and Winn, S. R. 1996. Stability of hydrogels used in cell encapsulation: an in vitro comparison of alginate and agarose. Biotechnol. Bioeng., 50(4), 374–81.
Bouhadir, K. H., Lee, K. Y., Alsberg, E. et al. 2001. Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol. Prog., 17(5), 945–50.
Lee, W. J., Chia, W. J., Wang, J. et al. 2010. Role of surfaces and interfaces in controlling the mechanical properties of metallic alloys. Langmuir, 26(21), 16254–60.
Alsberg, E., Kong, H. J., Hirano, Y. et al. 2003. Regulating bone formation via controlled scaffold degradation. J. Dent. Res., 82(11), 903–8.
Miller, E. D., Fisher, G. W., Weiss, L. E., Walker, L. M. and Campbell, P. G. 2006. Dose-dependent cell growth in response to concentration modulated patterns of FGF-2 printed on fibrin. Biomaterials, 27(10), 2213–21.
Fortier, L. A., Lust, G., Mohammed, H. O. and Nixon, A. J. 1999. Coordinate upregulation of cartilage matrix synthesis in fibrin cultures supplemented with exogenous insulin-like growth factor-I. J. Orthop. Res., 17(4), 467–74.
Wu, P. K. and Ringeisen, B. R. 2010. Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP). Biofabrication, 2(1), 014111.
Kim, J. Y., Park, E. K., Kim, S.-Y., Shin, J.-W. and Cho, D.-W. 2008. Fabrication of a SFF-based three-dimensional scaffold using a precision deposition system in tissue engineering. J. Micromech. Microeng., 18(5), 055027.
Pirlo, R. K., Wu, P., Liu, J. and Ringeisen, B. 2012. PLGA/hydrogel biopapers as a stackable substrate for printing HUVEC networks via BioLP™. Biotechnol. Bioeng., 109(1), 262–73.
Catros, S., Guillemot, F., Nandakumar, A. et al. 2011. Layer-by-layer tissue microfabrication supports cell proliferation in vitro and in vivo. Tissue Eng. Part C Methods, 18(1), 62–70.
Skardal, A., Zhang, J. and Prestwich, G. D. 2010. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials, 31(24), 6173–81.
Mironov, V., Boland, T., Trusk, T., Forgacs, G. and Markwald, R. R. 2003. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol., 21(4), 157–61.
Langer, R. and Vacanti, J. P. 1993. Tissue engineering. Science, 260(5110), 920–6.
Roskelley, C. D., Desprez, P. Y. and Bissell, M. J. 1994. Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction. Proc. Nat. Acad. Sci. USA, 91(26), 12378–82.
Mooney, D. J., Sano, K., Kaufmann, P. M. et al. 1997. Long-term engraftment of hepatocytes transplanted on biodegradable polymer sponges. J. Biomed. Mater. Res., 37(3), 413–20.
Knight, B., Laukaitis, C., Akhtar, N. et al. 2000. Visualizing muscle cell migration in situ. Curr. Biol., 10(10), 576–85.
Chang, R., Nam, J. and Sun, W. 2008. Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng. Part A, 14(1), 41–8.
Lee, W., Pinckney, J., Lee, V. et al. 2009. Three-dimensional bioprinting of rat embryonic neural cells. Neuroreport, 20(8), 798–803.
Hamid, Q., Snyder, J., Wang, C. et al. 2011. Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device. Biofabrication, 3(3), 034109.
Mayr, L. M. and Bojanic, D. 2009. Novel trends in high-throughput screening. Curr. Opin. Pharmacol., 9(5), 580–8.
Yan, Y., Wang, X., Pan, Y. et al. 2005. Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique. Biomaterials, 26(29), 5864–71.
Zhang, T., Yan, Y. N., Wang, X. H. et al. 2007. Three-dimensional gelatin and gelatin/hyaluronan hydrogel structures for traumatic brain injury. J. Bioact. Compat. Pol., 22(1), 19–29.
Patz, T. M., Doraiswamy, A., Narayan, R. J. et al. 2006. Three-dimensional direct writing of B35 neuronal cells. J. Biomed. Mater. Res. B Appl. Biomater., 78(1), 124–30.
Shor, L., Guceri, S., Wen, X. J., Gandhi, M. and Sun, W. 2007. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast–scaffold interactions in vitro. Biomaterials, 28(35), 5291–7.
Lee, W., Debasitis, J. C., Lee, V. K. et al. 2009. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials, 30(8), 1587–95.
Ringeisen, B. R., Spargo, B. J. and Wu, P. K. 2010. Cell and Organ Printing. New York: Springer.
Fedorovich, N. E., Dewijn, J. R., Verbout, A. J., Alblas, J. and Dhert, W. J. A. 2008. Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Tissue Eng. Part A, 14(1), 127–33.
Hon, K. K. B., Li, L. and Hutchings, I. M. 2008. Direct writing technology – advances and developments. CIRP Ann. – Manufacturing Technol., 57(2), 601.
Chang, R., Nam, J., Holtorf, H. et al. 2008. Direct cell writing of 3D tissue micro-organs for drug metabolism study. J. Biotechnol., 136(Suppl. 1), S144.
Chang, R. and Sun, W. 2008. Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng. Part A, 14(1), 41–8.
Igawa, K., Mochizuki, M., Sugimori, O. et al. 2006. Tailor-made tricalcium phosphate bone implant directly fabricated by a three-dimensional ink-jet printer. J. Artificial Organs, 9(4), 234.
Zhang, C., Zhao, K., Hu, T. et al. 2008. Loading dependent swelling and release properties of novel biodegradable, elastic and environmental stimuli-sensitive polyurethanes. J. Controll. Release, 131(2), 128.
Zhang, C., Wen, X., Vyavahare, N. R. and Boland, T. 2008. Synthesis and characterization of biodegradable elastomeric polyurethane scaffolds fabricated by the inkjet technique. Biomaterials, 29(28), 3781.
Miller, E. D., Fisher, G. W., Weiss, L. E., Walker, L. M. and Campbell, P. G. 2006. Dose-dependent cell growth in response to concentration modulated patterns of FGF-2 printed on fibrin. Biomaterials, 27(10), 2213.
Crowley, K., Morrin, A., Hernandez, A. et al. 2008. Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanoparticles. Talanta, 77(2), 710.
Jakab, K., Norotte, C., Damon, B. et al. 2008. Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng. Part A, 14(3), 413–21.
Nagaraj, V. J., Eaton, S., Thirstrup, D. and Wiktor, P. 2008. Piezoelectric printing and probing of Lectin NanoProbeArrays for glycosylation analysis. Biochem. Biophys. Res. Commun., 375(4), 526.
Calvert, P. and Crockett, R. 1997. Chemical solid free-form fabrication: making shapes without molds. Chem. Mater., 9, 650.
Zein, I., Hutmacher, D. W., Tan, K. C. and Teoh, S. H. 2002. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials, 23(4), 1169–85.
Liu, C., Sachlos, E., Wahl, D., Han, Z. and Czernuszka, J. 2007. On the manufacturability of scaffold mould using a 3D printing technology. Rapid Prototyping J., 13, 163.
Dhariwala, B., Hunt, E. and Boland, T. 2004. Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Eng., 10(9–10), 1316–22.
Arcaute, K., Mann, B. K. and Wicker, R. B. 2006. Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Ann. Biomed. Eng., 34(9), 1429–41.
Dimitrov, D., Schreve, K. and De Beer, N. 2006. Advances in three dimensional printing: state of the art and future perspectives. Rapid Prototyping J., 12(3), 136–47.
Morissette, S. L., Lewis, J. A., Cesarano, J., Dimos, D. B. and Baer, T. 2000. Solid freeform fabrication of aqueous alumina–poly(vinyl alcohol) gelcasting suspensions. J. Am. Ceram. Soc., 83, 2409.
Cohen, D. L., Malone, E., Lipson, H. and Bonassar, L. J. 2006. Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng., 12(5), 1325–35.
Liu, Z. S., Erhan, S. Z., Xu, J. and Calvert, P. D. 2002. Development of soybean oil-based composites by solid freeform fabrication method: epoxidized soybean oil with bis or polyalkyleneamine curing agents system. J. Appl. Polymer Sci., 85, 2100.
Peng, J., Lin, T. L. and Calvert, P. 1999. Orientation effects in freeformed short-fiber composites. Composites A, 30, 133.
Sercombe, T. B., Schaffer, G. B. and Calvert, P. 1999. Freeform fabrication of functional aluminium prototypes using powder metallurgy. J. Mater. Sci., 34, 4245.
Sirringhaus, H., Kawase, T., Friend, R. H. et al. 2000. High-resolution inkjet printing of all-polymer transistor circuits. Science, 290(5499), 2123–6.
Gratson, G. M., Xu, M. and Lewis, J. A. 2004. Microperiodic structures: direct writing of three-dimensional webs. Nature, 428(6981), 386.
Yan, K. C., Nair, K. and Sun, W. 2010. Three dimensional multi-scale modelling and analysis of cell damage in cell-encapsulated alginate constructs. J. Biomech., 43(6), 1031–8.
van Krevelen, D. W. 1990. Properties of Polymers. Amsterdam: Elsevier.
Alamry, K. A., Nixon, K., Hindley, R., Odell, J. A. and Yeates, S. G. 2010. Flow-induced polymer degradation during ink-jet printing. In Nip 26: Digital Fabrication, p. 284.
Hoath, S., Hutchings, I., Martin, G. et al. 2009. Links between ink rheology, drop-on-demand jet formation, and printability. J. Imaging Sci. Technol., 53(4), 041208–041210.
Hancock, A. and Lin, L. 2004. Challenges of UV curable inkjet printing inks – a formulator’s perspective. Pigment Resin Technol., 33, 280.
Rowley, J. A., Madlambayan, G. and Mooney, D. J. 1999. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials, 20(1), 45–53.
Jorgensen, T. E., Sletmoen, M., Draget, K. I. and Stokke, B. T. 2007. Influence of oligoguluronates on alginate gelation, kinetics, and polymer organization. Biomacromolecules, 8(8), 2388–97.
Nishiyama, Y., Nakamura, M., Henmi, C. et al. 2009. Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology. J. Biomech. Eng., 131(3), 035001.
Xu, T., Baicu, C., Aho, M., Zile, M. and Boland, T. 2009. Fabrication and characterization of bio-engineered cardiac pseudo tissues. Biofabrication, 1(3), 035001.
in het Panhuis, M., Heurtematte, A., Small, W. R., and Paunov, V. N. 2007. Inkjet printed water sensitive transparent films from natural gum–carbon nanotube composites. Soft Matter, 3, 840–3.
Bekard, I. B., Asimakis, P., Bertolini, J. and Dunstan, D. E. 2011. The effects of shear flow on protein structure and function. Biopolymers, 95(11), 733–45.
Nishioka, G. M., Markey, A. A. and Holloway, C. K. 2004. Protein damage in drop-on-demand printers. J. Am. Chem. Soc., 126(50), 16320–1.
Goodall, S., Chew, N., Chan, K., Auriac, D. and Waters, M. J.Aerosolization of protein solutions using thermal inkjet technology. J. Aerosol. Med., 15(3), 351–7.
Campbell, P. G. and Weiss, L. E. 2007. Tissue engineering with the aid of inkjet printers. Expert Opin. Biol. Ther., 7(8), 1123–7.
Weiss, L. E., Amon, C. H., Finger, S. et al. 2005. Bayesian computer-aided experimental design of heterogeneous scaffolds for tissue engineering. Comput. Aided Design, 37(11), 1127–39.
Sanjana, N. E. and Fuller, S. B. 2004. A fast flexible ink-jet printing method for patterning dissociated neurons in culture. J. Neurosci. Methods, 136(2), 151–63.
Xu, T., Jin, J., Gregory, C., Hickman, J. J. and Boland, T.Inkjet printing of viable mammalian cells. Biomaterials, 26(1), 93–9.
Xu, T., Rohozinski, J., Zhao, W. et al. 2009. Inkjet-mediated gene transfection into living cells combined with targeted delivery. Tissue Eng. Part A, 15(1), 95–101.
Cui, X. and Boland, T. 2009. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials, 30(31), 6221–7.
Lee, S. S., Yim, Y., Ahn, K. H. and Lee, S. J. 2009. Extensional flow-based assessment of red blood cell deformability using hyperbolic converging microchannel. Biomed. Microdevices, 11(5), 1021–7.
Nakamura, M., Kobayashi, A., Takagi, F. et al. 2005. Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng., 11(11–12), 1658–66.
Saunders, R. E., Gough, J. E. and Derby, B. 2008. Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials, 29(2), 193–203.
Nair, K., Gandhi, M., Khalil, S. et al. 2009. Characterization of cell viability during bioprinting processes. Biotechnol. J., 4(8), 1168–77.
Joly, P., Chavda, N., Eddaoudi, A. and Jayasinghe, S. N. 2010. Bio-electrospraying and aerodynamically assisted bio-jetting whole human blood: interrogating cell surface marker integrity. Biomicrofluidics, 4(1), 11101.
Mongkoldhumrongkul, N., Flanagan, J. M. and Jayasinghe, S. N. 2009. Direct jetting approaches for handling stem cells. Biomed. Mater., 4(1), 015018.
Ringeisen, B. R., Chrisey, D. B., Pique, A. et al. 2002. Generation of mesoscopic patterns of viable Escherichia coli by ambient laser transfer. Biomaterials, 23(1), 161–6.
Hopp, B., Smausz, T., Kresz, N. et al. 2005. Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue Eng., 11(11–12), 1817–23.
Othon, C. M., Wu, X., Anders, J. J. and Ringeisen, B. R. 2008. Single-cell printing to form three-dimensional lines of olfactory ensheathing cells. Biomed. Mater., 3(3), 034101.
Cui, X., Dean, D., Ruggeri, Z. M. and Boland, T. 2010. Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnol. Bioeng., 106(6), 963–9.
Norotte, C., Marga, F. S., Niklason, L. E. and Forgacs, G. 2009. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials, 30(30), 5910–17.
De Rosa, M., Carteni, M., Petillo, O. et al. 2004. Cationic polyelectrolyte hydrogel fosters fibroblast spreading, proliferation, and extracellular matrix production: implications for tissue engineering. J. Cell Physiol., 198(1), 133–43.
La Gatta, A., Schiraldi, C., Esposito, A., D’Agostino, A. and De Rosa, A. 2009. Novel poly(HEMA-co-METAC)/alginate semi-interpenetrating hydrogels for biomedical applications: synthesis and characterization. J. Biomed. Mater. Res. A, 90(1), 292–302.
Detzel, C. J., Larkin, A. L. and Rajagopalan, P. 2011. Polyelectrolyte multilayers in tissue engineering. Tissue Eng. Part B Rev., 17(2), 101–13.
Ho, S. T., Cool, S. M., Hui, J. H. and Hutmacher, D. W. 2010. The influence of fibrin based hydrogels on the chondrogenic differentiation of human bone marrow stromal cells. Biomaterials, 31(1), 38–47.
Huang, N. F. and Li, S. 2011. Regulation of the matrix microenvironment for stem cell engineering and regenerative medicine. Ann. Biomed. Eng., 39(4), 1201–14.
Bhatia, S. R., Khattak, S. F. and Roberts, S. C. 2005. Polyelectrolytes for cell encapsulation. Curr. Opin. Colloid Interf. Sci., 10, 45.
Varghese, D., Deshpande, M., Xu, T. et al. 2005. Advances in tissue engineering: cell printing. J. Thorac. Cardiovasc. Surg., 129(2), 470–72.
Silver, F. H., Freeman, J. W. and Seehra, G. P. 2003. Collagen self-assembly and the development of tendon mechanical properties. J. Biomech., 36(10), 1529–53.
Huang, J., Foo, C. W. P. and Kaplan, D. L. 2007. Biosynthesis and applications of silk-like and collagen-like proteins. Polym. Rev., 47, 29–62.
Zhao, X. and Zhang, S. 2007. Designer self-assembling peptide materials. Macromolec. Biosci., 7(1), 13–22.
Zhang, S. 2002. Emerging biological materials through molecular self-assembly. Biotechnol. Adv., 20(5–6), 321–39.
Simsek-Ege, F. A., Bond, G. M. and Stringer, J. 2002. Matrix molecular weight cut-off for encapsulation of carbonic anhydrase in polyelectrolyte beads. J. Biomater. Sci. Polym. Edition, 13(11), 1175–87.
Decher, G., Hong, J. D. and Schmitt, J. 1992. Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films, 210/211, 831.
Bertrand, P., Jonas, A., Laschewsky, A. and Legras, R. 2000. Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties. Macromolec. Rapid Commun., 21, 319.
Limem, S., Li, D. P., Iyengar, S. and Calvert, P. 2009. Multi-material inkjet printing of self-assembling and reacting coatings. J. Macromolec. Sci. Part A – Pure Appl. Chem., 46, 1205.
Cellesi, F., Tirelli, N. and Hubbell, J. A. 2004. Towards a fully-synthetic substitute of alginate: development of a new process using thermal gelation and chemical cross-linking. Biomaterials, 25(21), 5115–24.
Vernon, B., Tirelli, N., Bachi, T., Haldimann, D. and Hubbell, J. A. 2003. Water-borne, in situ crosslinked biomaterials from phase-segregated precursors. J. Biomed. Mater. Res. A, 64(3), 447–56.
Biase, M. D., Saunders, R. E., Tirelli, N. and Derby, B. 2011. Inkjet printing and cell seeding thermoreversible photocurable gel structures. Soft Matter, 7, 2639.
Zarowna-Dabrowska, A., McKenna, E. O., Schutte, M. E. et al. 2012. Generation of primary hepatocyte microarrays by piezoelectric printing. Colloids Surf. B Biointerfaces, 89, 126–32.
Duocastella, M., Fernandez-Pradas, J. M., Morenza, J. L., Zafra, D. and Serra, P. 2010. Novel laser printing technique for miniaturized biosensors preparation. Sensors Actuat. B – Chem., 145(1), 596–600.
Kattamis, N., Brown, M. and Arnold, C. B. 2010. Incident beam shape effects on thick-film laser induced forward transfer. In 2010 Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS) 2010.
Arnold, C. B., Serra, P. and Pique, A. 2007. Laser direct-write techniques for printing of complex materials. Mater. Res. Soc. Bull., 32(1), 23–31.
Tolbert, W. A., Lee, I. Y. S., Wen, X. N. et al. 1993. Laser-ablation transfer imaging using picosecond optical pulses – ultra-high-speed, lower threshold and high-resolution. J. Imaging Sci. Technol., 37(5), 485–9.
Barron, J. A., Wu, P., Ladouceur, H. D. and Ringeisen, B. R. 2004. Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed. Microdevices, 6(2), 139–47.
Hopp, B., Smausz, T., Kresz, N. et al. 2005. Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue Eng., 11(11–12), 1817–23.
Doraiswamy, A., Narayan, R. J., Lippert, T. et al. 2006. Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer. Appl. Surf. Sci., 252(13), 4743–7.
Nahmias, Y. K., Gao, B. Z. and Odde, D. J. 2004. Dimensionless parameters for the design of optical traps and laser guidance systems. Appl. Opt., 43(20), 3999–4006.
Kubota, Y., Kleinman, H. K., Martin, G. R. and Lawley, T. J. 1988. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J. Cell Biol., 107(4), 1589–98.
Vernon, R. B., Angello, J. C., Iruela-Arispe, M. L., Lane, T. F. and Sage, E. H. 1992. Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab. Invest., 66(5), 536–47.
Neuman, K. C., Chadd, E. H., Liou, G. F., Bergman, K. and Block, S. M. 1999. Characterization of photodamage to Escherichia coli in optical traps. Biophys. J., 77(5), 2856–63.
Liang, H., Vu, K. T., Krishnan, P. et al. 1996. Wavelength dependence of cell cloning efficiency after optical trapping. Biophys. J., 70(3), 1529–33.
Renn, M. J., Montgomery, D., Vdovin, O. et al. 1995. Laser-guided atoms in hollow-core optical fibers. Phys. Rev. Lett., 75(18), 3253–6.
Renn, M. J. and Pastel, R. 1998. Particle manipulation and surface patterning by laser guidance. J. Vac. Sci. Technol. B, 16(6), 3859–63.
Nahmias, Y. and Odde, D. J. 2006. Micropatterning of living cells by laser-guided direct writing: application to fabrication of hepatic-endothelial sinusoid-like structures. Nature Protoc. 1(5), 2288–96.
Narmoneva, D. A., Vukmirovic, R., Davis, M. E., Kamm, R. D. and Lee, R. T. 2004. Endothelial cells promote cardiac myocyte survival and spatial reorganization: implications for cardiac regeneration. Circulation, 110(8), 962–8.
Lammert, E., Cleaver, O. and Melton, D. 2001. Induction of pancreatic differentiation by signals from blood vessels. Science, 294(5542), 564–7.
Akselrod, G. M., Timp, W., Mirsaidov, U. et al. 2006. Laser-guided assembly of heterotypic three-dimensional living cell microarrays. Biophys. J., 91(9), 3465–73.
Ho, C. T., Lin, R. Z., Chang, W. Y., Chang, H. Y. and Liu, C. H. 2006. Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap. Lab Chip, 6(6), 724–34.
Gruene, M., Deiwick, A., Koch, L. et al. 2014. Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng. Part C Methods, to be published.
Koch, L., Kuhn, S., Sorg, H. et al. 2010. Laser printing of skin cells and human stem cells. Tissue Eng. Part C Methods, 16(5), 847–54.
Chen, C. Y., Barron, J. A., Ringeisen, B. R. 2006. Cell patterning without chemical surface modification: cell–cell interactions between printed bovine aortic endothelial cells (BAEC) on a homogeneous cell-adherent hydrogel. Appl. Surf. Sci., 252(24), 8641–5.
Barron, J. A., Ringeisen, B. R., Kim, H. S., Spargo, B. J. and Chrisey, D. B. 2004. Application of laser printing to mammalian cells. Thin Solid Films, 453, 383–7.
Ringeisen, B. R., Kim, H., Barron, J. A. et al. 2004. Laser printing of pluripotent embryonal carcinoma cells. Tissue Eng., 10(3–4), 483–91.
Guillemot, F., Souquet, A., Catros, S. et al. 2010. High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater., 6(7), 2494–500.
Duocastella, M., Fernandez-Pradas, J. M., Morenza, J. L. and Serra, P. 2009. Time-resolved imaging of the laser forward transfer of liquids. J. Appl. Phys., 15, 106 (8 pp.).
Unger, C., Gruene, M., Koch, L., Koch, J. and Chichkov, B. N. 2011. Time-resolved imaging of hydrogel printing via laser-induced forward transfer. Appl. Phys. A – Mater., 103(2), 271–7.
Gruene, M., Unger, C., Koch, L., Deiwick, A. and Chichkov, B. 2011. Dispensing pico to nanolitre of a natural hydrogel by laser-assisted bioprinting. Biomed. Eng., .
Guillotin, B. and Guillemot, F. 2011. Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol., 29(4), 183–90.
Kattamis, N. T., Purnick, P. E., Weiss, R. and Arnold, C. B. 2007. Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials. Appl. Phys. Lett., 91, 171120.
Arrabito, G. and Pignataro, B. 2010. Inkjet printing methodologies for drug screening. Anal. Chem., 82(8), 3104–7.
Ringeisen, B. R., Othon, C. M., Barron, J. A., Young, D. and Spargo, B. J. 2006. Jet-based methods to print living cells. Biotechnol. J., 1(9), 930–48.
Nakamura, M., Kobayashi, A., Takagi, F. et al. 2005. Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng., 11(11–12), 1658–66.
Schiele, N. R., Corr, D. T., Huang, Y. et al. 2010. Laser-based direct-write techniques for cell printing. Biofabrication, 2(3), 032001.
Duocastella, M., Colina, M., Fernandez-Pradas, J. M. et al. 2007. Study of the laser-induced forward transfer of liquids for laser bioprinting. Appl. Surf. Sci., 253(19), 7855–9.