Skip to main content Accessibility help
  • Print publication year: 2014
  • Online publication date: February 2015

36 - Cardiac tissue regeneration in bioreactors

from Part V - Animal models and clinical applications


Motivation for cardiac tissue regeneration in vitro

Myocardial infarction (MI) leads to the death of cardiomyocytes, and the infarct area becomes replaced by a fibroblastic scar tissue that has no contractile function. This reduces the pumping ability of the heart and the cardiac output. In addition, the scar tissue thins due to the lack of vasculature to provide oxygen and nutrients to the infarct site, thus leading to high wall stress and cardiac dilatation, which may ultimately lead to heart failure.

The adult heart has a limited regenerative capacity. The shortage of donor organs further suggests a need to develop new treatment strategies for cardiovascular diseases. Cardiac tissue regeneration can be achieved through several strategies, including (1) gene therapy, (2) cell transplantation, and (3) implantation or injection of biomaterials or engineered cardiac tissues. The goal of these cardiac tissue regeneration strategies is to repair the damaged myocardium through supporting vascularization and cell survival, in turn reducing wall thinning and preventing dilatation and heart failure. Gene therapy is not a specific topic of this chapter, in which the focus will be on bioreactors for cell expansion and engineering of cardiac tissues for cardiac tissue regeneration. Instead, we refer the reader to excellent reviews [1–3].

Related content

Powered by UNSILO
Holladay, C. A., O’Brien, T. and Pandit, A. 2010. Non-viral gene therapy for myocardial engineering. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2(3), 232–48.
Nabel, E. G. 1995. Gene therapy for cardiovascular disease. Circulation, 91(2), 541–8.
Vinge, L. E., Raake, P. W. and Koch, W. J. 2008. Gene therapy in heart failure. Circ. Res., 102(12), 1458–70.
Laflamme, M. A. and Murry, C. E. 2011. Heart regeneration. Nature, 473(7347), 326–35.
Bhana, B., Iyer, R. K., Chen, W. L. et al. 2010. Influence of substrate stiffness on the phenotype of heart cells. Biotechnol. Bioeng., 105(6), 1148–60.
Nerem, R. M. and Sambanis, A. 1995. Tissue engineering: from biology to biological substitutes. Tissue Eng., 1(1), 3–13.
Müller-Ehmsen, J., Peterson, K. L., Kedes, L. et al. 2002. Rebuilding a damaged heart: long-term survival of transplanted neonatal rat cardiomyocytes after myocardial infarction and effect on cardiac function. Circulation, 105(14), 1720–6.
Reinecke, H., Zhang, M., Bartosek, T. and Murry, C. E. 1999. Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation, 100(2), 193–202.
Leor, J., Aboulafia-Etzion, S., Dar, A. et al. 2000. Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation, 102(19, Suppl. 3), III56–61.
Zong, X., Bien, H., Chung, C. Y. et al. 2005. Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials, 26(26), 5330–8.
Li, R. K., Jia, Z. Q., Weisel, R. D. et al. 1999. Survival and function of bioengineered cardiac grafts. Circulation, 100(19, Suppl. 2), II63–9.
Kofidis, T., Akhyari, P., Wachsmann, B. et al. 2003. Clinically established hemostatic scaffold (tissue fleece) as biomatrix in tissue- and organ-engineering research. Tissue Eng., 9(3), 517–23.
Kehat, I., Kenyagin-Karsenti, D., Snir, M. et al. 2001. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest., 108(3), 407–14.
Kattman, S. J., Huber, T. L. and Keller, G. M. 2006. Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev. Cell, 11(5), 723–32.
Yang, L., Soonpaa, M. H., Adler, E. D. et al. 2008. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature, 453(7194), 524–8.
Kouskoff, V., Lacaud, G., Schwantz, S., Fehling, H. J. and Keller, G. 2005. Sequential development of hematopoietic and cardiac mesoderm during embryonic stem cell differentiation. Proc. Nat. Acad. Sci. USA, 102(37), 13170–5.
Guo, X. M., Zhao, Y. S., Chang, H. X. et al. 2006. Creation of engineered cardiac tissue in vitro from mouse embryonic stem cells. Circulation, 113(18), 2229–37.
Stevens, K. R., Kreutziger, K. L., Dupras, S. K. et al. 2009. Scaffold-free human cardiac tissue patch created from embryonic stem cells. Tissue Eng. Part A, 15(6), 1211–22.
Stevens, K. R., Kreutziger, K. L., Dupras, S. K. et al. 2009. Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proc. Nat. Acad. Sci. USA, 106(39), 16568–73.
Takahashi, K. and Yamanaka, S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–76.
Mauritz, C., Schwanke, K., Reppel, M. et al. 2008. Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation, 118(5), 507–17.
Zwi, L., Caspi, O., Arbel, G. et al. 2009. Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation, 120(15), 1513–23.
Zhang, J., Wilson, G. F., Soerens, A. G. et al. 2009. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ. Res., 104(4), e30–41.
Tulloch, N. L., Muskheli, V., Razumova, M. V. et al. 2011. Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ. Res., 109(1), 47–59.
Murry, C. E., Kay, M. A., Bartosek, T., Hauschka, S. D. and Schwartz, S. M. 1996. Muscle differentiation during repair of myocardial necrosis in rats via gene transfer with MyoD. J. Clin. Invest., 98(10), 2209–17.
Efe, J. A., Hilcove, S., Kim, J. et al. 2011. Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nature Cell Biol., 13(3), 215–22.
Bergmann, O., Bhardwaj, R. D., Bernard, S. et al. 2009. Evidence for cardiomyocyte renewal in humans. Science, 324(5923), 98–102.
Kajstura, J., Urbanek, K., Perl, S. et al. 2010. Cardiomyogenesis in the adult human heart. Circ. Res., 107(2), 305–15.
Ruvinov, E., Harel-Adar, T. and Cohen, S. 2011. Bioengineering the infarcted heart by applying bio-inspired materials. J. Cardiovasc. Transl. Res., 4(5), 559–74.
Urbanek, K., Quaini, F., Tasca, G. et al. 2003. Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proc. Nat. Acad. Sci. USA, 100(18), 10440–5.
Urbanek, K., Torella, D., Sheikh, F. et al. 2005. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc. Nat. Acad. Sci. USA, 102(24), 8692–7.
Urbanek, K., Cesselli, D., Rota, M. et al. 2006. Stem cell niches in the adult mouse heart. Proc. Nat. Acad. Sci. USA, 103(24), 9226–31.
Laugwitz, K. L., Moretti, A., Lam, J. et al. 2005. Post-natal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature, 433(7026), 647–53.
Segers, V. F. and Lee, R. T. 2008. Stem-cell therapy for cardiac disease. Nature, 451(7181), 937–42.
Passier, R., van Laake, L. W. and Mummery, C. L. 2008. Stem-cell-based therapy and lessons from the heart. Nature, 453(7193), 322–9.
Beltrami, A. P., Barlucchi, L., Torella, D. et al. 2003. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114(6), 763–76.
Domian, I. J., Chiravuri, M., van der Meer, P. et al. 2009. Generation of functional ventricular heart muscle from mouse ventricular progenitor cells. Science, 326(5951), 426–9.
Messina, E., De Angelis, L., Frati, G. et al. 2004. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ. Res., 95(9), 911–21.
Johnston, P. V., Sasano, T., Mills, K. et al. 2009. Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation, 120(12), 1075–83, 7 pp. following 1083.
Chimenti, I., Smith, R. R., Li, T. S. et al. 2010. Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ. Res., 106(5), 971–80.
Orlic, D., Kajstura, J., Chimenti, S. et al. 2001. Bone marrow cells regenerate infarcted myocardium. Nature, 410(6829), 701–5.
Jackson, K. A., Majka, S. M., Wang, H. et al. 2001. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest., 107(11), 1395–402.
Deb, A., Wang, S., Skelding, K. A. et al. 2003. Bone marrow-derived cardiomyocytes are present in adult human heart: a study of gender-mismatched bone marrow transplantation patients. Circulation, 107(9), 1247–9.
Orlic, D., Kajstura, J., Chimenti, S. et al. 2003. Bone marrow stem cells regenerate infarcted myocardium. Pediatr. Transplant., 7(Suppl. 3), 86–8.
Orlic, D., Kajstura, J., Chimenti, S. et al. 2001. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc. Nat. Acad. Sci. USA, 98(18), 10344–9.
Chen, S. L., Fang, W. W., Ye, F. et al. 2004. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am. J. Cardiol., 94(1), 92–5.
Fraser, J. K., Wulur, I., Alfonso, Z. et al. 2006. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol., 24(4), 150–4.
Bai, X. and Alt, E. 2010. Myocardial regeneration potential of adipose tissue-derived stem cells. Biochem. Biophys. Res. Commun., 401(3), 321–6.
Bai, X., Yan, Y., Song, Y. H. et al. 2010. Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction. Eur. Heart J., 31(4), 489–501.
Gaebel, R., Furlani, D., Sorg, H. et al. 2011. Cell origin of human mesenchymal stem cells determines a different healing performance in cardiac regeneration. PLoS One, 6(2), e15652.
Vunjak-Novakovic, G., Tandon, N., Godier, A. et al. 2010. Challenges in cardiac tissue engineering. Tissue Eng. Part B Rev., 16(2), 169–87.
Engelmayr, G. C., Cheng, M., Bettinger, C. J. et al. 2008. Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nature Mater., 7(12), 1003–10.
Radisic, M., Euloth, M., Yang, L. et al. 2003. High-density seeding of myocyte cells for cardiac tissue engineering. Biotechnol. Bioeng., 82(4), 403–14.
Zimmermann, W. H., Didie, M., Wasmeier, G. H. et al. 2002. Tissue engineering of a differentiated cardiac muscle construct. Circ. Res., 90(2), 223–30.
Dvir, T., Benishti, N., Shachar, M. and Cohen, S. et al. 2006. A novel perfusion bioreactor providing a homogenous milieu for tissue regeneration. Tissue Eng., 12(10), 2843–52.
Kofidis, T., Lenz, A., Boublik, J. et al. 2003. Pulsatile perfusion and cardiomyocyte viability in a solid three-dimensional matrix. Biomaterials, 24(27), 5009–14.
McDevitt, T. C., Angello, J. C., Whitney, M. L. et al. 2002. In vitro generation of differentiated cardiac myofibers on micropatterned laminin surfaces. J. Biomed. Mater. Res., 60(3), 472–9.
Carrier, R. L., Rupnick, M., Langer, R. et al. 2002. Perfusion improves tissue architecture of engineered cardiac muscle. Tissue Eng., 8(2), 175–88.
Bursac, N., Papadaki, M., Cohen, R. J. et al. 1999. Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies. Am. J. Physiol., 277(2, Part 2), H433–44.
Carrier, R. L., Papadaki, M., Rupnick, M. et al. 1999. Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol. Bioeng., 64(5), 580–9.
Carrier, R. L., Rupnick, M., Langer, R. et al. 2002. Effects of oxygen on engineered cardiac muscle. Biotechnol. Bioeng., 78(6), 617–25.
Papadaki, M., Bursac, N., Langer, R. et al. 2001. Tissue engineering of functional cardiac muscle: molecular, structural, and electrophysiological studies. Am. J. Physiol. Heart Circ. Physiol., 280(1), H168–78.
Rockwood, D. N., Akins, R. E., Parrag, I. C., Woodhouse, K. A. and Rabolt, J. F. 2008. Culture on electrospun polyurethane scaffolds decreases atrial natriuretic peptide expression by cardiomyocytes in vitro. Biomaterials, 29(36), 4783–91.
Naito, H., Melnychenko, I., Didie, M. et al. 2006. Optimizing engineered heart tissue for therapeutic applications as surrogate heart muscle. Circulation, 114(1 Suppl.), I72–8.
Radisic, M., Park, H., Chen, F. et al. 2006. Biomimetic approach to cardiac tissue engineering: oxygen carriers and channeled scaffolds. Tissue Eng., 12(8), 2077–91.
Radisic, M., Deen, W., Langer, R. and Vunjak-Novakovic, G. 2005. Mathematical model of oxygen distribution in engineered cardiac tissue with parallel channel array perfused with culture medium containing oxygen carriers. Am. J. Physiol. Heart Circ. Physiol., 288(3), H1278–89.
Ott, H. C., Matthiesen, T. S., Goh, S. K. et al. 2008. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nature Med., 14(2), 213–21.
Godier-Furnémont, A. F., Martens, T. P., Koeckert, M. S. et al. 2011. Composite scaffold provides a cell delivery platform for cardiovascular repair. Proc. Nat. Acad. Sci. USA, 108(19), 7974–9.
Miyagi, Y., Chiu, L. L., Cimini, M. et al. 2011. Biodegradable collagen patch with covalently immobilized VEGF for myocardial repair. Biomaterials, 32(5), 1280–90.
Shimizu, T., Yamato, M., Isoi, Y. et al. 2002. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ. Res., 90(3), e40.
Shimizu, T., Sekine, H., Yang, J. et al. 2006. Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. FASEB J., 20(6), 708–10.
Baar, K., Birla, R., Bolyut, M. O. et al. 2005. Self-organization of rat cardiac cells into contractile 3-D cardiac tissue. FASEB J., 19(2), 275–7.
Rodrigues, C. A., Fernandes, T. G., Diogo, M. M., da Silva, C. L. and Cabral, J. M. 2011. Stem cell cultivation in bioreactors. Biotechnol. Adv., 29(6), 815–29.
Ulloa-Montoya, F., Verfaillie, C. M. and Hu, W. S. 2005. Culture systems for pluripotent stem cells. J. Biosci. Bioeng., 100(1), 12–27.
Smith, R. R., Barile, L., Cho, H. C. et al. 2007. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation, 115(7), 896–908.
Gerecht-Nir, S., Cohen, S. and Itskovitz-Eldor, J. 2004. Bioreactor cultivation enhances the efficiency of human embryoid body (hEB) formation and differentiation. Biotechnol. Bioeng., 86(5), 493–502.
Subramanian, K., Park, Y., Verfaille, C. M. and Hu, W. S. 2011. Scalable expansion of multipotent adult progenitor cells as three-dimensional cell aggregates. Biotechnol. Bioeng., 108(2), 364–75.
Serra, M., Brito, C., Sousa, M. F. et al. 2010. Improving expansion of pluripotent human embryonic stem cells in perfused bioreactors through oxygen control. J. Biotechnol., 148(4), 208–15.
Dang, S. M., Gerecht-Nir, S., Chen, J., Itskovitz-Eldor, J. and Zandstra, P. W. 2004. Controlled, scalable embryonic stem cell differentiation culture. Stem Cells, 22(3), 275–82.
Zandstra, P. W., Bauwens, C., Yin, T. et al. 2003. Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Eng., 9(4), 767–78.
Bauwens, C., Yin, T., Dang, S., Peerani, R. and Zandstra, P. W. 2005. Development of a perfusion fed bioreactor for embryonic stem cell-derived cardiomyocyte generation: oxygen-mediated enhancement of cardiomyocyte output. Biotechnol. Bioeng., 90(4), 452–61.
Niebruegge, S., Bauwens, C. L., Peerani, R. et al. 2009. Generation of human embryonic stem cell-derived mesoderm and cardiac cells using size-specified aggregates in an oxygen-controlled bioreactor. Biotechnol. Bioeng., 102(2), 493–507.
Niebruegge, S., Nehring, A., Bär, H. et al. 2008. Cardiomyocyte production in mass suspension culture: embryonic stem cells as a source for great amounts of functional cardiomyocytes. Tissue Eng. Part A, 14(10), 1591–601.
Barron, V., Lyons, E., Stevenson-Cox, C., McHugh, P. E. and Pandit, A. 2003. Bioreactors for cardiovascular cell and tissue growth: a review. Ann. Biomed. Eng., 31(9), 1017–30.
Chen, H. C. and Hu, Y. C. 2006. Bioreactors for tissue engineering. Biotechnol. Lett., 28(18), 1415–23.
Eschenhagen, T. and Zimmermann, W. H. 2005. Engineering myocardial tissue. Circ. Res., 97(12), 1220–31.
Radisic, M., Marsano, A., Maidhof, R. et al. 2008. Cardiac tissue engineering using perfusion bioreactor systems. Nature Protoc., 3(4), 719–38.
Brown, M. A., Iyer, R. K. and Radisic, M. 2008. Pulsatile perfusion bioreactor for cardiac tissue engineering. Biotechnol. Prog., 24(4), 907–20.
Martin, I., Wendt, D. and Heberer, M. 2004. The role of bioreactors in tissue engineering. Trends Biotechnol., 22(2), 80–6.
Pörtner, R., Nagel-Heyer, S., Goepfert, C., Adamietz, P. and Meenen, N. M. 2005. Bioreactor design for tissue engineering. J. Biosci. Bioeng., 100(3), 235–45.
Chamuleau, S. A., van Belle, E. and Doevendans, P. A. 2009. Enhancing cardiac stem cell differentiation into cardiomyocytes. Cardiovasc. Res., 82(3), 385–7.
Maidhof, R., Marsano, A., Lee, A. J. and Vunjak-Novakovic, G. 2010. Perfusion seeding of channeled elastomeric scaffolds with myocytes and endothelial cells for cardiac tissue engineering. Biotechnol. Prog., 26(2), 565–72.
Iyer, R. K., Chiu, L. L., Reis, L. A. and Radisic, M. 2011. Engineered cardiac tissues. Curr. Opin. Biotechnol., 22(5), 706–14.
Chiu, L. L., Radisic, M. and Vunjak-Novakovic, G. 2010. Bioactive scaffolds for engineering vascularized cardiac tissues. Macromolec. Biosci, 10(11), 1286–301.
Grayson, W. L., Martens, T. P., Eng, G. M., Radisic, M. and Vunjak-Novakovic, G. 2009. Biomimetic approach to tissue engineering. Semin. Cell Dev. Biol., 20(6), 665–73.
Hecker, L. and Birla, R. K. 2007. Engineering the heart piece by piece: state of the art in cardiac tissue engineering. Regen. Med., 2(2), 125–44.
Radisic, M., Park, H., Shing, H. et al. 2004. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc. Nat. Acad. Sci. USA, 101(52), 18129–34.
Tandon, N., Cannizzaro, C., Chao, P. H. et al. 2009. Electrical stimulation systems for cardiac tissue engineering. Nature Protoc., 4(2), 155–73.
Gaetani, R., Ledda, M., Barile, L. et al. 2009. Differentiation of human adult cardiac stem cells exposed to extremely low-frequency electromagnetic fields. Cardiovasc. Res., 82(3), 411–20.
Freed, L. E., Guilak, F., Guo, X. E. et al. 2006. Advanced tools for tissue engineering: scaffolds, bioreactors, and signaling. Tissue Eng., 12(12), 3285–305.
Bursac, N., Papadaki, M., White, J. A. et al. 2003. Cultivation in rotating bioreactors promotes maintenance of cardiac myocyte electrophysiology and molecular properties. Tissue Eng., 9(6), 1243–53.
Radisic, M., Papadaki, M., White, J. A. et al. 2004. Medium perfusion enables engineering of compact and contractile cardiac tissue. Am. J. Physiol. Heart Circ. Physiol., 286(2), H507–16.
Morsi, Y. S., Yang, W. W., Owida, A. and Wong, C. S. 2007. Development of a novel pulsatile bioreactor for tissue culture. J. Artif. Organs, 10(2), 109–14.
Zimmermann, W. H., Melnychenko, I., Wasmeier, G. et al. 2006. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nature Med., 12(4), 452–8.
Akhyari, P., Fedak, P. W., Weisel, R. D. et al. 2002. Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation, 106(12, Suppl. 1), I137–42.
Chiu, L. L., Iyer, R. K., King, J. P. and Radisic, M. 2011. Biphasic electrical field stimulation AIDS in tissue engineering of multicell-type cardiac organoids. Tissue Eng. Part A, 17(11–12), 1465–77.
Tandon, N., Marsano, A., Maidhof, R. et al. 2011. Optimization of electrical stimulation parameters for cardiac tissue engineering. J. Tissue Eng. Regen. Med., 5(6), e115–25.
Barash, Y., Dvir, T., Tandeitnik, P. et al. 2010. Electric field stimulation integrated into perfusion bioreactor for cardiac tissue engineering. Tissue Eng. Part C Methods, 16(6), 1417–26.
Au, H. T., Cui, B., Chu, Z. E., Veres, T. and Radisic, M. 2009. Cell culture chips for simultaneous application of topographical and electrical cues enhance phenotype of cardiomyocytes. Lab Chip, 9(4), 564–75.
Kensah, G., Gruh, I., Viering, J. et al. 2011. A novel miniaturized multimodal bioreactor for continuous in situ assessment of bioartificial cardiac tissue during stimulation and maturation. Tissue Eng. Part C Methods, 17(4), 463–73.
Figallo, E., Cannizzaro, C., Gerecht, S. et al. 2007. Micro-bioreactor array for controlling cellular microenvironments. Lab Chip, 7(6), 710–19.
Song, H., Yoon, C., Kattman, S. J. et al. 2010. Interrogating functional integration between injected pluripotent stem cell-derived cells and surrogate cardiac tissue. Proc. Nat. Acad. Sci. USA, 107(8), 3329–34.
Birla, R. K., Dhawan, V., Dow, D. et al. 2009. Cardiac cells implanted into a cylindrical, vascularized chamber in vivo: pressure generation and morphology. Biotechnol. Lett., 31(2), 191–201.
Morritt, A. N., Bortolotto, S. K., Dilley, R. J. et al. 2007. Cardiac tissue engineering in an in vivo vascularized chamber. Circulation, 115(3), 353–60.
Sakai, T., Li, R. K., Weisel, R. D. et al. 1999. Fetal cell transplantation: a comparison of three cell types. J. Thorac. Cardiovasc. Surg., 118(4), 715–24.
Chiu, R. C., Zibaitis, A. and Kao, R. L. 1995. Cellular cardiomyoplasty: myocardial regeneration with satellite cell implantation. Ann. Thorac. Surg., 60(1), 12–18.
Murry, C. E., Wiseman, R. W., Schwartz, S. M. and Hauschka, S. D. 1996. Skeletal myoblast transplantation for repair of myocardial necrosis. J. Clin. Invest., 98(11), 2512–23.
Taylor, D. A., Atkins, B. Z., Hungspreugs, P. et al. 1998. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nature Med., 4(8), 929–33.
Scorsin, M., Hagège, A., Vilquin, J. T. et al. 2000. Comparison of the effects of fetal cardiomyocyte and skeletal myoblast transplantation on postinfarction left ventricular function. J. Thorac. Cardiovasc. Surg., 119(6), 1169–75.
Wu, K. H., Han, Z. C., Mo, X. M. and Zhou, B. 2011. Cell delivery in cardiac regenerative therapy. Ageing Res. Rev., 11(1), 32–40.
Menasché, P., Hagège, A. A., Scorsin, M. et al. 2001. Myoblast transplantation for heart failure. Lancet, 357(9252), 279–80.
Menasché, P., Hagège, A. A., Vilquin, J. T. et al. 2003. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J. Am. Coll. Cardiol., 41(7), 1078–83.
Strauer, B. E., Brehm, M., Zeus, T. et al. 2002. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation, 106(15), 1913–18.
Wollert, K. C., Meyer, G. P., Lotz, J. et al. 2004. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet, 364(9429), 141–8.
Schächinger, V., Erbs, S., Elsässer, A. et al. 2006. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N. Engl. J. Med., 355(12), 1210–21.
Strauer, B. E., Brehm, M., Zeus, T. et al. 2005. Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study. J. Am. Coll. Cardiol., 46(9), 1651–8.
Hare, J. M., Traverse, J. H., Henry, T. D. et al. 2009. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J. Am. Coll. Cardiol., 54(24), 2277–86.
Flynn, A. and O’Brien, T. 2011. Stem cell therapy for cardiac disease. Expert Opin. Biol. Ther., 11(2), 177–87.
Dawn, B., Stein, A. B., Urbanek, K. et al. 2005. Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc. Nat. Acad. Sci. USA, 102(10), 3766–71.
Meyer, G. P., Wollert, K. C., Lotz, J. et al. 2006. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation, 113(10), 1287–94.
Assmus, B., Schächinger, V., Teupe, C. et al. 2002. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation, 106(24), 3009–17.
Perin, E. C. and Willerson, J. T. 2011. CD34+ autologous human stem cells in treating refractory angina. Circ. Res., 109(4), 351–2.
Assmus, B., Fischer-Rasokat, U., Honold, J. et al. 2007. Transcoronary transplantation of functionally competent BMCs is associated with a decrease in natriuretic peptide serum levels and improved survival of patients with chronic postinfarction heart failure: results of the TOPCARE-CHD Registry. Circ. Res., 100(8), 1234–41.
Perin, E. C., Silva, G. V., Henry, T. D. et al. 2011. A randomized study of transendocardial injection of autologous bone marrow mononuclear cells and cell function analysis in ischemic heart failure (FOCUS-HF). Am. Heart J., 161(6), 1078–87.
Kang, H. J., Lee, H. Y., Na, S. H. et al. 2006. Differential effect of intracoronary infusion of mobilized peripheral blood stem cells by granulocyte colony-stimulating factor on left ventricular function and remodeling in patients with acute myocardial infarction versus old myocardial infarction: the MAGIC Cell-3-DES randomized, controlled trial. Circulation, 114(1 Suppl.), I145–51.
Tse, H. F., Thambar, S., Kwong, Y. L. et al. 2007. Prospective randomized trial of direct endomyocardial implantation of bone marrow cells for treatment of severe coronary artery diseases (PROTECT-CAD trial). Eur. Heart J., 28(24), 2998–3005.
Dib, N., Dinsmore, J., Labadibi, Z. et al. 2009. One-year follow-up of feasibility and safety of the first U.S., randomized, controlled study using 3-dimensional guided catheter-based delivery of autologous skeletal myoblasts for ischemic cardiomyopathy (CAuSMIC study). JACC Cardiovasc. Interv., 2(1), 9–16.
Shimizu, T., Sekine, H., Isoi, Y. et al. 2006. Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets. Tissue Eng., 12(3), 499–507.
Sekine, H., Shimizu, T., Hobo, K. et al. 2008. Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation, 118(14 Suppl.), S145–52.
Sasagawa, T., Shimizu, T., Sekiya, S. et al. 2010. Design of prevascularized three-dimensional cell-dense tissues using a cell sheet stacking manipulation technology. Biomaterials, 31(7), 1646–54.
Asakawa, N., Shimizu, T., Tsuda, Y. et al. 2010. Pre-vascularization of in vitro three-dimensional tissues created by cell sheet engineering. Biomaterials, 31(14), 3903–9.
Itabashi, Y., Miyoshi, S., Kawaguchi, H. et al. 2005. A new method for manufacturing cardiac cell sheets using fibrin-coated dishes and its electrophysiological studies by optical mapping. Artif. Organs, 29(2), 95–103.
Villet, O. M., Siltanen, A., Pätilä, T. et al. 2011. Advances in cell transplantation therapy for diseased myocardium. Stem Cells Int., 679171.
Memon, I. A., Sawa, Y., Fukushima, N. et al. 2005. Repair of impaired myocardium by means of implantation of engineered autologous myoblast sheets. J. Thorac. Cardiovasc. Surg., 130(5), 1333–41.
Siltanen, A., Kitabayashi, K., Pätilä, T. et al. 2011. Bcl-2 improves myoblast sheet therapy in rat chronic heart failure. Tissue Eng. Part A, 17(1–2), 115–25.
Hoashi, T., Matsumiya, G., Miyagawa, S. et al. 2009. Skeletal myoblast sheet transplantation improves the diastolic function of a pressure-overloaded right heart. J. Thorac. Cardiovasc. Surg., 138(2), 460–7.
Miyagawa, S., Saito, A., Sakaguchi, T. et al. 2010. Impaired myocardium regeneration with skeletal cell sheets–a preclinical trial for tissue-engineered regeneration therapy. Transplantation, 90(4), 364–72.
Sawa, Y. 2010. Myocardial regeneration for heart failure [in Japanese]. Nippon Rinsho, 68(4), 719–25.
Miyahara, Y., Nagaya, N., Kataoka, M. et al. 2006. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nature Med., 12(4), 459–65.
Okura, H., Matsuyama, A., Lee, C. M. et al. 2010. Cardiomyoblast-like cells differentiated from human adipose tissue-derived mesenchymal stem cells improve left ventricular dysfunction and survival in a rat myocardial infarction model. Tissue Eng. Part C Methods, 16(3), 417–25.
Zakharova, L., Mastroeni, D., Mutlu, N. et al. 2010. Transplantation of cardiac progenitor cell sheet onto infarcted heart promotes cardiogenesis and improves function. Cardiovasc. Res., 87(1), 40–9.
Haraguchi, Y., Shimizu, T., Yamato, M. et al. 2006. Electrical coupling of cardiomyocyte sheets occurs rapidly via functional gap junction formation. Biomaterials, 27(27), 4765–74.
Sekine, H., Shimizu, T., Yang, J., Kobayashi, E. and Okano, T. 2006. Pulsatile myocardial tubes fabricated with cell sheet engineering. Circulation, 114(1 Suppl.), I87–93.
Miyagawa, S., Sawa, Y., Sakakida, S. et al. 2005. Tissue cardiomyoplasty using bioengineered contractile cardiomyocyte sheets to repair damaged myocardium: their integration with recipient myocardium. Transplantation, 80(11), 1586–95.
Zimmermann, W. H., Didié, M., Wasmeier, G. H. et al. 2002. Cardiac grafting of engineered heart tissue in syngenic rats. Circulation, 106(12, Suppl. 1), I151–7.
Simpson, D., Liu, H., Fan, T. H., Nerem, R. and Dudley, S. C. 2007. A tissue engineering approach to progenitor cell delivery results in significant cell engraftment and improved myocardial remodeling. Stem Cells, 25(9), 2350–7.
Kellar, R. S., Landeen, L. K., Shepherd, B. R. et al. 2001. Scaffold-based three-dimensional human fibroblast culture provides a structural matrix that supports angiogenesis in infarcted heart tissue. Circulation, 104(17), 2063–8.
Fukuhara, S., Tomita, S., Nakatani, T. et al. 2005. Bone marrow cell-seeded biodegradable polymeric scaffold enhances angiogenesis and improves function of the infarcted heart. Circ. J., 69(7), 850–7.
Miyagawa, S., Roth, M., Saito, A., Sawa, Y. and Kostin, S. 2011. Tissue-engineered cardiac constructs for cardiac repair. Ann. Thorac. Surg., 91(1), 320–9.
Jawad, H., Ali, N. N., Lyon, A. R., et al. 2008. Myocardial tissue engineering. Br. Med. Bull., 87, 31–47.
Leor, J., Tuvia, S., Guetta, V. et al. 2009. Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in swine. J. Am. Coll. Cardiol., 54(11), 1014–23.
Ozawa, T., Mickle, D. A., Weisel, R. D. et al. 2002. Optimal biomaterial for creation of autologous cardiac grafts. Circulation, 106(12, Suppl. 1), I176–82.
McDevitt, T. C., Woodhouse, K. A., Hauschka, S. D., Murry, C. E. and Stayton, P. S. 2003. Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair. J. Biomed. Mater. Res. A, 66(3), 586–95.
Kofidis, T., Akhyari, P., Boublik, J. et al. 2002. In vitro engineering of heart muscle: artificial myocardial tissue. J. Thorac. Cardiovasc. Surg., 124(1), 63–9.
Chachques, J. C., Trainini, J. C., Lago, N. et al. 2008. Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM trial): clinical feasibility study. Ann. Thorac. Surg., 85(3), 901–8.
Matsubayashi, K., Fedak, P. W., Mickle, D. A. et al. 2003. Improved left ventricular aneurysm repair with bioengineered vascular smooth muscle grafts. Circulation, 108(Suppl. 1), II219–25.
Siepe, M., Giraud, M. N., Pavlovic, M. et al. 2006. Myoblast-seeded biodegradable scaffolds to prevent post-myocardial infarction evolution toward heart failure. J. Thorac. Cardiovasc. Surg., 132(1), 124–31.
Weymann, A., Loganathan, S., Takahashi, H. et al. 2011. Development and evaluation of a perfusion decellularization porcine heart model – generation of 3-dimensional myocardial neoscaffolds. Circ. J., 75(4), 852–60.
Wainwright, J. M., Czajka, C. A., Patel, U. B. et al. 2010. Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Eng. Part C Methods, 16(3), 525–32.
Taylor, D. A. 2009. From stem cells and cadaveric matrix to engineered organs. Curr. Opin. Biotechnol., 20(5), 598–605.
Naughton, G. K. 2002. From lab bench to market: critical issues in tissue engineering. Ann. NY Acad. Sci., 961, 372–85.