Skip to main content Accessibility help
×
×
Home
  • Print publication year: 2016
  • Online publication date: December 2016

1 - Biochar in the View of Climate Change Mitigation: the FOREBIOM Experience

Summary

Abstract

Biochar is currently one of the dominant topics in soil research, despite the fact that it is not a new discovery. It has the potential to address some of the most pressing questions humanity is currently facing, that is climate change, food security, energy security and environmental pollution. However, a soil system is very complex and together with the multitude of biochar production settings and nearly infinite number of potential feedstock resources it becomes evident that there is no single solution for these challenges available. This is specifically an issue when addressing the potential of biochar for climate change mitigation via reduction of greenhouse gases (GHG). Systems approaches are needed, covering the entire supply chain and backed up with life cycle assessments to ensure a positive impact by using biochar as a tool for environmental management.

This chapter provides a summary and brief introduction of the subsequent chapters of this book, with a focus on biochar for climate change mitigation, including an economic assessment of GHG abatement costs. The FOREBIOM project will be briefly introduced and results on biochar erosion after amendment of a forest floor are presented.

Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

Biochar
  • Online ISBN: 9781316337974
  • Book DOI: https://doi.org/10.1017/9781316337974
Please enter your name
Please enter a valid email address
Who would you like to send this to *
×
Abiven, S., Schmidt, M. W. I. and Lehmann, J. (2014). Biochar by design. Nature Geoscience, 7, pp. 326327.
Anderson, C. R., Condron, L. M., Clough, T. J., Fiers, M., Stewart, A., Hill, R. A. and Sherlock, R. R. (2011). Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia, 54, pp. 309320.
Bauernzeitung (2012). Wie viel Wirtschaftsdünger wert sind. [online] Available at: www.bauernzeitung.at/?id=2500,1014410 [Accessed 15 October 2015]
BMVBS Bundesministeriums für Verkehr, Ban und Stadtentwicklung (2010). Globale und regionale räumliche Verteilung von Biomassepotenzialen: Status Quo und Möglichkeit der Präzisierung. BMVBS-Online-Publikation, Nr. 27/2010. [online]. Available at: www.bbsr.bund.de/BBSR/DE/Veroeffentlichungen/BMVBS/Online/2010/DL_ ON272010.pdf [Accessed 8 January 2016]
Bridgwater, A. V., Toft, A. J. and Brammer, J. G. (2002). A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion. Renewable and Sustainable Energy Reviews, 6, pp. 181246.
Brown, T. R., Wright, M. M. and Brown, R. C. (2011). Estimating profitability of two biochar production scenarios: slow pyrolysis vs fast pyrolysis. Biofuels, Bioproducts and Biorefining, 5, pp. 5468.
Bruckman, V. J. and Klinglmüller, M. (2014). Potentials to mitigate climate change using biochar – the Austrian perspective. In: Bruckman, V. J., Liu, J., Uzun, B. B. and Apaydın-Varol, E. (eds.) Potentials to Mitigate Climate Change Using Biochar – the Austrian Perspective. IUFRO Occasional Papers, 27. Vienna.
Bruckman, V. J., Liu, J., Uzun, B. B. and Apaydın-Varol, E. (2015a). FOREBIOM timelapse biochar. [online] Available at: http://dx.doi.org/10.1553/forebiom [Accessed 18 January 2016]
Bruckman, V. J., Terada, T., Uzun, B. B., Apaydın-Varol, E. and Liu, J. (2015b). Biochar for climate change mitigation: tracing the in-situ priming effect on a forest site. Energy Procedia, 76, pp. 381387.
Bruckman, V. J., Yan, S., Hochbichler, E. and Glatzel, G. (2011). Carbon pools and temporal dynamics along a rotation period in Quercus dominated high forest and coppice with standards stands. Forest Ecology and Management, 262, pp. 18531862.
Budai, A., Zimmerman, A. R., Cowie, A. L., Webber, J. B. W., Singh, B. P., Glaser, B., Masiello, C. A., Andersson, D., Shields, F., Lehmann, J., Camps Arbestain, M., Williams, M., Sohi, S. and Joseph, S. (2013). Biochar carbon stability test method: an assessment of methods to determine biochar carbon stability. International Biochar Initiative document, Version: September 20, 2013.
Clough, T. J. and Condron, L. M. (2010). Biochar and the nitrogen cycle: introduction. Journal of Environmental Quality, 39, pp. 12181223.
Cordell, D. and White, S. (2015). Tracking phosphorus security: indicators of phosphorus vulnerability in the global food system. Food Security, 7, pp. 337350.
Crombie, K., Mašek, O., Cross, A. and Sohi, S. P. (2015). Biochar – synergies and trade-offs between soil enhancing properties and C sequestration potential. GCB Bioenergy, 7, pp. 11611175.
Cross, A. and Sohi, S. P. (2013). A method for screening the relative long-term stability of biochar. GCB Bioenergy, 5, pp. 215220.
EXAA (2013). EXAA Energy Exchange Austria. [online] Available at: www.exaa.at/en/marketdata/historical-data [Accessed 15 June 2015]
Finkenrath, M. (2011). Cost and Performance of Carbon Dioxide Capture from Power Generation. IEA Working Paper. Paris: International Energy Agency.
Gerlach, A. and Schmidt, H. (2014). The use of biochar in cattle farming. The Biochar Journal. [online] Available at: www.biochar-journal.org/en/ct/9 [Accessed 18 January 2016]
Gurwick, N. P., Moore, L. A., Kelly, C. and Elias, P. (2013). A systematic review of biochar research, with a focus on its stability in situ and its promise as a climate mitigation strategy. PLoS ONE, 8, p. e75932.
Haaland, C. and Van Den Bosch, C. K. (2015). Challenges and strategies for urban green-space planning in cities undergoing densification: a review. Urban Forestry & Urban Greening, 14, pp. 760771.
Höltinger, S., Schmidt, J., Schönhart, M. and Schmid, E. (2014). A spatially explicit techno-economic assessment of green biorefinery concepts. Biofuels, Bioproducts and Biorefining, 8, pp. 325341.
Hüppi, R., Felber, R., Neftel, A., Six, J. and Leifeld, J. (2015). Effect of biochar and liming on soil nitrous oxide emissions from a temperate maize cropping system. Soil, 1, pp. 707717.
IBI (2013). Standardized product definition and product testing guidelines for biochar that is used in soil (Document version code IBI-STD-2.1, 23. November 2015). [online]: International Biochar Initiative. Available at: www.biochar-international.org/characterizationstandard [Accessed 25 January 2016]
Kappler, G.O. (2008). Systemanalytische Untersuchung zum Aufkommen und zur Bereitstellung von energetisch nutzbarem Reststroh und Waldrestholz in Baden-Württemberg: eine auf das Karlsruher bioliq-Konzept ausgerichtete Standortanalyse. Dissertation, University of Freiburg.
Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M. H. and Soja, G. (2012). Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. Journal of Environmental Quality, 41, pp. 9901000.
Lal, R. (2004a). Carbon emission from farm operations. Environment International, 30, pp. 981990.
Lal, R. (2004b). Soil carbon sequestration impacts on global climate change and food security. Science, 304, pp. 16231627.
Lehmann, J. and Joseph, S. (eds.) (2015a). Biochar for Environmental Management: Science, Technology and Implementation. 2nd Edition. Oxford, New York: Routledge.
Lehmann, J. and Joseph, S. (2015b). Biochar for environmental management: an introduction. In: Lehmann, J. and Joseph, S. (eds.) Biochar for Environmental Management: Science, Technology and Implementation. 2nd Edition. Oxford, New York: Routledge, pp. 112.
Mann, M. E., Rahmstorf, S., Steinman, B. A., Tingley, M. and Miller, S. K. (2016). The likelihood of recent record warmth. Scientific Reports, 6, document No. 19831.
McCarl, B. A., Peacocke, C., Chrisman, R., Kung, C.-C. and Sands, R. D. (2009). Economics of biochar production, utilization and greenhouse gas offsets. In: Lehmann, J. and Joseph, S. (eds.) Biochar for Environmental Management – Science and Technology. London, Washington, DC: Earthscan, pp. 341358.
Milenković, M., Pfeifer, N. and Glira, P. (2015). Applying terrestrial laser scanning for soil surface roughness assessment. Remote Sensing, 7, pp. 20072045.
Myhre, G., Shindell, D., BréOn, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T. and Zhang, H. (2013). Anthropogenic and natural radiative forcing. In: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P. M. (eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York: Cambridge University Press, pp. 659740.
Nabuurs, G.J., Masera, K., Andrasko, K., Benitez-Ponce, P., Boer, R., Dutschke, M., Elsiddig, J., Ford-Robertson, J., Frumhoff, P., Karjalainen, T., Krankina, O., Kurz, W. A., Matsumoto, M., Oyhantcabal, W., Ravindranath, N. H., Sanz Sanchez, M. J. and Zhang, X. (2007). Forestry. In: Metz, B., Davidson, O. R., Bosch, P. R., Dave, R. and Meyer, L. A. (eds.) Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York: Cambridge University Press, Chapter 9.
Pettitt, P. (2008). Art and the Middle-to-Upper Paleolithic transition in Europe: comments on the archaeological arguments for an early Upper Paleolithic antiquity of the Grotte Chauvet art. Journal of Human Evolution, 55, pp. 908917.
Pfeifer, N., Mandlburger, G., Otepka, J. and Karel, W. (2014). OPALS – a framework for Airborne Laser Scanning data analysis. Computers, Environment and Urban Systems, 45, pp. 125136.
Roberts, K. G., Gloy, B. A., Joseph, S., Scott, N. R. and Lehmann, J. (2010). Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Environmental Science & Technology, 44, pp. 827833.
Sackett, T. E., Basiliko, N., Noyce, G. L., Winsborough, C., Schurman, J., Ikeda, C. and Thomas, S. C. (2015). Soil and greenhouse gas responses to biochar additions in a temperate hardwood forest. GCB Bioenergy, 7, pp. 10621074.
Schmidt, J., Leduc, S., Dotzauer, E., Kindermann, G. and Schmid, E. (2010). Cost-effective CO2 emission reduction through heat, power and biofuel production from woody biomass: a spatially explicit comparison of conversion technologies. Applied Energy, 87, pp. 21282141.
Schuetze, T. and Santiago-Fandiño, V. (2014). Terra Preta sanitation: a key component for sustainability in the urban environment. Sustainability, 6, pp. 77257750.
Shackley, S., Hammond, J., Gaunt, J. and Ibarrola, R. (2011). The feasibility and costs of biochar deployment in the UK. Carbon Management, 2, pp. 335356.
Shan, J. and Toth, C. (eds) (2008). Topographic Laser Ranging and Scanning: Principles and Processing. Boca Raton, London, New York: CRC Press, Taylor & Francis Group.
Stavi, I. and Lal, R. (2012). Agroforestry and biochar to offset climate change: a review. Agronomy for Sustainable Development, 33, pp. 8196.
Taghizadeh-Toosi, A., Clough, T. J., Sherlock, R. R. and Condron, L. M. (2011). Biochar adsorbed ammonia is bioavailable. Plant and Soil, 350, pp. 5769.
Thies, J. E., Rillig, M. C. and Graber, E. R. (2015). Biochar effects on the abundance, activity and diversity of the soil biota. In: Lehmann, J. and Joseph, S. (eds.) Biochar for Environmental Management: Science, Technology and Implementation. 2nd Edition. Oxford, New York: Routledge, Chapter 13.
Uzun, B. B. and Apaydın-Varol, E. (2015). Potentials to mitigate climate change using biochar – Turkey’s perspective. In: Bruckman, V. J., Liu, J., Uzun, B. B. and Apaydın-Varol, E. (eds.) Potentials to Mitigate Climate Change Using Biochar – the Austrian Perspective. IUFRO Occasional Papers, 27, Vienna.
Wang, J., Xiong, Z. and Kuzyakov, Y. (2015). Biochar stability in soil: meta-analysis of decomposition and priming effects. GCB Bioenergy, 8, pp. 512–523.
Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J. and Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nature Communications, 1, article No. 56.
Wrobel-Tobiszewska, A., Boersma, M., Sargison, J., Adams, P. and Jarick, S. (2015). An economic analysis of biochar production using residues from Eucalypt plantations. Biomass and Bioenergy, 81, pp. 177182.
Zhao, L., Cao, X., Mašek, O. and Zimmerman, A. (2013). Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials, 256–257, pp. 19.