Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T07:38:03.128Z Has data issue: false hasContentIssue false

2 - Exploring the Sources of Indirect Evidence for Cardiovascular Disease in Bioarchaeology

Potential Impact on Understanding Its Evolution

Published online by Cambridge University Press:  31 March 2023

Michaela Binder
Affiliation:
Novetus GmbH Archaeological Services
Charlotte A. Roberts
Affiliation:
Durham University
Daniel Antoine
Affiliation:
British Museum, London
Get access

Summary

The first two involve blockage of blood vessels to the heart and brain, usually due to fat build-up, leading to heart attacks and strokes, respectively, but blood clots (emboli) and bleeding from a blood vessel can also cause a stroke. Fat globules may also be released into the bloodstream following severe injuries to bones. They are caused by disruption of fat cells in fractured bones (especially the femur and pelvis), and can also cause blockage of the vessels (Rothberg & Makarewich, 2019). CVDs further include rheumatic heart disease, where the heart muscle and valves are damaged by streptococcal bacteria in rheumatic fever; heart malformation at birth (congenital heart disease; and deep vein thrombosis, which leads to blood clots usually being released from the leg veins into the bloodstream causing blockage of a pulmonary artery, known as an embolism (World Health Organization, 2019).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaron, J. E., Rogers, J. and Kanis, J. A. (1992). Paleohistology of Paget’s disease in two medieval skeletons. American Journal of Physical Anthropology, 89, 325–31.CrossRefGoogle ScholarPubMed
Alcalde del Río, H., Breuil, H. and Sierra, L. (1911). Les cavernes de la Région cantabrique. (The Caves in the Cantabric Region). Monaco, France: Impr. Vve. A. Chéne Monaco.Google Scholar
Arfè, A., Scotti, L., Varas-Lorenzo, C., et al. (2016). Non-steroidal anti-inflammatory drugs and risk of heart failure in four European countries: nested case-control study. British Medical Journal, 354, i4857.Google ScholarPubMed
Assis, S., Santos, A. L. and Roberts, C. A. (2011). Evidence of hypertrophic osteoarthropathy in individuals from the Coimbra Skeletal Identified Collection (Portugal). International Journal of Paleopathology, 1, 155–63.CrossRefGoogle ScholarPubMed
Aufderheide, A. C. (2000). The Scientific Study of Mummies. Cambridge, UK: Cambridge University Press.Google Scholar
Barrett, R. and Armelagos, G. J. (2013). An Unnatural History of Emerging Infections. Oxford: Oxford University Press.Google Scholar
Bekkering, S., Miller, J. E. and Burgner, D. P. (2019). Childhood infection may mediate the relationship between suboptimal intrauterine growth, preterm birth, and adult cardiovascular disease. European Heart Journal, 40, 3273–4.CrossRefGoogle ScholarPubMed
Bianucco, R., Loynes, R. D., Sutherland, M. L., et al. (2016). Forensic analysis reveals acute decompensation of chronic heart failure in a 3500‐year‐old Egyptian. Journal of Forensic Sciences, 61, 1378–81.Google Scholar
Biehler-Gomez, L., Cappella, A., Castoldi, E., Matrille, L. and Cattaneo, C. (2017). Survival of atherosclerotic calcifications in skeletonized material: forensic and pathological implications. Journal of Forensic Sciences, 63, 386–94.Google ScholarPubMed
Biehler-Gomez, L., Maderma, E., Brescia, G., et al. (2018). Distinguishing atherosclerotic calcifications in dry bone: implications for forensic identification. Journal of Forensic Sciences, 64, 839–44.Google ScholarPubMed
Binder, A. and Roberts, C. A. (2014). Calcified structures associated with human skeletal remains: possible atherosclerosis affecting the population buried at Amara West, Sudan (1300–800 BC). International Journal of Paleopathology, 6, 20–9.CrossRefGoogle Scholar
Binder, M. and Saad, M. (2017). Hypertrophic osteoarthropathy in a young adult male from Berber, Sudan (2nd–3rd century CE). International Journal of Paleopathology, 18, 5262.CrossRefGoogle Scholar
Blatt, S. H., Cassman, V. and Sciulli, P. W. (2011). Dirty teeth and ancient trade. Evidence of cotton fibres in human dental calculus from Late Woodland, Ohio. International Journal of Osteoarchaeology, 21, 669–78.CrossRefGoogle Scholar
Bouchareychas, L. and Raffai, R. L. (2018). Apolipoprotein E and atherosclerosis: from lipoprotein metabolism to microRNA control of inflammation. Journal of Cardiovascular Development and Disease, 5(2), 30. doi: 10.3390/jcdd5020030CrossRefGoogle ScholarPubMed
Bourdrel, T., Bind, M.-A., Béjot, Y., Morel, O. and Argacha, J.-F. (2017). Cardiovascular effects of air pollution. Archives of Cardiovascular Diseases, 110, 634–42.CrossRefGoogle ScholarPubMed
Boyce, N. (2020). Bills of mortality. Tracking disease in early modern London. Lancet, 395, 1186–7.CrossRefGoogle ScholarPubMed
Boylston, A. and Ogden, A. (2005). A study of Paget’s disease at Norton Priory, Cheshire. A medieval religious house. In Zakrzewski, S. R. and Clegg, M., eds., Proceedings of the Fifth Annual Conference of the British Association for Biological Anthropology and Osteoarchaeology. British Archaeological Reports International Series 1383, pp. 69–76.Google Scholar
Brend, W. A. (1908). Bills of Mortality. London: Baillière, Tindall and Co.Google Scholar
Brickley, M. B. and Mays, S. (2019). Metabolic disease. In Buikstra, J.E., ed., Ortner’s Identification of Pathological Conditions in Human Skeletal Remains, 3rd ed. London: Academic Press, pp. 531–66.Google Scholar
Brothwell, D. R. (1960). A possible case of mongolism in a Saxon population. Annals of Human Genetics, 24, 141–50.Google Scholar
Brothwell, D. and Browne, S. (2002). Skeletal atrophy and the problem of the differential diagnosis of conditions causing paralysis. Antropologia Portuguesa, 19, 517.CrossRefGoogle Scholar
Brown, M. A., Kenn, T. and Wordsworth, B. P. (2016). Genetics of ankylosing spondylitis: Insights into pathogenesis. Nature Reviews Rheumatology, 12, 8191.CrossRefGoogle ScholarPubMed
Buckley, H. (2011). Epidemiology of gout: perspectives from the past. Current Rheumatology Reviews, 7, 106–13.CrossRefGoogle Scholar
Byard, R. W. (2017). Syphilis: Cardiovascular manifestations of the great imitator. Journal of Forensic Sciences, 63, 1312–15.Google ScholarPubMed
Calce, S. E., Kurki, H. K., Weston, D. A. and Gould, L. (2018). The relationship of age, activity, and body size on osteoarthritis in weightbearing skeletal regions. International Journal of Osteoarchaeology, 22, 4553.Google ScholarPubMed
Camm, A. J. (2002). Cardiovascular disease. In Kumar, P. and Clark, M., eds., Kumar and Clark Clinical Medicine, 5th ed. Edinburgh: W.B. Saunders, pp. 701832.Google Scholar
Caravedo, M. A., Herrera, P. M., Mongilardi, N., et al. (2016). Chronic exposure to biomass fuel smoke and markers of endothelial inflammation. Indoor Air, 26, 768–75.CrossRefGoogle ScholarPubMed
Carrizales-Sepúlveda, E. F., Ordaz-Farías, A., Vera-Pineda, R. and Flores-Ramírez, R. (2018). Periodontal disease, systemic inflammation and the risk of cardiovascular disease. Heart, Lung and Circulation, 27, 1327–34.CrossRefGoogle ScholarPubMed
Castro, M. M., Benavente, M. A., Ortega, J., et al. (2016). Thoracic aortic aneurysm in a pre-Columbian (210BC) inhabitant of Northern Chile: implications for the origins of syphilis. International Journal of Paleopathology, 13, 20–6.CrossRefGoogle Scholar
Chen, J., Budoff, M. L., Reilly, M. P., et al. (2017). Coronary artery calcification is independently and significantly related to the risks of cardiovascular disease, myocardial infarction, and heart failure in patients with CKD. Journal of the American Medical Association Cardiology, 2, 635–43.Google Scholar
Choudhury, A. R., Choudhury, K. N. and Islam, S. M. S. (2016). Relationship of dental diseases with coronary artery diseases and diabetes in Bangladesh. Cardiovascular Diagnosis and Therapy, 6, 131–7.CrossRefGoogle ScholarPubMed
Clark, A. L. and Cleland, J. G. (2013). Causes and treatment of oedema in patients with heart failure. Nature Reviews Cardiology, 10, 156–70.CrossRefGoogle ScholarPubMed
Clarke, C. R. A. (2002). Neurological disease. In Kumar, P. and Clark, M., eds., Kumar and Clark Clinical Medicine, 5th ed. Edinburgh: W.B. Saunders, pp. 1123–224.Google Scholar
Cooper, N. (2016). Putting your heart into it: a study into the prevalence rates of pulp stones in two British archaeological populations, and their possible relevance to cardiovascular disease. Unpublished MSc Palaeopathology dissertation, Durham University.Google Scholar
Czermak, J. (1852). Beschreibung und mikroskopische Untersuchung zweier agyptischer Mumien [Description and microscopic studies of two Egyptian mummies]. Sonderberichte Akademie Wissenschaft Wien, 9, 427–69.Google Scholar
Danziger, R. S. (2016). Evolutionary imprints on cardiovascular physiology and pathophysiology. In Alvergne, A., Jenkinson, C. and Faurie, C., eds., Evolutionary Thinking in Medicine: From Research to Policy and Practice. Cham, Switzerland: Springer International Publishing, pp. 155–63.Google Scholar
Davies-Barrett, A., Antoine, D. and Roberts, C. A. (2019). Inflammatory periosteal reaction on ribs associated with lower respiratory disease. A method for recording prevalence from sites with differing preservation. American Journal of Physical Anthropology, 168, 530–42.CrossRefGoogle ScholarPubMed
Davies-Barrett, A., Antoine, D. and Roberts, C. A. (2021). Time to be nosy: Evaluating the impact of environmental and sociocultural changes on maxillary sinusitis in the Middle Nile Valley (Neolithic to Medieval periods). International Journal of Paleopathology, 34, 182–96.CrossRefGoogle ScholarPubMed
Dewhirst, F. E., Chen, T., Izard, J., et al. (2010). The human oral microbiome. Journal of Bacteriology, 192, 5002–17.CrossRefGoogle ScholarPubMed
Dhadse, P., Gattani, D. and Mishra, D. (2010). The link between periodontal disease and cardiovascular disease: How far we have come in last two decades? Journal of the Indian Society for Periodontology, 14, 148–54.CrossRefGoogle ScholarPubMed
Duffin, J. (2021). History of Medicine. A Scandalously Short Indication. Toronto: University of Toronto Press.Google Scholar
Dupras, T. L., Williams, J., Willems, H. and Peeters, C. (2010). Pathological skeletal remains from Ancient Egypt: The earliest case of diabetes mellitus? Practical Diabetes International, 27, 358–63.CrossRefGoogle Scholar
Edds, A. C., Walden, J. C., Scheetz, J. P., et al. (2005). Pilot study of correlation of pulp stones with cardiovascular disease. Journal of Endodontics, 31, 504–6.CrossRefGoogle ScholarPubMed
Edmonds, M. (2019). Vascular disease in the lower limb in type 1 diabetes. Cardiovascular Endocrinology and Metabolism, 8, 3946.CrossRefGoogle ScholarPubMed
Elia, M. (2002). Nutrition. In Kumar, P. and Clark, M., eds., Kumar and Clark Clinical Medicine, 5th ed. Edinburgh: W.B. Saunders, pp. 221–51.Google Scholar
Elliot-Smith, G. and Dawson, W. R. (1924). Egyptian Mummies. New York: Dial Press.Google Scholar
Ewald, P. W. (2008). An evolutionary perspective on the causes of chronic diseases. Atherosclerosis as an illustration. In Trevathan, W. R., Smith, E. O. and McKenna, J. J., eds., Evolutionary Medicine and Health: New Perspectives. Oxford: Oxford University Press, pp. 350–67.Google Scholar
Eyler, W. R., Monsein, L. H., Beute, G. H., et al. (1996). Rib enlargement in patients with chronic pleural disease. American Journal of Radiology, 167, 921–6.Google ScholarPubMed
Faccia, K., Waters-Rist, A., Lieverse, A. R., et al. (2016). Diffuse idiopathic skeletal hyperostosis (DISH) in a middle Holocene forager from Lake Baikal, Russia: potential causes and the effect on quality of life. Quaternary International, 405, 6679.CrossRefGoogle Scholar
Farhat, G. N. and Cauley, J. A. (2008). The link between osteoporosis and cardiovascular disease. Clinical Cases in Mineral and Bone Metabolism, 5, 1934.Google ScholarPubMed
Fiorin, E., Sáez, L. and Malgosa, A. (2018). Ferns as healing plants in medieval Mallorca, Spain? Evidence from human dental calculus. International Journal of Osteoarchaeology, 29, 8290.CrossRefGoogle Scholar
Fornaciari, G., Marinozzim, S., Messineom, D., et al. (2019). A remarkable case of gout in the Imperial Rome: Surgery and diseases in antiquity by osteoarchaeological, paleopathological, and historical perspectives. International Journal of Osteoarchaeology, 29, 797807.CrossRefGoogle Scholar
Gaeta, R., Giuffra, V. and Fornaciari, G. (2013). Atherosclerosis in the Renaissance elite: Ferdinand I King of Naples (1431–1494). Virchows Archiv, 462, 593–5.CrossRefGoogle Scholar
Gale, E. A. M. and Anderson, J. V. (2002). Diabetes mellitus and other disorders of metabolism. In Kumar, P. and Clark, M., eds., Kumar and Clark Clinical Medicine, 5th ed. Edinburgh: W.B. Saunders, pp. 1069–121.Google Scholar
Gennari, L., Rendina, D., Falchetti, A. and Merlotti, D. (2019). Paget’s disease of bone. Calcified Tissue International, 104, 483500.CrossRefGoogle ScholarPubMed
Gerrard, C. M., Graves, P., Millard, A., Annis, R. and Caffell, A. (2018). Lost Live, New Voices: Unlocking the Stories of the Scottish Soldiers from the Battle of Dunbar 1650. Oxford: Oxbow Books.Google Scholar
Gluckman, P. and Hanson, M. (2006). Mismatch: The Lifestyle Diseases Timebomb. Oxford: Oxford University Press.Google Scholar
Gluckman, P., Beedle, A. and Hanson, M. (2009). Principles of Evolutionary Medicine. Oxford: Oxford University Press.Google Scholar
Goldman, B. (1995). Heritable diseases of connective tissue, epiphyseal dysplasias, and related conditions. In Resnick, D., ed., Diagnosis of Bone and Joint Disorders. London: W.B. Saunders, pp. 4095–162.Google Scholar
Grauer, A. L. and Roberts, C. A. (2019). Infectious diseases 4: Fungal, viral, multicelled parasitic and protozoan infections, and malaria. In Buikstra, J. E., ed., Ortner’s Identification of Pathological Conditions in Human Skeletal Remains, 3rd ed. London: Academic Press, pp. 441–78.Google Scholar
Grundy, S. M. (2016). Metabolic syndrome update. Trends in Cardiovascular Medicine, 26, 364–73.CrossRefGoogle ScholarPubMed
Hagelberg, E., Sykes, B. and Hedges, R. (1989). Ancient bone DNA amplified. Nature, 342, 485.CrossRefGoogle ScholarPubMed
Hall, A. J., Stubbs, B., Mamas, M. A., Myint, P. K. and Smith, T. O. (2016). Association between osteoarthritis and cardiovascular disease: Systematic review and meta-analysis. European Journal of Preventive Cardiology, 23, 938–46.CrossRefGoogle ScholarPubMed
Haraszthy, V. I., Zambon, J. J., Trevisan, M., Zeid, M. and Genco, R. J. (2000). Identification of periodontal pathogens in atheromatous plaques. Journal of Periodontology, 71, 1554–60.Google ScholarPubMed
Hardy, K., Radini, A., Buckley, S., et al. (2016). Dental calculus reveals potential respiratory irritants and ingestion of essential plant-based nutrients at Lower Palaeolithic Qesem Cave Israel. Quaternary International, 398, 129–35.CrossRefGoogle Scholar
Haynes, R., Zhu, D., Judge, P. K., et al. (2020). Chronic kidney disease, heart failure and neprilysin inhibition. Nephrology Dialysis Transplantation, 35, 558–64.CrossRefGoogle ScholarPubMed
Helskog, K. (2014). Communicating with the World of Beings: The World Heritage Rock Art Sites in Alta, Arctic Norway. Oxford: Oxbow Books.CrossRefGoogle Scholar
Holick, M. F. (2017). The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Reviews in Endocrine and Metabolic Disorders, 18, 153–65.CrossRefGoogle ScholarPubMed
Huang, W.-S., Lin, C.-L., Tsai, C.-H. and Chang, K.-H. (2020). Association of gout with CAD and effect of antigout therapy on CVD risk among gout patients. Journal of Investigative Medicine, 68, 972–9.CrossRefGoogle Scholar
Hugar, B. S., Praveen, S., Kainoor, S. K. and Shetty, A. R. S. (2014). Sudden death in Marfan syndrome. Journal of Forensic Sciences, 59, 1126–8.CrossRefGoogle ScholarPubMed
Huynh, H. T. T., Verneau, J., Levasseur, A., Drancourt, M. and Aboudharam, G. (2018). Bacteria and archaea paleomicrobiology of the dental calculus: A review. Molecular Oral Microbiology, 31, 234–42.Google Scholar
Iles, R. K. (2002). Cell and molecular biology, and genetic disorders. In Kumar, P. and Clark, M., eds., Kumar and Clark Clinical Medicine, 5th ed. Edinburgh: W.B. Saunders, pp. 153–90.Google Scholar
Jackson, R. P. J. (2016). Roman medicine: The practitioners and the practices. In Hasse, W., ed., Band 37/1. Teilband Philosophie, Wissenschaften, Technik. Wissenschaften (Medizin und Biologie). Berlin: De Gruyter, pp. 79101.Google Scholar
Jankauskas, R. (2003). The incidence of diffuse idiopathic skeletal hyperostosis and social status correlations in Lithuanian skeletal materials. International Journal of Osteoarchaeology, 13, 289–93.CrossRefGoogle Scholar
Jaskowiec, T. C., Grauer, A. L., Lee, M. and Rajnic, S. (2017). No stone unturned: The presence of kidney stones in a skeleton from nineteenth century Peoria, Illinois. International Journal of Paleopathology, 19, 1823.CrossRefGoogle Scholar
Jean, G., Souberbielle, J. C. and Chazot, C. (2017). Vitamin D in chronic kidney disease and dialysis patients. Nutrients, 9, 328.CrossRefGoogle ScholarPubMed
Jiao, H., Xiao, E. and Graves, D. T. (2015). Diabetes and its effect on bone and fracture healing. Current Osteoporosis Reports, 13, 1625.CrossRefGoogle Scholar
Johansson, I., Dahlström, U., Edner, M., et al. (2018). Type 2 diabetes and heart failure: Characteristics and prognosis in preserved, mid-range and reduced ventricular function. Diabetes and Cardiovascular Research, 15, 494503.Google ScholarPubMed
Johns, L. E., Madsen, A. M., Maduro, G., et al. (2013). A case study of the impact of inaccurate cause-of-death reporting on health disparity tracking: New York City premature cardiovascular mortality. American Journal of Public Health, 103, 733–9.CrossRefGoogle ScholarPubMed
Kelley, M. A. (1979). Skeletal changes produced by aortic aneurysms. American Journal of Physical Anthropology, 51, 35–8.CrossRefGoogle ScholarPubMed
Kheiri, B., Abdalla, A., Osman, M., et al. (2018). Vitamin D deficiency and risk of cardiovascular diseases: A narrative review. Clinical Hypertension, 24, 9.CrossRefGoogle ScholarPubMed
Khojastepour, L., Bronoosh, P., Khosropannah, S. and Rahimi, E. (2013). Can dental pulp calcification predict the risk of ischemic cardiovascular disease? Journal of Dentistry (Tehran), 10, 456–60.Google ScholarPubMed
Kim, K., Choi, S., Chang, J., et al. (2019). Severity of dental caries and risk of coronary heart disease in middle-aged men and women: A population-based cohort study of Korean adults, 2002–2013. Scientific Reports, 9, 10491.CrossRefGoogle ScholarPubMed
Krenz-Niedbała, M. and Łukasik, S. (2016). Prevalence of chronic maxillary sinusitis in children from rural and urban skeletal populations in Poland. International Journal of Paleopathology, 15, 103–12.CrossRefGoogle Scholar
Lambert, P. (2002). Rib lesions in a prehistoric Puebloan sample from Southwestern Colorado. American Journal of Physical Anthropology, 117, 281–92.CrossRefGoogle Scholar
Lewis, M. (2019). Endocrine disturbances. In Buikstra, J. E., ed., Ortner’s Identification of Pathological Conditions in Human Skeletal Remains, 3rd ed. London: Academic Press, pp. 567–84.Google Scholar
Lloyd, G. E. R., ed. (1983). Hippocratic Writings. Translated by Chadwick, J., Mann, W. N., Lonie, I. M. and Withington, E. T.. London: Penguin Books.Google Scholar
McAlister, W. H. and Herman, T. E. (1995). Osteochondrodysplasias, dysostoses, chromosomal aberrations, mucopolysaccharidoses, and mucolipidoses. In Resnick, D., ed., Diagnosis of Bone and Joint Disorders. London: W.B. Saunders, pp. 4163–244.Google Scholar
Mckinnon, K., Van Twest, M. S. and Hatton, M. (2013). A probable case of rheumatoid arthritis from the middle Anglo-Saxon period. International Journal of Paleopathology, 3, 122–7.CrossRefGoogle ScholarPubMed
McNicol, A. M. and Foulis, A. K. (2008). The endocrine system. In Levison, D. A., Reid, R., Burt, A. D., Harrison, D. J. and Fleming, S., eds., Muir’s Textbook of Pathology, 14th ed. London: Hodder Arnold, pp. 449–73.Google Scholar
Mader, R., Novofestovski, I., Adawi, M. and Lavi, I. (2009). Metabolic syndrome and cardiovascular risk in patients with diffuse idiopathic skeletal hyperostosis. Seminars in Arthritis and Rheumatism, 38, 361–5.CrossRefGoogle ScholarPubMed
Manchester, K. (1980). An ossifying diathesis of 1st century AD date. Abstracts of the 4th European Meeting of the Paleopathology Association, Caen, France, 16–19 September, p. 8.Google Scholar
Mays, S., Brickley, M. and Ives, R. (2007). Skeletal evidence for hyperparathyroidism in a nineteenth century child with rickets. International Journal of Osteoarchaeology, 17, 7381.CrossRefGoogle Scholar
Millard, A. R., Annis, R. G., Caffell, A. C., et al. (2020). The Scottish soldiers from the Battle of Dunbar 1650: A prosopographical approach to a skeletal assemblage. PLoS One, 15, e0243369.CrossRefGoogle ScholarPubMed
Mitchell, P. D. (2011). Retrospective diagnosis and the use of historical sources for investigating diseases in the past. International Journal of Paleopathology, 1, 81–8.CrossRefGoogle ScholarPubMed
Mitchell, P. D. (2012). Integrating historical sources with paleopathology. In Grauer, A. L., ed., A Companion to Paleopathology. Cambridge: Cambridge University Press, pp. 310–23.Google Scholar
Mitchell, P. D. (2017). Improving the use of historical written sources in paleopathology. International Journal of Paleopathology, 19, 8895.CrossRefGoogle ScholarPubMed
Morrison, M. L. and McMahon, C. J. (2018). Congenital heart disease in Down syndrome. In Dey, S., ed., Advances in Research on Down Syndrome. Rijeka, Croatia: Intech, pp. 95138.Google Scholar
Musunuru, K., Quasim, A. N. and Reilly, M. P. (2020). Genetics and genomics of atherosclerotic cardiovascular disease. In Pyeritz, R, Korf, B. and Grody, W., eds., Emery and Rimoin’s Principles and Practice of Medical Genetics and Genomics: Cardiovascular, Respiratory, and Gastrointestinal Disorders, 7th ed. London: Academic Press, pp. 209–30.Google Scholar
Nesse, R. M. and Williams, G. C. (1994). Why We Get Sick: The New Science of Darwinian Medicine. New York: Vintage.Google Scholar
Novak, M., Čavka, M. and Šlaus, M. (2014). Two cases of neurogenic paralysis in medieval skeletal samples from Croatia. International Journal of Paleopathology, 7, 2532.CrossRefGoogle ScholarPubMed
Nunn, J. F. (1996). Ancient Egyptian Medicine. London: British Museum Press.Google ScholarPubMed
Panzer, S., Thompson, R. C., Hergan, K., Zink, A. R. and Piombino-Mascali, D. (2018). Evidence of aortic dissection and Marfan syndrome in a mummy from the Capuchin Catacombs of Palermo, Sicily. International Journal of Paleopathology, 22, 7885.CrossRefGoogle Scholar
Pitt, M. J. (1995). Rickets and osteomalacia. In Resnick, D., ed., Diagnosis of Bone and Joint Disorders. London: W.B. Saunders, pp. 1885–992.Google Scholar
Porter, R. (1997). The Greatest Benefit to Mankind: A Medical History of Humanity from Antiquity to the Present. London: Fontana Press.Google Scholar
Pourmoghaddas, Z., Meskin, M., Sabri, M., Tehrani, M. H. M. and Najafi, T. (2018). Dental caries and gingival evaluation in children with congenital heart disease. International Journal of Preventive Medicine, 9, 52.Google ScholarPubMed
Preus, H. R., Marvik, O. J., Selvig, K. A. and Bennike, P. (2011). Ancient bacterial DNA (aDNA) in dental calculus from archaeological human remains. Journal of Archaeological Science, 38, 1827–31.CrossRefGoogle Scholar
Ragab, G., Elshahaly, M. and Bardin, T. (2017). Gout: An old disease in new perspective. A review. Journal of Advanced Research, 8, 495511.CrossRefGoogle ScholarPubMed
Rahman, M. M., Kope, J. A., Cibere, J., Goldsmith, C. H. and Anis, A. H. (2013). The relationship between osteoarthritis and cardiovascular disease in a population health survey: A cross-sectional study. British Medical Journal Open, 3, e002624.Google Scholar
Rajagopalan, S., Al-Kindi, S. G. and Brook, R. D. (2018). Air pollution and cardiovascular disease: JACC state-of-the-art review. Journal of the American College of Cardiology, 72, 2054–70.CrossRefGoogle ScholarPubMed
Reid, R. (2008). The locomotor system. In Levison, D. A., Reid, R., Burt, A. D., Harrison, D. J. and Fleming, S., eds., Muir’s Textbook of Pathology, 14th ed. London: Hodder Arnold, pp. 330–72.Google Scholar
Resnick, D. (1995). Disorders of other endocrine glands and of pregnancy. In Resnick, D., ed., Diagnosis of Bone and Joint Disorders. London: W.B. Saunders, pp. 2076–104.Google Scholar
Resnick, D. and Niwayama, G. (1995a). Enostosis, hyperostosis, and periostitis. In Resnick, D., ed., Diagnosis of Bone and Joint Disorders. London: W.B. Saunders, pp. 4396–466.Google Scholar
Resnick, D. and Niwayama, G. (1995b). Diffuse idiopathic skeletal hyperostosis (DISH): ankylosing hyperostosis of Forestier and Rotes-Querol. In Resnick, D., ed., Diagnosis of Bone and Joint Disorders. London: W.B. Saunders, pp. 1463–95.Google Scholar
Resnick, D. and Niwayama, G. (1995c). Degenerative disease of extraspinal locations. In Resnick, D., ed., Diagnosis of Bone and Joint Disorders. London: W.B. Saunders, pp. 1263–371.Google Scholar
Resnick, D. and Niwayama, G. (1995d). Ankylosing spondylitis. In Resnick, D., ed., Diagnosis of Bone and Joint Disorders. London: W.B. Saunders, pp. 1008–74.Google Scholar
Resnick, D. and Niwayama, G. (1995e). Gouty arthritis. In Resnick, D., ed., Diagnosis of Bone and Joint Disorders. London: W.B. Saunders, pp. 1511–55.Google Scholar
Resnick, D. and Niwayama, G. (1995f). Rheumatoid arthritis and the seronegative spondyloarthropathies: Radiographic and pathologic concepts. In Resnick, D., ed., Diagnosis of Bone and Joint Disorders. London: W.B. Saunders, pp. 807970.Google Scholar
Resnick, D. and Niwayama, G. (1995g). Paget’s disease. In Resnick, D., ed., Diagnosis of Bone and Joint Disorders. London: W.B. Saunders, pp. 1923–68.Google Scholar
Reyes, C., Leyland, K. M., Peat, G., et al. (2016). Association between overweight and obesity and risk of clinically diagnosed knee, hip, and hand osteoarthritis: A population-based cohort study. Arthritis and Rheumatology, 68, 1869–75.CrossRefGoogle ScholarPubMed
Rivollat, M., Castex, D., Hauret, L. and Tillier, A.-M. (2014). Ancient Down syndrome: An osteological case from Saint-Jean-des-Vignes, northeastern France, from the 5th–6th century AD. International Journal of Paleopathology, 7, 814.CrossRefGoogle Scholar
Roberts, C. A. (2015). What did agriculture do for us? The bioarchaeology of health and diet. In Barker, G. and Goucher, C., eds., The Cambridge World History, Volume 2: A World with Agriculture, 12,000 BCE–500 CE. Cambridge: Cambridge University Press, pp. 93123.CrossRefGoogle Scholar
Roberts, C. A. and Brickley, M. (2019). Infectious and metabolic diseases: A synergistic bioarchaeology. In Katzenberg, A. and Grauer, A., eds., Biological Anthropology of the Human Skeleton, 3rd ed. Chichester: Wiley-Blackwell, pp. 415–46.Google Scholar
Roberts, C. A. and Manchester, K. (2005). The Archaeology of Disease. Cheltenham: The History Press.Google Scholar
Roddy, E. and Choi, H. K. (2014). Epidemiology of gout. Rheumatic Disease Clinics of North America, 40, 155–75.CrossRefGoogle ScholarPubMed
Rogers, J. and Waldron, T. (2001). DISH and the monastic way of life. International Journal of Osteoarchaeology, 11, 357–65.CrossRefGoogle Scholar
Rossetti, C., Pasquinelli, L., Verzeletti, A., et al. (2018). A case of Paget from a Northern Italy medieval necropolis. International Journal of Paleopathology, 20, 104–7.CrossRefGoogle ScholarPubMed
Rothberg, D. L. and Makarewich, C. A. (2019). Fat embolism and fat embolism syndrome. Journal of the American Academy of Orthopaedic Surgery, 27, e346e355.CrossRefGoogle ScholarPubMed
Ruffer, M. A. (1911). On arterial lesions found in Egyptian mummies. Journal of Pathology and Bacteria, 15, 453–62.Google Scholar
Sandison, A. T. (1962). Degenerative vascular disease in the Egyptian mummy. Medical History, 6, 7781.CrossRefGoogle ScholarPubMed
Sandison, A. T. (1967). Degenerative vascular disease. In Brothwell, D. and Sandison, A. T., eds., Diseases in Antiquity. Springfield, IL: Charles C. Thomas, pp. 474–88.Google Scholar
Sanz, M., del Castillo, A. M., Jepsen, S., et al. (2020). Periodontitis and cardiovascular diseases: Consensus report. Journal of Clinical Periodontology, 47, 268–88.CrossRefGoogle ScholarPubMed
Seiler, R., Spielman, A., Zink, A. and Rühli, F. (2013). Oral pathologies of the Neolithic Iceman, c. 3,300 BC. European Journal of Oral Sciences, 121, 137–41.CrossRefGoogle Scholar
Shipley, M., Black, C. M. and O’Gradaigh, D. (2002). Rheumatology and bone disease. In Kumar, P. and Clark, M., eds., Kumar and Clark Clinical Medicine, 5th ed. Edinburgh: W.B. Saunders, pp. 473586.Google Scholar
Steinbock, R. T. (1985). The history, epidemiology and paleopathology of kidney and urinary bladder stone disease. In Merbs, C. F. and Miller, R. J., eds., Health and Disease in the Prehistoric Southwest. Anthropological Research Papers No. 34. Tempe, AZ: Arizona State University, pp. 177–90.Google Scholar
Steinbock, R. T. (1989). Studies in ancient calcified soft tissues and organic concretions II: urolithiasis (renal and urinary bladder disease). Journal of Paleopathology, 3, 3959.Google Scholar
Stuart, A. G. and Williams, A. (2007). Marfan’s syndrome and the heart. Archive of Diseases in Childhood, 92, 351–6.Google ScholarPubMed
Swinson, D., Snaith, J., Buckberry, J. and Brickley, M. (2010). High performance liquid chromatography (HPLC) in the investigation of gout in palaeopathology. International Journal of Osteoarchaeology, 20, 135–43.CrossRefGoogle Scholar
Swynghedauw, B. (2016). Evolutionary paradigms in cardiology: The case of chronic heart failure. In Alvergne, A., Jenkinson, C. and Faurie, C., eds., Evolutionary Thinking in Medicine: From Research to Policy and Practice. Cham, Switzerland: Springer International Publishing, pp. 137–53.Google Scholar
Taylor, J. H. and Antoine, D. (2014). Ancient Lives, New Discoveries: Eight Mummies, Eight Stories. London: British Museum Press.Google Scholar
Tesorieri, M. (2016). Differential diagnosis of pathologically induced upper and lower limb asymmetry in a burial from late medieval Ireland. International Journal of Palaeopathology, 14, 4654.CrossRefGoogle Scholar
Thompson, R. C., Allam, A. H., Lombardi, G. P., et al. (2013). Atherosclerosis across 4000 years of human history: The Horus study of four ancient populations. Lancet, 381, 1211–22.CrossRefGoogle ScholarPubMed
Tomczyk, J., Komarnitki, J., Zalewska, M., et al. (2014). The prevalence of pulp stones in historical populations from the middle Euphrates valley (Syria). American Journal of Physical Anthropology, 153, 103–15.CrossRefGoogle ScholarPubMed
Tomczyk, J., Turska-Szbka, A., Zalewska, M. and Olczak-Kowalczyk, D. (2017). Pulp stones prevalence in a historical sample from Radom, Poland (AD 1791–1811). International Journal of Osteoarchaeology, 2, 563–72.Google Scholar
Tomczyk, J., Myszka, A., Regulski, P. and Olczak-Kowalczyk, D. (2020). Case of pulp stones and dental wear in a Mesolithic (5900 ± 100 BC) individual from Woźna Wieś (Poland). International Journal of Osteoarchaeology, 30, 375–81.CrossRefGoogle Scholar
Tovi, F., Benharroch, D., Gatot, A. and Hertzanu, Y. (1992). Osteoblastic osteitis of the maxillary sinus. Laryngoscope, 102, 427–30.CrossRefGoogle ScholarPubMed
Traversari, M., Serrangeli, M. C., Catalano, G., et al. (2019). Multi-analytic study of a probable case of fibrous dysplasia (FD) from Certosa Monumental Cemetery (Bologna, Italy). International Journal of Paleopathology, 25, 18.CrossRefGoogle ScholarPubMed
Tuegel, C. and Bansal, N. (2017). Heart failure in patients with kidney disease. Heart, 103, 1848–53.CrossRefGoogle ScholarPubMed
Verma, D., Garg, P. K. and Dubey, A. K. (2018). Insights into the human oral microbiome. Archives of Microbiology, 200, 525–40.CrossRefGoogle ScholarPubMed
Vykoukal, D. and Davies, M. G. (2011). Vascular biology of metabolic syndrome. Journal of Vascular Surgery, 54, 819–31.CrossRefGoogle ScholarPubMed
Wakely, J. and Smith, A. (1998). A possible eighteenth–nineteenth century example of a popliteal aneurysm from Leicester. International Journal of Osteoarchaeology, 8, 5060.3.0.CO;2-N>CrossRefGoogle Scholar
Waldron, T. (2019). Joint disease. In Buikstra, J. E., ed., Ortner’s Identification of Pathological Conditions in Human Skeletal Remains, 3rd ed. London: Academic Press, pp. 719–48.Google Scholar
Waldron, T. and Antoine, D. (2002). Tortuosity or aneurysm? The palaeopathology of some abnormalities of the vertebral artery. International Journal of Osteoarchaeology, 12, 7988.CrossRefGoogle Scholar
Waldron, T., Rogers, J. and Watt, I. (1994). Rheumatoid arthritis in an English post-Medieval skeleton. International Journal of Osteoarchaeology, 4, 165–7.CrossRefGoogle Scholar
Walker, E. G. (1983). Evidence of prehistoric cardiovascular disease of syphilitic origin on the Northern Plains. American Journal of Physical Anthropology, 60, 499503.CrossRefGoogle ScholarPubMed
Walsh, J. S., Bowles, S. and Evans, A. L. (2017). Vitamin D in obesity. Current Opinion in Endocrinology, Diabetes and Obesity, 24, 389–94.CrossRefGoogle ScholarPubMed
Wang, H., Bai, J., He, B., Hu, X. and Liu, D. (2016). Osteoarthritis and the risk of cardiovascular disease: A meta-analysis of observational studies. Scientific Reports, 6, 39672.CrossRefGoogle ScholarPubMed
Wang, T. J. (2016). Vitamin D and cardiovascular disease. Annual Review of Medicine, 67, 261–72.CrossRefGoogle ScholarPubMed
Warinner, C., Matias Rodrigues, J. F., Vyas, R., et al. (2014). Pathogens and host immunity in the ancient human oral cavity. Nature Genetics, 46, 336–44.CrossRefGoogle ScholarPubMed
Weil, E. J. (2008). From ancient seas to modern disease. In Trevathan, W. R., Smith, E. O. and McKenna, J. J., eds., Evolutionary Medicine and Health: New Perspectives. Oxford: Oxford University Press, pp. 382–98.Google Scholar
Wells, C. and Woodhouse, N. (1975). Paget’s disease in an Anglo-Saxon. Medical History, 19, 396400.CrossRefGoogle Scholar
Weyrich, L. S., Dobney, K. and Cooper, A. (2015). Ancient DNA analysis of dental calculus. Journal of Human Evolution, 79, 119–24.CrossRefGoogle ScholarPubMed
World Health Organization. (2013). Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2013–2020. Geneva: World Health Organization.Google Scholar
World Health Organization. (2019). Non-communicable diseases. www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed 25 November 2022).Google Scholar
World Health Organization. (2020). Diabetes. www.who.int/health-topics/diabetes#tab=tab_1 (accessed 25 November 2022).Google Scholar
World Health Organization. (2021a). Congenital anomalies. www.who.int/health-topics/congenital-anomalies#tab=tab_1 (accessed 25 November 2022).Google Scholar
World Health Organization. (2021b). Air pollution. www.who.int/health-topics/air-pollution#tab=tab_1 (accessed 5 October 2021).Google Scholar
Zhou, C. and Byard, R. W. (2017). An analysis of the morbidity and mortality of diabetes mellitus in a forensic context. Journal of Forensic Sciences, 63, 1149–54.Google Scholar
Zink, A., Wann, L. S., Thompson, L. C., et al. (2014). Genomic correlates of atherosclerosis in ancient humans. Global Heart, 9, 203–9.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×