Skip to main content Accessibility help
  • Print publication year: 2014
  • Online publication date: July 2014

6 - Flight behavior: Degradation of flight muscle power and locomotor capacity in transgenicDrosophila


Adams, M., Celniker, S., Holt, R., et al. (2000) The genome sequence of Drosophila melanogaster. Science 287: 2185–2195.
Arredondo, J.J., Mardahl-Dumesnil, M., Cripps, R.M., Cervera, M., and Berstein, S.I. (2001) Overexpression of miniparamyosin causes muscle dysfunction and age-dependant myofibril degeneration in the indirect flight muscles of Drosophila melanogaster. J Muscle Res Cell Motil 22: 287–299.
Ayer, G. and Vigoreaux, J.O. (2003) Flightin is a myosin rod binding protein. Cell Biochem Biophys 38: 41–54.
Barton, B., Ayer, G., Heymann, N., Maughan, D.W., Lehmann, F.-O., and Vigoreaux, J.O. (2005) Flight muscle properties and aerodynamic performance of Drosophila expressing a flightin gene. J Exp Biol 208: 549–560.
Bier, E., Vaessin, H., Shepherd, S., et al. (1989) Searching pattern and mutation in the Drosophila genome with a P-lacZ vector. Gene Dev 3: 1273–1287.
Brembs, B., Christiansen, F., Pflüger, H.J., and Duch, C. (2007) Flight initiation and maintenance deficits in flies with genetically altered biogenic amine levels. J Neurosci 27: 11122–11131.
Buchanan, R.L. and Benzer, S. (1993) Defective glia in the Drosophila brain degeneration mutant drop-dead. Neuron 10: 839–850.
Bullard, B., Bell, J., Craig, R., and Leonard, K. (1985) Arthrin: A new actin-like protein in insect flight muscle. J Mol Biol 182: 443–54.
Bullard, B., Leonard, K., Larkins, G., Butcher, G., Karlik, C., and Fyrberg, E. (1988) Troponin of asynchrous flight muscle. J Mol Biol 204: 621–637.
Casey, T.M., Hegel, J.H., and Buser, C.S. (1981) Physiology and energetics of pre flight warm-up in the eastern tent caterpillar moth Malacosoma americum. J Exp Biol 94: 119–135.
Connolly, K., Tunnicliff, G., and Rick, J.T. (1971) The effect of γ-hydroxybutyric acid on spontaneous locomotor activity and dopamine level in a selected strain of Drosophila melanogaster. Physiol Comp Biochem 40: 321–326.
Dickinson, M.H. and Tu, M.S. (1997) The function of Dipteran flight muscle. Comp Biochem Physiol A 116A: 223–238.
Dickinson, M.H., Hyatt, C.J., Lehmann, F.-O., et al. (1997) Phosphorylation-dependent power output of transgenic flies: An integrated study. Biophys J 7: 3122–3134.
Dickinson, M.H., Lehmann, F.-O., and Sane, S. (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284: 1954–1960.
Duistermars, B.J., Chow, D.M., Condro, M., and Frye, M.A. (2007) The spatial, temporal and contrast properties of expansion and rotation flight optomotor responses in Drosophila. J Exp Biol 210: 3218–3227.
Ellington, C.P. (1984) The aerodynamics of insect flight. VI. Lift and power requirements. Phil Trans Roy Soc Lond B 305: 145–181.
Freeman, M. (1991) First, trap your enhancer. Curr Biol 1: 378–381.
Gilchrist, G.W., Huey, R.B., and Patridge, L. (1997) Thermal sensitivity of Drosophila melanogaster: Evolutionary responses of adults and eggs to laboratory natural selection at different temperatures. Physiol Zool 70: 403–414.
Gordon, S. and Dickinson, M.H. (2006) Role of calcium in the regulation of mechanical power in insect flight. Proc Natl Acad Sci 103: 4311–4315.
Götz, K.G., Hengstenberg, B., and Biesinger, R. (1979) Optomotor control of wing beat and body posture in Drosophila. Biol Cybernetics 35: 101–112.
Granzier, H.L.M. and Wang, K. (1993a) Interplay between passive tension and strong and weak binding cross-bridges in insect indirect flight muscle: A functional dissection by gelsolin-mediated thin filament removal. J Gen Physiol 101: 235–270.
Granzier, H.L.M. and Wang, K. (1993b) Passive tension and stiffness of vertebrate skeletal and insect flight muscles: The contribution of weak cross-bridges and elastic filaments. Biophys J 65: 2141–2159.
Hannun, Y.A., Luberto, C., and Argraves, K.M. (2001) Enzymes of sphingolipid metabolism: From modular to integrative signaling. Biochemistry 40: 4893–4903.
Heisenberg, M. and Wolf, R. (1984) Vision in Drosophila. Berlin: Springer.
Helfand, S.L. and Naprta, B. (1996) The expression of a reporter protein, β-galactosidase, is preserved during maturation and aging in some cells of the adult Drosophila melanogaster. Mech Dev 55: 45–51.
Helfand, S.L., Blake, K.J., Rogina, B., Stracks, M.D., Centurion, A., and Naprta, B. (1995) Temporal pattern of gene expression in the antenna of the adult Drosophila melanogaster. Genetics 140: 549–555.
Henkin, J.A., Maughan, D.W., and Vigoreaux, J.O. (2004) Mutations that affect flightin expression in Drosophila alter the viscoelastic properties of flight muscle fibers. Am J Physiol 286: C65--C72.
Herr, D.R., Fyrst, H., Phan, V., Heinecke, K., Georges, R., and Harris, G.L. (2003) Sply regulation of sphingolipid signaling molecules is essential for Drosophila development. Development 130: 2443–2453.
Jordon, K.W., Morgan, T.J., and Mackay, T.F.C. (2006) Quantitative trait loci for locomotor behavior in Drosophila melanogaster. Genetics 174: 271–284.
Josephson, R.K. (2006) Comparative physiology of insect flight muscle. In Nature's Versatile Engine: Insect Flight Muscle Inside and Out, Vigoreaux J.O., ed., New York: Springer, pp. 288.
Kassis, J.A., VanSickle, E.P., and Sensabaugh. (1991) A fragment of engrailed regulatory DNA can mediate transvection of the white gene in Drosophila. Genetics 128: 751–761.
Katzemich, A., Kreisköther, N., Alexandrovich, A., et al. (2012) The function of the M-line protein obscurin in the controlling the symmetry of the sarcomere in the flight muscle of Drosophila. J Cell Sci 125: 3367–3379.
Kern, R. and Egelhaaf, M. (2000) Optomotor course control in flies with largely asymmetric visual input. J Comp Physiol A 186: 45–55.
Kronert, W.A., O’Donnell, P.T., Fieck, A., et al. (1995) Defects in the Drosophila myosin rod permit sarcomere assembly but cause flight muscle degeneration. J Mol Biol 2490: 111–125.
Kržič, U., Vladimir, R., Leonard, K.R., Linke, W.A., and Bullard, B. (2010) Regulation of the oscillatory contraction in insect flight muscle by troponin. J Mol Biol 397: 110–118.
Leal, S.M. and Neckameyer, W.S. (2002) Pharmocological evidence for GABAergic regulation of specific behaviors in Drosophila melanogaster. J Neurobiol 50: 245–261.
Lehmann, F.-O. and Cierotzki, V. (2010) Locomotor performance in the Drosophila brain mutant drop-dead. Comp Biochem Physiol A, Molec Integ Physiol 156: 337–343.
Lehmann, F.-O. and Dickinson, M.H. (1997) The changes in power requirements and muscle efficiency during elevated force production in the fruit fly, Drosophila melanogaster. J Exp Biol 200: 1133–1143.
Lehmann, F.-O. and Dickinson, M.H. (1998) The control of wing kinematics and flight forces in fruit flies (Drosophila spp.). J Exp Biol 201: 385–401.
Liu, H., Mardahl-Dumesnil, M., Sweeney, M., O’Kane, S.T., and Bernstein, S.I. (2003) Drosophila paramyosin is important for myoblast function and essential for myofibril formation. J Cell Biol 160: 899–908.
Maughan, D., Yamashita, H., and Hyatt, C. (1994) Effects of MgATP, MgADP, and phosphate on complex stiffness moduli of skinned flight muscle fibers of Drosophila. Biophys J 66: 303a.
Miller, M.S., Lekkas, P., Braddock, J.M., et al. (2008) Aging enhances indirect flight muscle performance yet decreases flight ability in Drosophila. Biophys J 95: 2391–2401.
Merrill, A.H., Jr., Sullards, M.C., Wang, E., Voss, K.A., and Riley, R.T. (2001) Sphingolipid metabolism: Roles in signal transduction and disruption by fumonisins. Environ Health Perspect 109: 283–289.
Moore, J.R., Dickinson, M.H., Vigoreaux, J.O., and Maughan, D.W. (2000) The effect of removing the N-terminal extension of the Drosophila myosin regulatory light chain upon flight ability and the contractile dynamics of indirekt flight muscle. Biophys J 78: 1431–1440.
Mronz, M. and Lehmann, F.-O. (2008) The free flight response of Drosophila to motion of the visual environment. J Exp Biol 211: 2026–2045.
O’Kane, C.J. and Gehring, W.J. (1987) Detection in situ of genomic regulatory elements in Drosophila. Proc Natl Acad Sci 84: 9123–9127.
Olanow, C.W. and Tatton, W.G. (1999) Etiology and pathogenesis of Parkinson's disease. Annu Rev Neurosci 22: 123–144.
Peller, C.R., Bacon, E.M., Bucheger, J.A., and Blumenthal, E.M. (2009) Defective gut function in drop-dead mutant Drosophila. J Insect Physiol 55: 834–839.
Poetter, K., Jiang, H., Hassanzadeh, S., et al. (1996) Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nat Genet 13: 63–69.
Prieschl, E.E. and Baumruker, T. (2000) Sphingolipids: Second messangers, mediators, and raft constituents in signaling. Immunol Today 21: 555–560.
Pyne, S. and Pyne, N.J. (2000) Sphingosine 1-phosphate signalling in mammalian cells. Biochem J 349: 385–402.
Ramanath, S., Wang, Q., Bernstein, S.I., and Swank, D.M. (2011) Disrupting the myosin converter-relay interface impairs Drosophila indirect flight muscle performance. Biophys J 101: 1114–1122.
Reedy, M.C., Bullard, B., and Vigoreaux, J.O. (2000) Flightin is essential for thick filament assembly and sarcomere stability in Drosophila flight muscle. J Cell Biol 151: 1483–1499.
Scholtissen, B., Verhey, F.R., Steinbusch, H.W., and Leentjens, A.F. (2006) Seretonergic mechanisms in Parkinson's disease: Opposing results from preclinical and clinical data. J Neural Transm 113: 59–73.
Sombati, S. and Hoyle, G. (1984) Generation of specific behaviors in al locust by local release into neuropil of the natural neuromodulator octopamine. J Neurobiol 15: 481–506.
Swank, D.M. (2012) Mechanical anaylsis of Drosophila indirect flight and jump muscles. Methods 56: 69–77.
Swank, D.M., Braddock, J.M., Brown, W., Lesage, H., Bernstein, S.I., and Maughan, D.W. (2006) An alternative domain near the ATP binding pocket of Drosophila myosin affects muscle fiber kinetics. Biophys J 90: 2427–2435.
Tawada, K. and Kawai, M. (1990) Covalent cross-linking of single fibers from rabbit psoas increases oscillatory power. Biophys J 57: 643–647.
Tohtong, R., Yamashita, H., Graham, M., Haeberle, J., Simcox, A., and Maughan, D. (1995) Impairment of muscle function caused by mutations of phosphorylation sites in myosin regulatory light chain. Nature 374: 650–653.
Tu, M.S. and Dickinson, M.H. (1996) The control of wing kinematics by two steering muscles of the blowfly, Calliphora vicina. J Comp Physiol A 178: 813–830.
Vigoreaux, J.O. (2006) Nature's Versatile Engine: Insect Flight Muscle Inside and Out. Vigoreaux J.O., ed. New York: Springer.
Vigoreaux, J.O., Saide, J.D., Valgeirsdottir, K., and Pardue, M.L. (1993) Flightin, a novel myofibrillay protein of Drosophila stretch activated muscles. J Cell Biol 121: 587–598.
Yang, C., Ramanath, S., Kronert, W.A., Berstein, S.I., Maughan, D.W., and Swank, D.M. (2008) Alternative versions of the myosin relay domain differently respond to load to influence Drosophila muscle kinetics. Biophys J 95: 5228–5237.
Yang, C., Kaplan, C.N., Thatcher, M.L., and Swank, D.M. (2010) The influence of myosin converter and relay domains on cross-bridge kinetics of Drosophila indirect flight muscle. Biophys J 99: 1546–1555.
Zhao, Y. and Kawai, M. (1993) The effect of lattice spacing change on cross-bridge kinetics in chemically skinned rabbit psoas muscle fibers: II. Elementary steps affected by the spacing change. Biophys J 64: 197–210.