Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Print publication year: 2005
  • Online publication date: September 2009

16 - Soil biodiversity in rapidly changing tropical landscapes: scaling down and scaling up

Summary

SUMMARY

Habitat modification and fragmentation of remaining pristine areas in the tropics is occurring at a speed that threatens to compromise any serious attempt to assess their value in the biosphere, and catalogue their true biological diversity.

Knowledge about the functional significance of soil biodiversity has been strongly influenced by emphasis on temperate climates and by focusing on particular processes of significance to high-input, intensive agriculture. We do not know how robust our methodologies and our concepts are when applied to low-input systems.

Links between diversity and function are clearer for functions that are relatively specific, such as the roles of ecosystem engineers, or specific nutrient transformations compared with generalist functions, such as decomposition, micrograzing, predation and antibiosis.

Substantial redundancy exists in relation to general functions that could be important for functional stability.

When considering the legume–rhizobium symbiosis as a specific case, rhizobial diversity based on molecular phylogeny is only weakly correlated with specific functions such as ability to form nodules (infectiveness), to fix N2 (effectiveness) and to survive in the soil (adaptation).

Major challenges for the future include developing tools for managing soil biodiversity through manipulation of above-ground vegetation and soil amendments, and understanding the effects of scale to design land use systems for optimal future conservation of the biodiversity of tropical soils.

Introduction

If the soil is said to be the ‘poor man's rainforest’ in terms of the bewildering biodiversity it harbours (Usher 1985), then what status should the soil in the tropical rainforest be assigned?

References
Andrade, D. S., Murphy, P. J. & Giller, K. E. (2002a). The diversity of Phaseolus-nodulating rhizobial populations is altered by liming of acid soils planted with Phaseolus vulgaris L. in Brazil. Applied and Environmental Microbiology, 68, 4025–4034
Andrade, D. S., Murphy, P. J. & Giller, K. E. (2002b). Effects of liming and legume/cereal cropping on populations of indigenous rhizobia in an acid Brazilian oxisol. Soil Biology and Biochemistry, 34, 477–485
Anyango, B., Wilson, K. J., Beynon, J. L. & Giller, K. E. (1995). Diversity of rhizobia nodulating Phaseolus vulgaris L. in two Kenyan soils of contrasting pHs. Applied and Environmental Microbiology, 61, 4016–4021
Anyango, B., Wilson, K. & Giller, K. E. (1998). Competition in Kenyan soils between Rhizobium leguminosarum bv. phaseoli strain Kim5 and R. tropici strain CIAT899 using the gusA marker gene. Plant and Soil, 204, 69–78
Bala, A. & Giller, K. E. (2001). Symbiotic specificity of tropical tree rhizobia for host legumes. New Phytologist, 149, 495–507
Bala, A., Murphy, P. & Giller, K. E. (2002). Occurrence and genetic diversity of rhizobia nodulating Sesbania sesban in African soils. Soil Biology and Biochemistry, 34, 1759–1768
Bala, A., Murphy, P. J. & Giller, K. E. (2003a). Distribution and diversity of rhizobia nodulating agroforestry legumes in soils from three continents in the tropics. Molecular Ecology, 12, 917–929
Bala, A., Murphy, P. J., Osunde, A. O. & Giller, K. E. (2003b). Nodulation of tree legumes and ecology of their native rhizobial populations in tropical soils. Applied Soil Ecology, 22, 211–223
Barros, E., Curmi, P., Hallaire, V., Chauvel, A. & Lavelle, P. (2001). The role of macrofauna in the transformation and reversibility of soil structure of an oxisol in the process of forest to pasture conversion. Geoderma, 100, 193–213
Barrios, E., Kwesiga, F., Buresh, R. J., Sprent, J. I. & Coe, R. (1998). Relating preseason soil nitrogen to maize yield in tree legume– maize rotations. Soil Science Society of America Journal, 62, 1604–1609
Bignell, D. E., Tondoh, J., Dibog, L., et al. (2005). Below-ground biodiversity assessment: the ASB rapid, functional group approach. Alternatives to Slash-and-Burn: A Global Synthesis (Ed. by , P. J. Ericksen, , P. A. Sanchez & , A. Juo), Special Publication. Madison, WI: American Society for Agronomy
Cadisch, G. & Giller, K. E. (eds.) (1997). Driven by Nature: Plant Residue Quality and Decomposition. Wallingford: CAB International
Chauvel, A., Grimaldi, M., Barros, E., et al. (1999). Pasture degradation by an Amazonian earthworm. Nature, 389, 32–33
Chen, W.-H., Laevens, S., Lee, T.-M., et al. (2001). Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. International Journal of Systematic and Evolutionary Microbiology, 51, 1729–1735
Chikowo, R., Mapfumo, P., Nyamugafata, P. & Giller, K. E. (2004). Maize productivity and mineral N dynamics following different soil fertility management practices on a depleted sandy soil in Zimbabwe. Agriculture, Ecosystems and Environment, 102, 109–131
Coventry, R. J., Holt, J. A. & Sinclair, D. F. (1988). Nutrient cycling by mound-building termites in low-fertility soils of semi-arid tropical Australia. Australian Journal of Soil Research, 26, 375–390
Daniel, R. M., Limmer, A. W., Steele, K. W. & Smith, I. M. (1982). Anaerobic growth, nitrate reduction and denitrification in 46 rhizobial strains. Journal of General Microbiology, 128, 1811–1815
Decaëns, T., Galvis, J. H. & Amezquita, E. (2001a). Properties of the structures created by ecological engineers at the soil surface of a Colombian savanna. Comptes Rendus de L'Academie Des Sciences Serie IIII Sciences De La Vie Life Sciences, 324, 465–478
Decaëns, T., Lavelle, P., Jiménez, J. J., et al. (2001b). Impact of land management on soil macrofauna in the eastern plains of Colombia. Nature's Plow: Soil Macroinvertebrate Communities in the Neotropical Savannas of Colombia (Ed. by , J. J. Jiménez & , R. J. Thomas), pp. 19–41. Colombia: CIAT
Dobson, A. P., Bradshaw, A. D. & Baker, A. J. M. (1997). Hopes for the future: restoration ecology and conservation biology. Science, 277, 515–521
Eggleton, P. (2000). Global patterns of termite diversity. Termites: Evolution, Sociality, Symbioses, Ecology (Ed. by , T. Abe, , D. E. Bignell & , M. Higashi), pp. 25–51. Dordrecht: Kluwer Academic
Eggleton, P., Bignell, D. E., Hauser, S., et al. (2002). Termite diversity across an anthropogenic disturbance gradient in the humid forest zone of West Africa. Agriculture, Ecosystems and Environment, 90, 189–202
Feijoo, A., Knapp, E. B., Lavelle, P. & Moreno, A. G. (2001). Quantifying soil macrofauna in a Colombian watershed. Nature's Plow: Soil Macroinvertebrate Communities in the Neotropical Savannas of Colombia (Ed. by , J. J. Jiménez & , R. J. Thomas), pp. 42–48. Colombia: CIAT
Feller, C. & Beare, M. H. (1997). Physical control of soil organic matter dynamics in the tropics. Geoderma, 79, 69–116
Finlay, J. F. (2002). Global dispersal of free-living microbial eukaryote species. Science, 296, 1061–1063
Finlay, J. F. & Clarke, K. J. (1999). Ubiquitous dispersal of microbial species. Nature, 400, 828
Fragoso, C., Lavelle, P., Blanchart, E., et al. (1999). Earthworm communities of tropical agroecosystems: origin, structure and influence of management practices. Earthworm Management in Tropical Agroecosystems (Ed. by , P. Lavelle, , L. Brussaard & , P. Hendrix), pp. 27–55. Wallingford: CAB International
Geist, H. J. & Lambin, E. F. (2002). Proximate causes and underlying driving forces of tropical deforestation. BioScience, 52, 143–150
Giller, K. E. (2000). Translating science into action for agricultural development in the tropics: an example from decomposition studies. Applied Soil Ecology, 14, 1–3
Giller, K. E. (2001). Nitrogen Fixation in Tropical Cropping Systems, 2nd edition. Wallingford: CAB International
Giller, K. E., Beare, M. H., Lavelle, P., Izac, A.-M. N. & Swift, M. J. (1997). Agricultural intensification, soil biodiversity and ecosystem function. Applied Soil Ecology, 6, 3–16
Giller, K. E., Witter, E. & McGrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biology and Biochemistry, 30, 1389–1414
Gillison, A. N., Jones, D. T., Susilo, F.-X. & Bignell, D. E. (2003). Vegetation indicates diversity of soil macroinvertebrates: a case study with termites along a land-use intensification gradient in lowland Sumatra. Organisms, Diversity and Evolution, 3, 111–126
Graham, P. H., Draeger, K. J., Ferrey, M. L., et al. (1994). Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR1899. Canadian Journal of Microbiology, 40, 198–207
Heal, O. W., Anderson, J. W. & Swift, M. J. (1997). Plant litter quality and decomposition: an historical overview. Driven by Nature: Plant Litter Quality and Decomposition (Ed. by , G. Cadisch & , K. E. Giller), pp. 3–30. Wallingford: CAB International
Hernandez-Lucas, I., Segovia, L., Martínez-Romero, E. & Pueppke, S. (1995). Phylogenetic relationships and host range of Rhizobium spp. that nodulate Phaseolus vulgaris L. Applied and Environmental Microbiology, 61, 2775–2779
Holt, J. A. & Lepage, M. (2000). Termites and soil properties. Termites: Evolution, Sociality, Symbioses, Ecology (Ed. by , T. Abe, , D. E. Bignell & , M. Higashi), pp. 389–407. Dordrecht: Kluwer Academic
Jones, D. T., Susilo, F.-X., Bignell, D. E., et al. (2003). Termite assemblage collapses along a land-use intensification gradient in lowland central Sumatra, Indonesia. Journal of Applied Ecology, 40, 380–391
Jordan, D. C. (1984). Rhizobiaceae. Bergey's Manual of Systematic Bacteriology (Ed. by , N. R. Krieg & , J. G. Holt), Vol. 1, pp. 235–244. Baltimore, MD: Williams and Wilkins
Kandji, S. T., Ogol, C. K. P. O. & Albrecht, A. (2001). Diversity of plant parasitic nematodes and their relationships with some soil physico-chemical characteristics in improved fallows in western Kenya. Applied Soil Ecology, 18, 143–157
Lambin, E. F., Turner, B. L., Geist, H. J., et al. (2001). The causes of land-use and land-cover change: moving beyond the myths. Global Environmental Change, Human and Policy Dimensions, 11, 261–269
Lapied, E. & Lavelle, P. (2003). The peregrine earthworm Pontoscolex corethrurus in the East Coast of Costa Rica. Pedobiologia, 47, 471–474
Lausch, A. & Herzog, F. (2002). Applicability of landscape metrics for the monitoring of landscape change: issues of scale, resolution and interpretability. Ecological Indicators, 2, 3–15
Lavelle, P. (1997). Faunal strategies and soil processes: adaptive strategies that determine ecosystem function. Advances in Ecological Research, 27, 93–132
Lavelle, P., Bignell, D., Lepage, M., et al. (1997). Soil function in a changing world: the role of invertebrate ecosystem engineers. European Journal of Soil Biology, 33, 159–193
Lie, T. A. (1981). Gene centres: a source for genetic variants in symbiotic nitrogen fixation – host-induced ineffectivity in Pisum sativum ecotype Fulvum. Plant and Soil, 61, 125–134
Mando, A. (1997). Effect of termites and mulch on the physical rehabilitation of structurally crusted soils in the Sahel. Land Degradation and Development, 8, 269–278
Martínez-Romero, E. & Caballero-Mellado, J. (1996). Rhizobium phylogenies and bacterial genetic diversity. Critical Reviews in Plant Sciences, 15, 113–140
Martínez-Romero, E., Segovia, L., Mercante, F. M., et al. (1991). Rhizobium tropici: a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. International Journal of Systematic Bacteriology, 41, 417–426
Matson, P. A., Parton, W. J., Power, A. G. & Swift, M. J. (1997). Agricultural intensification and ecosystem properties. Science, 277, 504–509
Moran, E. (1993). Deforestation and land use in the Brazilian Amazon. Human Ecology, 21, 1–21
Moreira, F. M. S., Gillis, M., Pot, B., Kersters, K. & Franco, A. A. (1993). Characterisation of rhizobia isolated from different divergence groups of tropical Leguminosae by comparative polyacrylamide gel electrophoresis of their total proteins. Systematic and Applied Microbiology, 16, 135–146
Moreira, F. M. S., Haukka, K. & Young, J. P. W. (1998). Biodiversity of rhizobia isolated from a wide range of forest legumes in Brazil. Molecular Ecology, 7, 889–895
Moulin, L., Munive, A., Dreyfus, B. & Boivin-Masson, C. (2001). Nodulation of legumes by members of the beta-subclass of Proteobacteria. Nature, 411, 948–950
Noble, I. R. & Dirzo, R. (1997). Forests as human-dominated ecosystems. Science, 277, 522–525
Noti, M.-I., Andre, H. M., Ducarme, X. & Lebrun, P. (2003). Diversity of soil oribatid mites (Acari: Oribatida) from High Katanga (Democratic Republic of Congo): a multiscale and multifactor approach. Biodiversity and Conservation, 12, 767–785
Palm, C. A., Gachengo, C. N., Delve, R. J., Cadisch, G. & Giller, K. E. (2001). Organic inputs for soil fertility management in tropical agroecosystems: application of an organic resource database. Agriculture, Ecosystems and Environment, 83, 27–42
Romero, D., Singleton, P. W., Segovia, L., et al. (1988). Effect of naturally occurring nif reiterations on symbiotic effectiveness in Rhizobium phaseoli. Applied and Environmental Microbiology, 54, 848–850
Ruthenberg, H. (1980). Farming Systems in the Tropics, 3rd edition. Oxford: Clarendon Press
Segovia, L., Young, J. P. W. & Martínez-Romero, E. (1994). Reclassification of American Rhizobium leguminosarum biovar phaseoli Type I strains as Rhizobium etli sp. nov. International Journal of Systematic Bacteriology, 43, 374–377
Soberon-Chavez, G., Najera, R., Olivera, H. & Segovia, L. (1986). Genetic rearrangements of a Rhizobium phaseoli symbiotic plasmid. Journal of Bacteriology, 167, 487–491
Sprent, J. I. (2001). Nodulation in Legumes. Kew: Royal Botanic Gardens
Susilo, F.-X., Neutel, A. M., van Noordwijk, M., et al. (2004). Soil biodiversity and food web synthesis. Belowground Interactions in Tropical Agroecosystems (Ed. by , M. van Noordwijk, , G. Cadisch & , C. K. Ong), pp. 285–307. Wallingford: CAB International
Swift, M. J. (1976). Species diversity and the structure of microbial communities in terrestrial habitats. The Role of Aquatic and Terrestrial Organisms in Decomposition Processes (Ed. by , J. M. Anderson & , A. MacFadyen), pp. 185–221. Oxford: Blackwell Scientific
Swift, M. J. (1987). Organisation of assemblages of decomposer fungi in space and time. Organisation of Communities Past and Present (Ed. by , P. Giller & , J. Gee), pp. 229–253. Oxford: Blackwell Scientific
Swift, M. J. (1997). Agricultural intensification, soil biodiversity and ecosystem function. Applied Soil Ecology, 6, 1–2
Swift, M. J. (1998). Towards the second paradigm: integrated biological management of soil. Soil Fertility, Soil Biology and Plant Nutrition Interrelationships (Ed. by , J. O. Siqueira, , F. M. S. Moreira, , A. S. Lopes, et al.), pp. 11–24. Lavras: SBCS/UFLA/DCS
Swift, M. J., Heal, O. W. & Anderson, J. M. (1979). Decomposition in Terrestrial Ecosystems. Oxford: Blackwell Scientific
Sy, A., Giraud, E., Jourand, P., et al. (2001a). Methylotrophic Methylobaterium bacteria that nodulate and fix nitrogen in symbiosis with legumes. Journal of Bacteriology, 183, 214–220
Sy, A., Giraud, E., Samba, R., et al. (2001b). Certaines légumineuses du genre Crotalaria sont spécifiquement nodulées par une nouvelle espèce de Methylobaterium. Canadian Journal of Microbiology, 47, 503–508
Tian, G., Brussaard, L. & Kang, B. T. (1993). Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions: effect on soil fauna. Soil Biology and Biochemistry, 25, 731–737
Usher, M. B. (1985). Population and community dynamics in the soil ecosystem. Ecological Interactions in Soil: Plants, Microbes and Animals (Ed. by , A. H. Fitter, , D. Atkinson, , D. J. Read & , M. B. Usher), pp. 243–265. Oxford: Blackwell Scientific
Wardle, D. A. (2002). Communities and Ecosystems: Linking the Aboveground and Belowground Components. Princeton, NJ/Oxford: Princeton University Press
Wardle, D. A., Bonner, K. I. & Nicholson, K. S. (1997). Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos, 79, 247–258
Wilson, J. K. (1944). Over five hundred reasons for abandoning the cross-inoculation groups of the legumes. Soil Science, 58, 61–69
Wood, T. G. (1996). The agricultural importance of termites in the tropics. Agricultural Zoology Reviews, 7, 117–155
Yeates, G. W. (1981). Soil nematode population depressed in the presence of earthworms. Pedobiologia, 22, 191–195
Young, J. P. W. (1994). Sex and the single cell: the population ecology and genetics of microbes. Beyond the Biomass: Compositional and Functional Analysis of Soil Microbial Communities (Ed. by , K. Ritz, , J. Dighton & , K. E. Giller), pp. 101–107. Chichester: Wiley
Young, J. P. W. & Haukka, K. E. (1996). Diversity and phylogeny of rhizobia. New Phytologist, 133, 87–94