Skip to main content Accessibility help
  • Print publication year: 2013
  • Online publication date: February 2013

9 - Motivation

from Section I - Structural and Functional Neuroanatomy


This chapter focuses on aspects of structural and functional neuroanatomy relevant to Behavioral Neurology & Neuropsychiatry (BN&NP). It considers the general structure of the brain from the brainstem through the cerebral cortex, including a review of white matter anatomy, the cerebral vasculature, and the ventricular system. The brainstem comprises the medulla oblongata, pons and cerebellum, and midbrain. Each of these areas and the neurobehaviorally salient structures they contain are reviewed briefly in the chapter. The reticular formation (which is contributed to by several brainstem substructures) and the cranial nerves (some, but not all, of which are located within the brainstem) also are discussed in the chapter. The diencephalon includes the thalamus, metathalamus (medial and lateral geniculate nuclei), epithalamus (habenula, stria medullaris, and pineal body), and subthalamus. The chapter considers briefly the thalamus, hypothalamus (and pituitary), and the epithalamus.


1. BerriosGE, GiliM.Abulia and impulsiveness revisited: a conceptual history. Acta Psychiatr Scand. 1995;92(3):161–7.
2. SalamoneJD, CorreaM, FarrarA, MingoteSM.Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology (Berl.) 2007;191(3):461–82.
3. SalamoneJD.Functions of mesolimbic dopamine: changing concepts and shifting paradigms. Psychopharmacology (Berl.) 2007;191(3):389.
4. JahanshahiM, FrithCD.Willed action and its impairments. Cognitive Neuropsych. 1998;15(6–8):483–533.
5. BerriosGE.The History of Mental Symptoms: Descriptive Psychopathology since the Nineteenth Century. Cambridge: Cambridge University Press; 1996.
6. KalivasPW, VolkowND.The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 2005;162(8):1403–13.
7. ValensteinES, CoxVC, KakolewskiJW.Reexamination of the role of the hypothalamus in motivation. Psychol Rev. 1970;77(1):16–31.
8. BerridgeKC.Motivation concepts in behavioral neuroscience. Physiol Behav. 2004;81(2):179–209.
9. GallistelCR.The Organization of Action: A New Synthesis. Hillsdale, NJ: Lawrence Erlbaum Associates; distributed by Halsted Press; 1980.
10. HeimerL, AlheidGF, de OlmosJSet al. The accumbens: beyond the core-shell dichotomy. J Neuropsychiatry Clin Neurosci. 1997;9(3):354–81.
11. McClureSM, DawND, MontaguePR.A computational substrate for incentive salience. Trends Neurosci. 2003;26(8):423–8.
12. EpsteinJ, PanH, KocsisJHet al. Lack of ventral striatal response to positive stimuli in depressed versus normal subjects. Am J Psychiatry 2006;163(10):1784–90.
13. KeitzM, Martin-SoelchC, LeendersKL.Reward processing in the brain: a prerequisite for movement preparation?Neural Plast. 2003;10(1–2):121–8.
14. UngerstedtU.Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand Suppl. 1971;367:95–122.
15. RobbinsTW, EverittBJ.A role for mesencephalic dopamine in activation: commentary on Berridge (2006). Psychopharmacology (Berl.) 2007;191(3):433–7.
16. PhillipsAG, VaccaG, AhnS.A top-down perspective on dopamine, motivation and memory. Pharmacol Biochem Behav. 2008;90(2):236–49.
17. TaylorJR, RobbinsTW.6-Hydroxydopamine lesions of the nucleus accumbens, but not of the caudate nucleus, attenuate enhanced responding with reward-related stimuli produced by intra-accumbens d-amphetamine. Psychopharmacology (Berl.) 1986;90(3):390–7.
18. IkemotoS, PankseppJ.Dissociations between appetitive and consummatory responses by pharmacological manipulations of reward-relevant brain regions. Behav Neurosci. 1996;110(2):331–45.
19. WiseRA.Addictive drugs and brain stimulation reward. Annu Rev Neurosci. 1996;19:319–40.
20. PhillipsPE, StuberGD, HeienML, WightmanRM, CarelliRM.Subsecond dopamine release promotes cocaine seeking. Nature 2003;422(6932):614–18.
21. WachtelSR, OrtengrenA, de WitH.The effects of acute haloperidol or risperidone on subjective responses to methamphetamine in healthy volunteers. Drug Alcohol Depend. 2002;68(1):23–33.
22. AhnS, PhillipsAG.Dopaminergic correlates of sensory-specific satiety in the medial prefrontal cortex and nucleus accumbens of the rat. J Neurosci. 1999;19(19):RC29.
23. FiorinoDF, CouryA, PhillipsAG.Dynamic changes in nucleus accumbens dopamine efflux during the Coolidge effect in male rats. J Neurosci. 1997;17(12):4849–55.
24. SchultzW, TremblayL, HollermanJR.Reward processing in primate orbitofrontal cortex and basal ganglia. Cereb Cortex 2000;10(3):272–84.
25. CrowTJ.A map of the rat mesencephalon for electrical self-stimulation. Brain Res. 1972;36(2):265–73.
26. FiorinoDF, CouryA, FibigerHC, PhillipsAG.Electrical stimulation of reward sites in the ventral tegmental area increases dopamine transmission in the nucleus accumbens of the rat. Behav Brain Res. 1993;55(2):131–41.
27. MogensonGJ, TakigawaM, RobertsonA, WuM.Self-stimulation of the nucleus accumbens and ventral tegmental area of Tsai attenuated by microinjections of spiroperidol into the nucleus accumbens. Brain Res. 1979;171(2):247–59.
28. CheerJF, HeienML, GarrisPA, CarelliRM, WightmanRM.Simultaneous dopamine and single-unit recordings reveal accumbens GABAergic responses: implications for intracranial self-stimulation. Proc Natl Acad Sci USA 2005;102(52):19,150–5.
29. FlorescoSB, ToddCL, GraceAA.Glutamatergic afferents from the hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons. J Neurosci. 2001;21(13):4915–22.
30. KluverH, BucyPC.Preliminary analysis of functions of the temporal lobes in monkeys. 1939. J Neuropsychiatry Clin Neurosci. 1997;9(4):606–20.
31. KelleyAE.Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev. 2004;27(8):765–76.
32. PecinaS, SmithKS, BerridgeKC.Hedonic hot spots in the brain. Neuroscientist 2006;12(6):500–11.
33. CheerJF, AragonaBJ, HeienMLet al. Coordinated accumbal dopamine release and neural activity drive goal-directed behavior. Neuron 2007;54(2):237–44.
34. HullEM, WeberMS, EatonRCet al. Dopamine receptors in the ventral tegmental area affect motor, but not motivational or reflexive, components of copulation in male rats. Brain Res. 1991;554(1–2):72–6.
35. PereiraM, UriarteN, AgratiD, ZuluagaMJ, FerreiraA.Motivational aspects of maternal anxiolysis in lactating rats. Psychopharmacology (Berl.) 2005;180(2):241–8.
36. BerridgeKC, RobinsonTE.What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev. 1998;28(3):309–69.
37. TranAH, TamuraR, UwanoTet al. Dopamine D1 receptors involved in locomotor activity and accumbens neural responses to prediction of reward associated with place. Proc Natl Acad Sci USA 2005;102(6):2117–22.
38. YunIA, WakabayashiKT, FieldsHL, NicolaSM.The ventral tegmental area is required for the behavioral and nucleus accumbens neuronal firing responses to incentive cues. J Neurosci. 2004;24(12):2923–33.
39. SchultzW.Predictive reward signal of dopamine neurons. J Neurophysiol. 1998;80(1):1–27.
40. TekinS, CummingsJL.Frontal-subcortical neuronal circuits and clinical neuropsychiatry: an update. J Psychosom Res. 2002;53(2):647–54.
41. BecharaA, TranelD, DamasioH.Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain 2000;123 (Pt 11):2189–202.
42. BushG, VogtBA, HolmesJet al. Dorsal anterior cingulate cortex: a role in reward-based decision making. Proc Natl Acad Sci USA 2002;99(1):523–8.
43. VenturaR, CabibS, AlcaroA, OrsiniC, Puglisi-AllegraS.Norepinephrine in the prefrontal cortex is critical for amphetamine-induced reward and mesoaccumbens dopamine release. J Neurosci. 2003;23(5):1879–85.
44. VenturaR, MorroneC, Puglisi-AllegraS.Prefrontal/accumbal catecholamine system determines motivational salience attribution to both reward- and aversion-related stimuli. Proc Natl Acad Sci USA 2007;104(12):5181–6.
45. GallagherM, GrahamPW, HollandPC.The amygdala central nucleus and appetitive Pavlovian conditioning: lesions impair one class of conditioned behavior. J Neurosci. 1990;10(6):1906–11.
46. CardinalRN, ParkinsonJA, HallJ, EverittBJ.Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev. 2002;26(3):321–52.
47. LouilotA, BessonC.Specificity of amygdalostriatal interactions in the involvement of mesencephalic dopaminergic neurons in affective perception. Neuroscience 2000;96(1):73–82.
48. EverittBJ, CardinalRN, ParkinsonJA, RobbinsTW.Appetitive behavior: impact of amygdala-dependent mechanisms of emotional learning. Ann N Y Acad Sci. 2003;985:233–50.
49. HabibM.Athymhormia and disorders of motivation in basal ganglia disease. J Neuropsychiatry Clin Neurosci. 2004;16(4):509–24.
50. MogensonGJ, JonesDL, YimCY.From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol. 1980;14(2–3):69–97.
51. ApicellaP, LjungbergT, ScarnatiE, SchultzW.Responses to reward in monkey dorsal and ventral striatum. Experimental Brain Res. 1991;85(3):491–500.
52. StussDT, BensonDF.Emotional concomitants of psychosurgery. In SatzP, HeilmanKM, editors. Neuropsychology of Human Emotion. New York, NY: Guilford Press; 1983, pp. 111–40.
53. LaplaneD, DuboisB.Auto-activation deficit: a basal ganglia related syndrome. Mov Disord. 2001;16(5):810–14.
54. BrownRG, PluckG.Negative symptoms: the ‘pathology’ of motivation and goal-directed behaviour. Trends Neurosci. 2000;23(9):412–17.
55. MarinRS.Apathy: a neuropsychiatric syndrome. J Neuropsychiatry Clin Neurosci. 1991;3(3):243–54.
56. StarksteinSE.Apathy and withdrawal. Int Psychogeriatr. 2000;12(S1):135–7.
57. van ReekumR, StussDT, OstranderL.Apathy: why care?J Neuropsychiatry Clin Neurosci. 2005;17(1):7–19.
58. MarinRS, ButtersMA, MulsantBH, PollockBG, ReynoldsCF, 3rd. Apathy and executive function in depressed elderly. J Geriatr Psychiatry Neurol. 2003;16(2):112–16.
59. StarksteinSE, MaybergHS, PreziosiTJet al. Reliability, validity, and clinical correlates of apathy in Parkinson's disease. J Neuropsychiatry Clin Neurosci. 1992;4(2):134–9.
60. RobertPH, ClairetS, BenoitMet al. The apathy inventory: assessment of apathy and awareness in Alzheimer's disease, Parkinson's disease and mild cognitive impairment. Int J Geriatr Psychiatry 2002;17(12):1099–105.
61. CummingsJL, MegaM, GrayKet al. The Neuropsychiatric Inventory: comprehensive assessment of psychopathology in dementia. Neurology 1994;44(12):2308–14.
62. StraussME, SperrySD.An informant-based assessment of apathy in Alzheimer disease. Neuropsychiatry Neuropsychol Behav Neurol. 2002;15(3):176–83.
63. StarksteinSE, IngramL, GarauML, MizrahiR.On the overlap between apathy and depression in dementia. J Neurol Neurosurg Psychiatry 2005;76(8):1070–4.
64. StarksteinSE, LeentjensAF.The nosological position of apathy in clinical practice. J Neurol Neurosurg Psychiatry 2008;79(10):1088–92.