Skip to main content Accessibility help
  • Print publication year: 2012
  • Online publication date: December 2012

Chapter 4 - Immunologyof MS


1. Diaz-Villoslada, P., Shih, A., Shao, L., Genain, C.P., and Hauser, S.L. (1999). Autoreactivity to myelin antigens: myelin/oligodendrocyte glycoprotein is a prevalent autoantigen. J. Neuroimmunol. 99, 36–43.
2. Kutzelnigg, A., Faber-Rod, J.C., Bauer, J., et al. (2007). Widespread demyelination in the cerebellar cortex in multiple sclerosis. Brain Pathol. 17, 38–44.
3. Witte, M.E., Geurts, J.J., de Vries, H.E., van der Valk, P., and van Horssen, J. (2010). Mitochondrial dysfunction: a potential link between neuroinflammation and neurodegeneration?Mitochondrion 10, 411–418.
4. Ota, K., Matsui, M., Milford, E.L., et al. (1990). T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 346, 183–187.
5. Wucherpfennig, K.W., Zhang, J., Witek, C., et al. (1994). Clonal expansion and persistence of human T cells specific for an immunodominant myelin basic protein peptide. J. Immunol. 152, 5581–5592.
6. Chou, Y.K., Henderikx, P., Vainiene, M., et al. (1991). Specificity of human T cell clones reactive to immunodominant epitopes of myelin basic protein. J. Neurosci. Res. 28, 280–290.
7. Olsson, T., Zhi, W.W., Hojeberg, B., et al. (1990). Autoreactive T lymphocytes in multiple sclerosis determined by antigen-induced secretion of interferon-gamma. J. Clin. Invest. 86, 981–985.
8. Tejada-Simon, M.V., Hong, J., Rivera, V.M., and Zhang, J.Z. (2001). Reactivity pattern and cytokine profile of T cells primed by myelin peptides in multiple sclerosis and healthy individuals. Eur. J. Immunol. 31, 907–917.
9. Mazza, G., Ponsford, M., Lowrey, P., et al. (2002). Diversity and dynamics of the T-cell response to MBP in DR2+ve individuals. Clin. Exp. Immunol. 128, 538–547.
10. Hong, J., Zang, Y.C., Li, S., Rivera, V.M., and Zhang, J.Z. (2004). Ex vivo detection of myelin basic protein-reactive T cells in multiple sclerosis and controls using specific TCR oligonucleotide probes. Eur. J. Immunol. 34, 870–881.
11. Bielekova, B., Sung, M.H., Kadom, N., et al. (2004). Expansion and functional relevance of high-avidity myelin-specific CD4+ T cells in multiple sclerosis. J. Immunol. 172, 3893–3904.
12. McLaughlin, K.A., Chitnis, T., Newcombe, J., et al. (2009). Age-dependent B cell autoimmunity to a myelin surface antigen in pediatric multiple sclerosis. J. Immunol. 183, 4067–4076.
13. McMahon, E.J., Bailey, S.L., Castenada, C.V., Waldner, H., and Miller, S.D. (2005). Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat. Med. 11, 335–339.
14. Klehmet, J., Shive, C., Guardia-Wolff, R., et al. (2004). T cell epitope spreading to myelin oligodendrocyte glycoprotein in HLA-DR4 transgenic mice during experimental autoimmune encephalomyelitis. Clin. Immunol. 111, 53–60.
15. Davies, S., Nicholson, T., Laura, M., Giovannoni, G., and Altmann, D.M. (2005). Spread of T lymphocyte immune responses to myelin epitopes with duration of multiple sclerosis. J. Neuropathol. Exp. Neurol. 64, 371–377.
16. Kutzelnigg, A., Lucchinetti, C.F., Stadelmann, C., et al. (2005). Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128, 2705–2712.
17. Weiner, H.L. (2009). The challenge of multiple sclerosis: how do we cure a chronic heterogeneous disease?Ann. Neurol. 65, 239–248.
18. Bailey-Bucktrout, S.L., Caulkins, S.C., Goings, G., et al. (2008). Cutting edge: central nervous system plasmacytoid dendritic cells regulate the severity of relapsing experimental autoimmune encephalomyelitis. J. Immunol. 180, 6457–6461.
19. Bailey, S.L., Schreiner, B., McMahon, E.J., and Miller, S.D. (2007). CNS myeloid DCs presenting endogenous myelin peptides ‘preferentially’ polarize CD4+ T(H)-17 cells in relapsing EAE. Nat. Immunol. 8, 172–180.
20. Vaknin-Dembinsky, A., Balashov, K., and Weiner, H.L. (2006). IL-23 is increased in dendritic cells in multiple sclerosis and down-regulation of IL-23 by antisense oligos increases dendritic cell IL-10 production. J. Immunol. 176, 7768–7774.
21. Karni, A., Abraham, M., Monsonego, A., et al. (2006). Innate immunity in multiple sclerosis: myeloid dendritic cells in secondary progressive multiple sclerosis are activated and drive a proinflammatory immune response. J. Immunol. 177, 4196–4202.
22. Stasiolek, M., Bayas, A., Kruse, N., et al. (2006). Impaired maturation and altered regulatory function of plasmacytoid dendritic cells in multiple sclerosis. Brain 129, 1293–1305.
23. Ajami, B., Bennett, J.L., Krieger, C., McNagny, K.M., and Rossi, F.M.Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat. Neurosci. 14, 1142–1149.
24. Benveniste, E.N. (1997). Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis. J. Mol. Med. (Berl.) 75, 165–173.
25. Traugott, U. (1985). Characterization and distribution of lymphocyte subpopulations in multiple sclerosis plaques versus autoimmune demyelinating lesions. Springer Semin. Immunopathol. 8, 71–95.
26. Cooper, M.A., Fehniger, T.A., and Caligiuri, M.A. (2001). The biology of human natural killer-cell subsets. Trends Immunol. 22, 633–640.
27. Pandya, A.D., Al-Jaderi, Z., Hoglund, R.A., et al. (2011). Identification of human NK17/NK1 cells. PLoS One 6, e26780.
28. Hao, J., Liu, R., Piao, W., et al. (2010). Central nervous system (CNS)-resident natural killer cells suppress Th17 responses and CNS autoimmune pathology. J. Exp. Med. 207, 1907–1921.
29. De Jager, P.L., Rossin, E., Pyne, S., et al. (2008). Cytometric profiling in multiple sclerosis uncovers patient population structure and a reduction of CD8low cells. Brain 131, 1701–1711.
30. Bielekova, B., Catalfamo, M., Reichert-Scrivner, S., et al. (2006). Regulatory CD56(bright) natural killer cells mediate immunomodulatory effects of IL-2R alpha-targeted therapy (daclizumab) in multiple sclerosis. Proc. Natl. Acad. Sci. U. S. A. 103, 5941–5946.
31. Martinez-Rodriguez, J.E., Saez-Borderias, A., Munteis, E., et al. (2011). Natural killer receptors distribution in multiple sclerosis: relation to clinical course and interferon-beta therapy. Clin. Immunol. 137, 41–50.
32. Berzins, S.P., Smyth, M.J., and Baxter, A.G. (2011). Presumed guilty: natural killer T cell defects and human disease. Nat. Rev. Immunol. 11, 131–142.
33. Gigli, G., Caielli, S., Cutuli, D., and Falcone, M. (2007). Innate immunity modulates autoimmunity: type 1 interferon-beta treatment in multiple sclerosis promotes growth and function of regulatory invariant natural killer T cells through dendritic cell maturation. Immunology 122, 409–417.
34. Wucherpfennig, K.W., Newcombe, J., Li, H., et al. (1992). Gamma delta T-cell receptor repertoire in acute multiple sclerosis lesions. Proc. Natl. Acad. Sci. U. S. A. 89, 4588–4592.
35. Shimonkevitz, R., Colburn, C., Burnham, J.A., et al. (1993). Clonal expansions of activated gamma/delta T cells in recent-onset multiple sclerosis. Proc. Natl. Acad. Sci. U. S. A. 90, 923–927.
36. Rajan, A.J., Gao, Y.L., Raine, C.S., and Brosnan, C.F. (1996). A pathogenic role for gamma delta T cells in relapsing-remitting experimental allergic encephalomyelitis in the SJL mouse. J. Immunol. 157, 941–949.
37. Rajan, A.J., Klein, J.D., and Brosnan, C.F. (1998). The effect of gamma delta T cell depletion on cytokine gene expression in experimental allergic encephalomyelitis. J. Immunol. 160, 5955–5962.
38. Spahn, T.W., Issazadah, S., Salvin, A.J., and Weiner, H.L. (1999). Decreased severity of myelin oligodendrocyte glycoprotein peptide 33–35-induced experimental autoimmune encephalomyelitis in mice with a disrupted TCR delta chain gene. Eur. J. Immunol. 29, 4060–4071.
39. Odyniec, A., Szczepanik, M., Mycko, M.P., Stasiolek, M., Raine, C.S., and Selmaj, K.W. (2004). Gamma delta T cells enhance the expression of experimental autoimmune encephalomyelitis by promoting antigen presentation and IL-12 production. J. Immunol. 173, 682–694.
40. Cardona, A.E. and Teale, J.M. (2002). Gamma/delta T cell-deficient mice exhibit reduced disease severity and decreased inflammatory response in the brain in murine neurocysticercosis. J. Immunol. 169, 3163–3171.
41. Kobayashi, Y., Kawai, K., Ito, K., Honda, H., Sobue, G., and Yoshikai, Y. (1997). Aggravation of murine experimental allergic encephalomyelitis by administration of T-cell receptor gamma delta-specific antibody. J. Neuroimmunol. 73, 169–174.
42. Ponomarev, E.D. and Dittel, B.N. (2005). Gamma delta T cells regulate the extent and duration of inflammation in the central nervous system by a Fas ligand-dependent mechanism. J. Immunol. 174, 4678–4687.
43. Ponomarev, E.D., Novikova, M., Yassai, M., Szczepanik, M., Gorski, J., and Dittel, B.N. (2004). Gamma delta T cell regulation of IFN-gamma production by central nervous system-infiltrating encephalitogenic T cells: correlation with recovery from experimental autoimmune encephalomyelitis. J. Immunol. 173, 1587–1595.
44. Lockhart, E., Green, A.M., and Flynn, J.L. (2006). IL-17 production is dominated by gamma delta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J. Immunol. 177, 4662–4669.
45. Shibata, K., Yamada, H., Hara, H., Kishihara, K., and Yoshikai, Y. (2007). Resident Vdelta1+ gamma delta T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. J. Immunol. 178, 4466–4472.
46. Sutton, C.E., Lalor, S.J., Sweeney, C.M., Brereton, C.F., Lavelle, E.C., and Mills, K.H. (2009). Interleukin-1 and IL-23 induce innate IL-17 production from gamma delta T cells, amplifying Th17 responses and autoimmunity. Immunity 31, 331–341.
47. Stinissen, P., Vandevyver, C., Medaer, R., et al. (1995). Increased frequency of gamma delta T cells in cerebrospinal fluid and peripheral blood of patients with multiple sclerosis: reactivity, cytotoxicity, and T cell receptor V gene rearrangements. J. Immunol. 154, 4883–4894.
48. Chen, Z. and Freedman, M.S. (2008). Correlation of specialized CD16(+) gamma delta T cells with disease course and severity in multiple sclerosis. J. Neuroimmunol. 194, 147–152.
49. Freedman, M.S., Ruijs, T.C., Selin, L.K., and Antel, J.P. (1991). Peripheral blood gamma-delta T cells lyse fresh human brain-derived oligodendrocytes. Ann.Neurol. 30, 794–800.
50. Prinz, M., Garbe, F., Schmidt, H., et al. (2006). Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis. J. Clin. Invest. 116, 456–464.
51. Berer, K., Mues, M., Koutrolos, M. (2011). Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479, 538–541.
52. Bsibsi, M., Ravid, R., Gveric, D., and van Noort, J.M. (2002). Broad expression of Toll-like receptors in the human central nervous system. J. Neuropathol. Exp. Neurol. 61, 1013–1021.
53. Correale, J., Fiol, M., and Gilmore, W. (2006). The risk of relapses in multiple sclerosis during systemic infections. Neurology 67, 652–659.
54. Andersson, A., Covacu, R., Sunnemark, D., et al. (2008). Pivotal advance: HMGB1 expression in active lesions of human and experimental multiple sclerosis. J. Leukoc. Biol. 84, 1248–1255.
55. Touil, T., Fitzgerald, D., Zhang, G.X., Rostami, A., and Gran, B. (2006). Cutting edge: TLR3 stimulation suppresses experimental autoimmune encephalomyelitis by inducing endogenous IFN-beta. J. Immunol. 177, 7505–7509.
56. Gandhi, R., Laroni, A., and Weiner, H.L. (2010). Role of the innate immune system in the pathogenesis of multiple sclerosis. J. Neuroimmunol. 221, 7–14.
57. van Horssen, J., Witte, M.E., Schreibelt, G., and de Vries, H.E. (2011). Radical changes in multiple sclerosis pathogenesis. Biochim. Biophys. Acta 1812, 141–150.
58. Farez, M.F., Quintana, F.J., Gandhi, R., Izquierdo, G., Lucas, M., and Weiner, H.L. (2009). Toll-like receptor 2 and poly(ADP-ribose) polymerase 1 promote central nervous system neuroinflammation in progressive EAE. Nat. Immunol. 10, 958–964.
59. Lassmann, H. and van Horssen, J. (2011). The molecular basis of neurodegeneration in multiple sclerosis. FEBS Lett. 585, 3715–3723.
60. Cua, D.J., Sherlock, J., Chen, Y., et al. (2003). Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748.
61. Thakker, P., Leach, M.W., Kuang, W., Benoit, S.E., Leonard, J.P., and Marusic, S. (2007). IL-23 is critical in the induction but not in the effector phase of experimental autoimmune encephalomyelitis. J. Immunol. 178, 2589–2598.
62. Eugster, H.P., Frei, K., Kopf, M., Lassmann, H., and Fontana, A. (1998). IL-6-deficient mice resist myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. Eur. J. Immunol. 28, 2178–2187.
63. Sutton, C., Brereton, C., Keogh, B., Mills, K.H., and Lavelle, E.C. (2006). A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J. Exp. Med. 203, 1685–1691.
64. Ferber, I.A., Brocke, S., Taylor-Edwards, C., et al. (1996). Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J. Immunol. 156, 5–7.
65. Komiyama, Y., Nakae, S., Matsuki T., et al. (2006). IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J. Immunol. 177, 566–573.
66. Haak, S., Croxford, A.L., Kreymborg, K., et al. (2009). IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. J. Clin. Invest. 119, 61–69.
67. Coquet, J.M., Chakravarti, S., Smyth, M.J., and Godfrey, D.I. (2008). Cutting edge: IL-21 is not essential for Th17 differentiation or experimental autoimmune encephalomyelitis. J. Immunol. 180, 7097–7101.
68. Kreymborg, K., Etzensperger, R., Dumoutier, L., et al. (2007). IL-22 is expressed by Th17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. J. Immunol. 179, 8098–8104.
69. Nowak, E.C., Weaver, C.T., Turner, H., et al. (2009). IL-9 as a mediator of Th17-driven inflammatory disease. J. Exp. Med. 206, 1653–1660.
70. McQualter, J.L., Darwiche, R., Ewing, C., et al. (2001). Granulocyte macrophage colony-stimulating factor: a new putative therapeutic target in multiple sclerosis. J. Exp. Med. 194, 873–882.
71. O’Connor, R.A., Prendergast, C.T., Sabatos, C.A., et al. (2008). Cutting edge: Th1 cells facilitate the entry of Th17 cells to the central nervous system during experimental autoimmune encephalomyelitis. J. Immunol. 181, 3750–3754.
72. Langrish, C.L., Chen, Y., Blumenschein, W.M., et al. (2005). IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240.
73. Kroenke, M.A., Carlson, T.J., Andjelkovic, A.V., and Segal, B.M. (2008). IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J. Exp. Med. 205, 1535–1541.
74. Harrington, L.E., Hatton, R.D., Mangan, P.R., et al. (2005). Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132.
75. Panitch, H.S., Hirsch, R.L., and Haley, A.S., Johnson, K.P. (1987). Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet 1, 893–895.
76. Bettelli, E., Sullivan, B., Szabo, S.J., Sobel, R.A., Glimcher, L.H., and Kuchroo, V.K. (2004). Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis. J. Exp. Med. 200, 79–87.
77. Hofstetter, H.H., Ibrahim, S.M., Koczan, D., et al. (2005). Therapeutic efficacy of IL-17 neutralization in murine experimental autoimmune encephalomyelitis. Cell Immunol. 237, 123–130.
78. Codarri, L., Gyulveszi, G., Tosevski, V., et al. (2011). RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat. Immunol. 12, 560–567.
79. El-Behi, M., Ciric, B., Dai, H., et al. (2011). The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat. Immunol. 12, 568–575.
80. Abromson-Leeman, S., Bronson, R.T., and Dorf, M.E. (2009). Encephalitogenic T cells that stably express both T-bet and RORgammat consistently produce IFNgamma but have a spectrum of IL-17 profiles. J Neuroimmunol. 215, 10–24.
81. Shi, G., Cox, C.A., Vistica, B.P., Tan, C., Wawrousek, E.F., and Gery, I. (2008). Phenotype switching by inflammation-inducing polarized Th17 cells, but not by Th1 cells. J. Immunol. 181, 7205–7213.
82. Yang, Y., Weiner, J., Liu, Y., et al. (2009). T-bet is essential for encephalitogenicity of both Th1 and Th17 cells. J. Exp. Med. 206, 1549–1564.
83. Gocke, A.R., Cravens, P.D., Ben, L.H., et al. (2007). T-bet regulates the fate of Th1 and Th17 lymphocytes in autoimmunity. J. Immunol. 178, 1341–1348.
84. Lock, C., Hermans, G., Pedotti, R., et al. (2002). Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat. Med. 8, 500–508.
85. Montes, M., Zhang, X., Berthelot, L., et al. (2009). Oligoclonal myelin-reactive T-cell infiltrates derived from multiple sclerosis lesions are enriched in Th17 cells. Clin. Immunol. 130, 133–144.
86. Tzartos, J.S., Friese, M.A., Craner, M.J., et al. (2008). Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am. J. Pathol. 172, 146–155.
87. Matusevicius, D., Kivisakk, P., He, B., et al. (1999). Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult. Scler. 5, 101–104.
88. Durelli, L., Conti, L., Clerico, M., et al. (2009). T-helper 17 cells expand in multiple sclerosis and are inhibited by interferon-beta. Ann. Neurol. 65, 499–509.
89. Frisullo, G., Nociti, V., Iorio, R., et al. (2008). IL17 and IFNgamma production by peripheral blood mononuclear cells from clinically isolated syndrome to secondary progressive multiple sclerosis. Cytokine 44, 22–25.
90. Kebir, H., Kreymborg, K., Ifergan, I., et al. (2007). Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat. Med. 13, 1173–1175.
91. Kebir, H., Ifergan, I., Alvarez, J.I., et al. (2009). Preferential recruitment of interferon-gamma-expressing T(H)17 cells in multiple sclerosis. Ann. Neurol. 66, 390–402.
92. Uzawa, A., Mori, M., Arai, K., et al. (yr).Cytokine and chemokine profiles in neuromyelitis optica: significance of interleukin-6. Mult. Scler. 16, 1443–1452.
93. Ifergan, I., Kebir, H., Bernard, M., et al. (2008). The blood-brain barrier induces differentiation of migrating monocytes into Th17-polarizing dendritic cells. Brain 131, 785–799.
94. Li, Y., Wang, H., Long, Y., Lu, Z., and Hu, X. (2011). Increased memory Th17 cells in patients with neuromyelitis optica and multiple sclerosis. J. Neuroimmunol. 234, 155–160.
95. Wang, H.H., Dai, Y.Q., Qiu, W., et al. (2011). Interleukin-17-secreting T cells in neuromyelitis optica and multiple sclerosis during relapse. J. Clin. Neurosci. 18, 1313–1317.
96. Kira, J. (2011). Neuromyelitis optica and opticospinal multiple sclerosis: mechanisms and pathogenesis. Pathophysiology 18, 69–79.
97. Lee, L.F., Axtell, R., Tu, G.H., et al. (2011). IL-7 promotes T(H)1 development and serum IL-7 predicts clinical response to interferon-beta in multiple sclerosis. Sci. Transl. Med. 3, 93ra68.
98. Axtell, R.C., Raman, C., and Steinman, L. (2011). Interferon-beta exacerbates Th17-mediated inflammatory disease. Trends Immunol. 32, 272–277.
99. Sawcer, S., Ban, M., Maranian, M., et al. (2005). A high-density screen for linkage in multiple sclerosis. Am. J. Hum.Genet. 77, 454–467.
100. Friese, M.A. and Fugger, L. (2009). Pathogenic CD8(+) T cells in multiple sclerosis. Ann. Neurol. 66, 132–141.
101. Biegler, B.W., Yan, S.X., Ortega, S.B., Tennakoon, D.K., Racke, M.K., and Karandikar, N.J. (2011). Clonal composition of neuroantigen-specific CD8+ and CD4+ T-cells in multiple sclerosis. J. Neuroimmunol. 234, 131–140.
102. Crawford, M.P., Yan, S.X., Ortega, S.B., et al. (2004). High prevalence of autoreactive, neuroantigen-specific CD8+ T cells in multiple sclerosis revealed by novel flow cytometric assay. Blood 103, 4222–4231.
103. Giovanni, F., Domenico, P., Alessandro, M., et al. (2011). Circulating CD8(+)CD56(-)perforin(+) T cells are increased in multiple sclerosis patients. J. Neuroimmunol. 240–241, 137–141.
104. Annibali, V., Ristori, G., Angelini, D.F., et al. (2011). CD161(high)CD8+T cells bear pathogenetic potential in multiple sclerosis. Brain 134, 542–554.
105. Saxena, A., Martin-Blondel, G., Mars, L.T., and Liblau, R.S. (2011). Role of CD8 T cell subsets in the pathogenesis of multiple sclerosis. FEBS Lett. 585, 3758–3763.
106. Baughman, E.J., Mendoza, J.P., Ortega, S.B., et al. (2011). Neuroantigen-specific CD8+ regulatory T-cell function is deficient during acute exacerbation of multiple sclerosis. J. Autoimmun. 36, 115–124.
107. Correale, J. and Villa, A. (2010). Role of CD8+ CD25+ Foxp3+ regulatory T cells in multiple sclerosis. Ann. Neurol. 67, 625–638.
108. Weiss, H.A., Millward, J.M., and Owens, T. (2007). CD8+ T cells in inflammatory demyelinating disease. J. Neuroimmunol. 191, 79–85.
109. Chen, M.L., Yan, B.S., Kozoriz, D., and Weiner, H.L. (2009). Novel CD8(+) regulatory T cells suppress experimental autoimmune encephalomyelitis by TGF-beta- and IFN-gamma-dependent mechanisms. Eur. J. Immunol. 39, 3423–3435.
110. Lennon, V.A., Kryzer, T.J., Pittock, S.J., Verkman, A.S., and Hinson, S.R. (2005). IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J. Exp. Med. 202, 473–477.
111. Roemer, S.F., Parisi, J.E., Lennon, V.A., et al. (2007). Pattern-specific loss of aquaporin-4 immunoreactivity distinguishes neuromyelitis optica from multiple sclerosis. Brain 130, 1194–1205.
112. Jarius, S., Probst, C., Borowski, K., et al. (2010). Standardized method for the detection of antibodies to aquaporin-4 based on a highly sensitive immunofluorescence assay employing recombinant target antigen. J. Neurol. Sci. 291, 52–56.
113. Takahashi, T., Fujihara, K., Nakashima, I., et al. (2007). Anti-aquaporin-4 antibody is involved in the pathogenesis of NMO: a study on antibody titre. Brain 130, 1235–1243.
114. Jarius, S., Aboul-Enein, F., Waters, P., et al. (2008). Antibody to aquaporin-4 in the long-term course of neuromyelitis optica. Brain 131, 3072–3080.
115. Kinoshita, M., Nakatsuji, Y., Kimura, T., et al. (2009). Neuromyelitis optica: passive transfer to rats by human immunoglobulin. Biochem. Biophys. Res. Commun. 386, 623–627.
116. Bradl, M., Misu, T., Takahashi, T., et al. (2009). Neuromyelitis optica: pathogenicity of patient immunoglobulin in vivo. Ann. Neurol. 66, 630–643.
117. Hinson, S.R., Pittock, S.J., Lucchinetti, C.F., et al. (2007). Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica. Neurology 69, 2221–2231.
118. Probstel, A.K., Dornmair, K., Bittner, R., et al. (2011). Antibodies to MOG are transient in childhood acute disseminated encephalomyelitis. Neurology 77, 580–588.
119. Hauser, S.L., Waubant, E., Arnold, D.L., et al. (2008). B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med. 358, 676–688.
120. Kim, S.H., Kim, W., Li, X.F., Jung, I.J., and Kim, H.J. (2011). Repeated treatment with rituximab based on the assessment of peripheral circulating memory B cells in patients with relapsing neuromyelitis optica over 2 years. Arch. Neurol. 68, 1412–1420.
121. Bedi, G.S., Brown, A.D., Delgado, S.R., Usmani, N., Lam, B.L., and Sheremata, W.A. (2011). Impact of rituximab on relapse rate and disability in neuromyelitis optica. Mult. Scler. 17, 1225–1230.
122. Petereit, H.F., Moeller-Hartmann, W., Reske, D., and Rubbert, A. (2008). Rituximab in a patient with multiple sclerosis: effect on B cells, plasma cells and intrathecal IgG synthesis. Acta. Neurol. Scand. 117, 399–403.
123. Piccio, L., Naismith, R.T., Trinkaus, K., et al. (2010). Changes in B- and T-lymphocyte and chemokine levels with rituximab treatment in multiple sclerosis. Arch. Neurol. 67, 707–714.
124. Hori, S., and Sakaguchi, S. (2004). Foxp3: a critical regulator of the development and function of regulatory T cells. Microbes Infect. 6, 745–751.
125. Fontenot, J.D., Gavin, M.A., and Rudensky, A.Y. (2003). Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336.
126. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M., and Toda, M. (1995). Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25): breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164.
127. Liston, A. and Rudensky, A.Y. (2007). Thymic development and peripheral homeostasis of regulatory T cells. Curr. Opin. Immunol. 19, 176–185.
128. Liu, W., Putnam, A.L., Xu-Yu, Z., et al. (2006). CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med. 203, 1701–1711.
129. Roncarolo, M.G., Gregori, S., Battaglia, M., Bacchetta, R., Fleischhauer, K., and Levings, M.K. (2006). Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol. Rev. 212, 28–50.
130. Martinez-Forero, I., Garcia-Munoz, R., Martinez-Pasamar, S., et al. (2008). IL-10 suppressor activity and ex vivo Tr1 cell function are impaired in multiple sclerosis. Eur. J. Immunol. 38, 576–586.
131. Astier, A.L., Meiffren, G., Freeman, S., and Hafler, D.A. (2006). Alterations in CD46-mediated Tr1 regulatory T cells in patients with multiple sclerosis. J. Clin. Invest. 116, 3252–3257.
132. Venken, K., Hellings, N., Thewissen, M., et al. (2008). Compromised CD4+ CD25(high) regulatory T-cell function in patients with relapsing-remitting multiple sclerosis is correlated with a reduced frequency of FOXP3-positive cells and reduced FOXP3 expression at the single-cell level. Immunology 123, 79–89.
133. Feger, U., Luther, C., Poeschel, S., Melms, A., Tolosa, E., and Wiendl, H., et al. (2007). Increased frequency of CD4+ CD25+ regulatory T cells in the cerebrospinal fluid but not in the blood of multiple sclerosis patients. Clin. Exp. Immunol. 147, 412–418.
134. Haas, J., Hug, A., Viehover, A., et al. (2005). Reduced suppressive effect of CD4+CD25high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. Eur. J. Immunol. 35, 3343–3352.
135. Venken, K., Hellings, N., Hensen, K., et al. (2006). Secondary progressive in contrast to relapsing-remitting multiple sclerosis patients show a normal CD4+CD25+ regulatory T-cell function and FOXP3 expression. J. Neurosci. Res. 83, 1432–1446.
136. Viglietta, V., Baecher-Allan, C., Weiner, H.L., and Hafler, D.A. (2004). Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 199, 971–979.
137. Tsaknaridis, L., Spencer, L., Culbertson, N., et al. (2003). Functional assay for human CD4+CD25+ Treg cells reveals an age-dependent loss of suppressive activity. J. Neurosci. Res. 74, 296–308.
138. Huan, J., Culbertson, N., Spencer, L., et al. (2005). Decreased FOXP3 levels in multiple sclerosis patients. J. Neurosci. Res. 81, 45–52.
139. Frisullo, G., Nociti, V., Iorio, R., et al. (2008). Regulatory T cells fail to suppress CD4(+)T-bet(+) T cells in relapsing multiple sclerosis patients. Immunology 127, 418–428.
140. Venken, K., Thewissen, M., Hellings, N., et al. (2007). A CFSE based assay for measuring CD4+CD25+ regulatory T cell mediated suppression of auto-antigen specific and polyclonal T cell responses. J. Immunol. Methods. 322, 1–11.
141. de Andres, C., Aristimuno, C., de Las Heras, V., et al. (2007). Interferon beta-1a therapy enhances CD4+ regulatory T-cell function: an ex vivo and in vitro longitudinal study in relapsing-remitting multiple sclerosis. J. Neuroimmunol. 182, 204–211.
142. Kumar, M., Putzki, N., Limmroth, V., et al. (2006). CD4+CD25+FoxP3+ T lymphocytes fail to suppress myelin basic protein-induced proliferation in patients with multiple sclerosis. J. Neuroimmunol. 180, 178–184.
143. Korporal, M., Haas, J., Balint, B., et al. (2008). Interferon beta-induced restoration of regulatory T-cell function in multiple sclerosis is prompted by an increase in newly generated naive regulatory T cells. Arch. Neurol. 65, 1434–1439.
144. Hong, J., Li, N., Zhang, X., Zheng, B., and Zhang, J.Z. (2005). Induction of CD4+CD25+ regulatory T cells by copolymer-I through activation of transcription factor Foxp3. Proc. Natl. Acad. Sci. U. S. A. 102, 6449–6454.
145. Xu, L., Xu, Z., and Xu, M. (2009). Glucocorticoid treatment restores the impaired suppressive function of regulatory T cells in patients with relapsing-remitting multiple sclerosis. Clin. Exp. Immunol. 158, 26–30.
146. Michel, L., Berthelot, L., Pettre, S., et al. (2008). Patients with relapsing-remitting multiple sclerosis have normal Treg function when cells expressing IL-7 receptor alpha-chain are excluded from the analysis. J. Clin. Invest. 118, 3411–3419.
147. Fletcher, J.M., Lonergan, R., Lisa Costelloe, et al. (2009). CD39+Foxp3+ regulatory T cells suppress pathogenic Th17 cells and are impaired in multiple sclerosis. J. Immunol. 83, 7602–7610.
148. Baecher-Allan, C.M., Costantino, C.M., Cvetanovich, G.L., et al. (2011). CD2 costimulation reveals defective activity by human CD4+CD25(hi) regulatory cells in patients with multiple sclerosis. J. Immunol. 186, 3317–3326.
149. Fritzsching, B., Haas, J., Konig, F., et al. (2011). Intracerebral human regulatory T cells: analysis of CD4+ CD25+ FOXP3+ T cells in brain lesions and cerebrospinal fluid of multiple sclerosis patients. PLoS One6, e17988.
150. Schneider-Hohendorf, T., Stenner, M.P., Weidenfeller, C., et al. (2010). Regulatory T cells exhibit enhanced migratory characteristics, a feature impaired in patients with multiple sclerosis. Eur. J. Immunol. 40, 3581–3590.
151. Malucchi, S., Sala, A., Gilli, F., et al. (2004). Neutralizing antibodies reduce the efficacy of betaIFN during treatment of multiple sclerosis. Neurology 62, 2031–2037.
152. Ramgolam, V.S., Sha, Y., Jin, J., Zhang, X., and Markovic-Plese, S. (2009). IFN-beta inhibits human Th17 cell differentiation. J. Immunol. 183, 5418–5427.
153. Sweeney, C.M., Lonergan, R., Basdeo, S.A., et al. (2011). IL-27 mediates the response to IFN-beta therapy in multiple sclerosis patients by inhibiting Th17 cells. Brain. Behav. Immun. 25, 1170–1181.
154. Teitelbaum, D., Meshorer, A., Hirshfeld, T., Arnon, R., and Sela, M. (1971). Suppression of experimental allergic encephalomyelitis by a synthetic polypeptide. Eur. J. Immunol. 1, 242–248.
155. Comi, G., Filippi, M., and Wolinsky, J.S. (2001). European/Canadian multicenter, double-blind, randomized, placebo-controlled study of the effects of glatiramer acetate on magnetic resonance imaging: measured disease activity and burden in patients with relapsing multiple sclerosis. European/Canadian Glatiramer Acetate Study Group. Ann. Neurol. 49, 290–297.
156. Kala, M., Miravalle, A., and Vollmer, T. (2011). Recent insights into the mechanism of action of glatiramer acetate. J. Neuroimmunol. 235, 9–17.
157. Polman, C.H., O’Connor, P.W., Havrdova, E., et al. (2006). A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 354, 899–910.
158. Kappos, L., Bates, D., Hartung, H.P., et al. (2007). Natalizumab treatment for multiple sclerosis: recommendations for patient selection and monitoring. Lancet Neurol. 6, 431–441.
159. Tur, C., Tintore, M., Vidal-Jordana, A., et al. (2012). Natalizumab discontinuation after PML risk stratification: outcome from a shared and informed decision. Mult. Scler. Mar 1 [Epub ahead of print].
160. Kappos, L., Bates, D., Edan, G., et al. (2011). Natalizumab treatment for multiple sclerosis: updated recommendations for patient selection and monitoring. Lancet Neurol. 10, 745–758.
161. Cohen, J.A. and Chun, J. (2011). Mechanisms of fingolimod’s efficacy and adverse effects in multiple sclerosis. Ann. Neurol. 69, 759–777.
162. Mehling, M., Lindberg, R., Raulf, F., et al. (2010). Th17 central memory T cells are reduced by FTY720 in patients with multiple sclerosis. Neurology 75, 403–410.
163. Kappos, L., Radue, E.W., O’Connor, P., et al. (2010). A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med. 362, 387–401.
164. Cohen, J.A., Barkhof, F., Comi, G., et al. (2010). Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N. Engl. J. Med. 362, 402–415.
165. Pelletier, D. and Hafler, D.A. (2012). Fingolimod for multiple sclerosis. N. Engl. J. Med. 366, 339–347.
166. Perumal, J. and Khan, O. (2012). Emerging disease-modifying therapies in multiple sclerosis. Curr. Treat. Options Neurol., in press.
167. Linker, R.A., Lee, D.H., Ryan, S., et al. (2011). Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 134, 678–692.
168. Ghoreschi, K., Bruck, J., Kellerer, C., et al. (2011). Fumarates improve psoriasis and multiple sclerosis by inducing type II dendritic cells. J. Exp. Med. 208, 2291–2303.
169. Hill-Cawthorne, G.A., Button, T., Tuohy, O., et al. (2012). Long term lymphocyte reconstitution after alemtuzumab treatment of multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 83, 298–304.
170. Cossburn, M., Pace, A.A., Jones, J., et al. (2011). Autoimmune disease after alemtuzumab treatment for multiple sclerosis in a multicenter cohort. Neurology 77, 573–579.
171. Kappos, L., Li, D., Calabresi, P.A., et al. (2011). Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet 378, 1779–1787.
172. O’Connor, P., Wolinsky, J.S., Confavreux, C., et al. (2011). Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N. Engl. J. Med. 365, 1293–1303.
173. Schulze-Topphoff, U., Shetty, A., Varrin-Doyer, M., et al. (2012). Laquinimod, a quinoline-3-carboxamide, induces type II myeloid cells that modulate central nervous system autoimmunity. PLoS ONE 7, e33797.
174. Bruck, W. and Wegner, C. (2011). Insight into the mechanism of laquinimod action. J. Neurol. Sci. 306, 173–179.
175. Comi, G., Jeffery, D., Kappos, L., et al. (2012). Placebo-controlled trial of oral laquinimod for multiple sclerosis. N. Engl. J. Med. 366, 1000–1009.
176. Esposito, F., Radaelli, M., Martinelli, V., et al. (2010). Comparative study of mitoxantrone efficacy profile in patients with relapsing-remitting and secondary progressive multiple sclerosis. Mult. Scler. 16, 1490–1499.
177. Espejo, C. and Montalban, X. (2012). Dalfampridine in multiple sclerosis: from symptomatic treatment to immunomodulation. Clin. Immunol. 142, 84–92.