Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T16:15:49.709Z Has data issue: false hasContentIssue false

15 - The emerging infectious diseases crisis and pathogen pollution

from Part V - Effects Due to Invading Species, Habitat Loss and Climate Change

Published online by Cambridge University Press:  05 March 2013

Klaus Rohde
Affiliation:
University of New England, Australia
Get access

Summary

The human population grows daily, it’s on the move and it’s carving a deep technological footprint on this planet. We alter landscapes and perturb ecosystems, inserting ourselves and other species into novel regions of the world, leading to potentially irreversible changes in the biosphere. This is not news. Half a century ago, Charles Elton (1958), a founder of modern ecology, wrote, “We must make no mistake; we are seeing one of the greatest historical convulsions in the world’s fauna and flora”. This is the biodiversity crisis.

Even as our species engineers this planet, the planet itself is changing with perturbations emerging from overall warming which is accelerating over time (e.g., Parry et al., 2007). Some areas are getting wetter, some drier. Some areas are warmer, others cooler. Weather patterns are becoming more extreme – more droughts, more floods – and our ability to predict the weather as it emerges from a deeper climatological background seems to have taken a step backwards in recent years. The growing body of empirical evidence accords with predictions made by most models of climate change, which has led to even more dire predictions about the short-term future and major shifts in the structure of ecosystems and the distribution of biodiversity (Parmesan, 2006; Lawler et al., 2009; Dawson et al., 2011). This is the global climate change crisis.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agosta, S. J. (2006). On ecological fitting, plant-insect associations, herbivore host shifts, and host plant selection. Oikos, 114, 556–565.CrossRefGoogle Scholar
Agosta, S. J., & Klemens, J. A. (2008). Ecological fitting by phenotypically flexible genotypes: implications for species associations, community assembly and evolution. Ecology Letters, 11, 1123–1134.CrossRefGoogle ScholarPubMed
Agosta, S. J., Janz, N., & Brooks, D. R.. (2010). How generalists can be specialists: resolving the “parasite paradox” and implications for emerging disease. Zoologia, 27, 151–162.CrossRefGoogle Scholar
Agrawal, A. A. (2000). Host-range evolution: adaptation and trade-offs in fitness of mites on alternative hosts. Ecology, 81, 500–508.CrossRefGoogle Scholar
Antonovics, J., Hood, M., & Partain, J. (2002). The ecology and genetics of a host shift: Microbotryum as a model system. The American Naturalist, 160, S40–S53.CrossRefGoogle ScholarPubMed
Audy, J. R. (1958). The localization of disease with special reference to the zoonoses. Transactions of the Royal Society of Tropical Medicine and Hygiene, 52, 309–328.Google ScholarPubMed
Benkman, C. W. (1999). The selection mosaic and diversifying coevolution between crossbills and lodgepole pine. The American Naturalist, 153, S75–S91.CrossRefGoogle ScholarPubMed
Bernays, E. A. (1989). Host range in phytophagous insects: the potential role of generalist predators. Evolutionary Ecology, 3, 299–311.CrossRefGoogle Scholar
Bernays, E. A. (2001). Neural limitations in phytophagous insects: implications for diet breadth and evolution of host affiliation. Annual Review of Entomology, 46, 703–727.CrossRefGoogle ScholarPubMed
Bernays, E. A., & Chapman, R. F. (1994). Host-Plant Selection by Phytophagous Insects. London: Chapman & Hall.CrossRefGoogle Scholar
Brooks, D. R., & Ferrao, A. L. (2005). The historical biogeography of coevolution: emerging infectious diseases are evolutionary accidents waiting to happen. Journal of Biogeography, 32, 1291–1299.CrossRefGoogle Scholar
Brooks, D. R., & Hoberg, E. P. (2006). Systematics and emerging infectious diseases: from management to solution. Journal of Parasitology, 92, 426–429.CrossRefGoogle Scholar
Brooks, D. R., & Hoberg, E. P. (2007). How will global climate change affect parasites? Trends in Parasitology, 23, 571–574.CrossRefGoogle Scholar
Brooks, D. R., & McLennan, D. A. (1991). Phylogeny, Ecology, and Behavior. Chicago, IL: University of Chicago Press.Google Scholar
Brooks, D. R & McLennan, D. A. (1993). Parascript: Parasites and the Language of Evolution. Washington DC: Smithsonian Institution Press.Google Scholar
Brooks, D. R., & McLennan, D. A. (2002). The Nature of Diversity: An Evolutionary Voyage of Discovery. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
Brooks, D. R., & Van Veller, M. G. P. (2008). Assumption 0 analysis: comparative evolutionary biology in the age of complexity. Annals of the Missouri Botanical Garden, 95, 201–223.CrossRefGoogle Scholar
Brooks, D. R., McLennan, D. A., León-Règagnon, V., & Hoberg, E. P. (2006a). Phylogeny, ecological fitting and lung flukes: helping solve the problem of emerging infectious diseases. Revista Mexicana de Biodiversidad, 77, 225–234.Google Scholar
Brooks, D. R., McLennan, D. A., León-Règagnon, V., & Zelmer, D. (2006b). Ecological fitting as a determinant of parasite community structure. Ecology, 87, S76–S85.CrossRefGoogle Scholar
Carroll, S. P., Dingle, H., & Klassen, S. P. (1997). Genetic differentiation of fitness-associated traits among rapidly evolving populations of the soapberry bug. Evolution, 51, 1182–1188.CrossRefGoogle ScholarPubMed
Chew, F. S. (1977). Coevolution of pierid butterflies and their cruciferous food plants. II. The distribution of eggs on potential food plants. Evolution, 31, 568–579.CrossRefGoogle Scholar
Daszak, P., Cunningham, A. A., & Hyatt, A. D. (2000). Emerging infectious diseases of wildlife: threats to biodiversity and human health. Science, 287, 443–449.CrossRefGoogle ScholarPubMed
Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C., & Mace, G. M. (2011). Beyond predictions: biodiversity conservation in a changing climate. Science, 332, 53–58.CrossRefGoogle Scholar
Dobson, A., & Carper, R. (1992). Global warming and potential changes in host-parasite and disease vector relationships. In Peters, R. L. & Lovejoy, T. E. (Eds.), Global Warming and Biological Diversity (pp. 201–220). New Haven, CT: Yale University Press.Google Scholar
Ehrlich, P. R., & Raven, P. H. (1964). Butterflies and plants: a study in coevolution. Evolution, 18, 586–608.CrossRefGoogle Scholar
Elton, C. (1958). The Ecology of Invasions by Animals and Plants. London: Methuen.CrossRefGoogle Scholar
Folinsbee, K., & Brooks, D. R. (2007). Early hominoid biogeography: pulses of dispersal and differentiationJournal of Biogeography, 34, 383–397.CrossRefGoogle Scholar
Fox, C. W., Nilsson, J. A., & Mousseau, T. A. (1997). The ecology of diet expansion in a seed-feeding beetle: pre-existing variation, rapid adaptation and maternal effects? Evolutionary Ecology, 11, 183–194.CrossRefGoogle Scholar
Fox, L. R., & Morrow, P. A. (1981). Specialization: species property or local phenomenon? Science, 211, 887–893.CrossRefGoogle ScholarPubMed
Futuyma, D. J., & Mitter, C. (1996). Insect-plant interactions: the evolution of component communities. Philosophical Transactions of the Royal Society of London, Series B, 351, 1361–1366.CrossRefGoogle Scholar
Futuyma, D. J., & Moreno, G. (1988). The evolution of ecological specialization. Annual Review of Ecology and Systematics, 19, 207–233.CrossRefGoogle Scholar
Futuyma, D. J., Keese, M. C., & Funk, D. J. (1995). Genetic constraints on macroevolution: the evolution of host affiliation in the leaf beetle genus Ophraella. Evolution, 49, 797–809.CrossRefGoogle ScholarPubMed
Godsoe, W., Yoder, J. B., Smith, C. I., & Pellmyr, O. (2008). Coevolution and divergence in the Joshua tree/yucca moth mutualism. The American Naturalist, 171, 816–823.CrossRefGoogle ScholarPubMed
Gould, S. J., & Vrba, E. S. (1982). Exaptation – a missing term in the science of form. Paleobiology, 8, 4–15.CrossRefGoogle Scholar
Hannah, L., Lovejoy, T. E., & Schneider, S. H. (2005). Biodiversity and climate change in context. In Lovejoy, T. E. & Hannah, L. (Eds.), Climate Change and Biodiversity (pp. 3–13). New Haven, CT: Princeton University Press.Google Scholar
Hoberg, E. P. (2010). Invasive processes, mosaics and the structure of helminth parasite faunas. Revue Scientifique et Technique Office International des Épizooties, 29, 255–272.CrossRefGoogle ScholarPubMed
Hoberg, E. P., & Brooks, D. R. (2008). A macroevolutionary mosaic: episodic host-switching, geographic colonization, and diversification in complex host-parasite systems. Journal of Biogeography, 35, 1533–1550.CrossRefGoogle Scholar
Hoberg, E. P., & Brooks, D. R. (2010). Beyond vicariance: integrating taxon pulses, ecological fitting and oscillation in historical biogeography and evolution. In Morand, S. & Krasnov, B. (Eds.), The Geography of Host-Parasite Interactions (pp. 7–20). Oxford: Oxford University Press.Google Scholar
Hoberg, E. P., & Klassen, G. J. (2002). Revealing the faunal tapestry: co-evolution and historical biogeography of hosts and parasites in marine systems. Parasitology, 124, S3–S22.CrossRefGoogle ScholarPubMed
Hoberg, E. P., Alkire, N. L., de Queiroz, A., & Jones, A. (2001). Out of Africa: origins of Taenia tapeworms in humans. Proceedings of the Royal Society of London B, 268, 781–787.CrossRefGoogle ScholarPubMed
Hoberg, E. P., Polley, L., Jenkins, E. J., & Kutz, S. J. (2008). Pathogens of domestic and free ranging ungulates: global climate change in temperate to boreal latitudes across North America. Office International des Épizooties Revue Scientifique et Technique, 27, 511–528.CrossRefGoogle ScholarPubMed
Janz, N. (2002). Evolutionary ecology of oviposition strategies. In Hilker, M. & Meiners, T. (Eds.), Chemoecology of Insect Eggs and Egg Deposition (pp. 349–376). Berlin: Blackwell.Google Scholar
Janz, N., & Nylin, S. (1998). Butterflies and plants: a phylogenetic study. Evolution, 52, 486–502.CrossRefGoogle ScholarPubMed
Janz, N., & Nylin, S. (2008). The oscillation hypothesis of host plant-range and speciation. In Tilmon, K. J. (Ed.), Specialization, Speciation, and Radiation: the Evolutionary Biology of Herbivorous Insects (pp. 203–215). Berkeley, CA: University of California Press.Google Scholar
Janz, N., & Thompson, J. N. (2002). Plant polyploidy and host expansion in an insect herbivore. Oecologia, 130, 570–575.CrossRefGoogle Scholar
Janz, N., Nylin, S., & Nyblom, K. (2001). Evolutionary dynamics of host plant specialization: a case study of the tribe Nymphalini. Evolution, 55, 783–796.CrossRefGoogle ScholarPubMed
Janz, N., Bergström, A., & Sjögren, A. (2005). The role of nectar sources for oviposition decisions of the common blue butterfly Polyommatus icarus. Oikos, 109, 535–538.CrossRefGoogle Scholar
Janz, N., Nylin, S., & Wahlberg, N. (2006). Diversity begets diversity: host expansions and the diversification of plant-feeding insects. BMC Evolutionary Biology, 6, 4.CrossRefGoogle ScholarPubMed
Janzen, D. H. (1985). On ecological fitting. Oikos, 45, 308–310.CrossRefGoogle Scholar
Johansson, J., Bergstrom, A., & Janz, N. (2007). Search efficiency and host range expansion in a polyphagous butterfly; the benefit of additional oviposition targets. Journal of Insect Science, 7, 3.CrossRefGoogle Scholar
Kelley, S. T., & Farrell, D. B. (1998). Is specialization a dead end? The phylogeny of host use in Dendroctonus bark beetles (Scolytidae). Evolution, 52, 1731–1743.CrossRefGoogle Scholar
Kergoat, G. J., Delobel, A., Fediere, G., Le Ru, B., & Silvain, J. F. (2005). Both host-plant phylogeny and chemistry have shaped the African seed-beetle radiation. Molecular Phylogenetics and Evolution, 35, 602–611.CrossRefGoogle ScholarPubMed
Kilpatrick, A. M. (2011). Globalization, land use, and the invasion of West Nile Virus. Science, 334, 323–327.CrossRefGoogle ScholarPubMed
Lafferty, K. (2009). The ecology of climate change and infectious diseases. Ecology, 90, 888–900.CrossRefGoogle ScholarPubMed
Lande, R., & Arnold, S. J. (1983). The measurement of selection on correlated characters. Evolution, 37, 1210–1226.CrossRefGoogle ScholarPubMed
Larsson, S., & Ekbom, B. (1995). Oviposition mistakes in herbivorous insects: confusion or a step towards a new host plant? Oikos, 72, 155–160.CrossRefGoogle Scholar
Lawler, J. J., Shafer, S. L., White, D., et al. (2009). Projected climate-induced faunal change in the Western Hemisphere. Ecology, 90, 588–597.CrossRefGoogle ScholarPubMed
Moran, N. A. (1988). The evolution of host-plant alternation in aphids: evidence for specialization as a dead end.The American Naturalist, 132, 681–706.CrossRefGoogle Scholar
Murphy, S. M., & Feeny, P. (2006). Chemical facilitation of a naturally occurring host shift by Papilio machaon butterflies (Papilionidae). Ecological Monographs, 76, 399–414.CrossRefGoogle Scholar
Nosil, P. (2002). Transition rates between specialization and generalization in phytophagous insects. Evolution, 56, 1701–1706.CrossRefGoogle ScholarPubMed
Nosil, P., & Mooers, A. Ø. (2005). Testing hypotheses about ecological specialization using phylogenetic trees. Evolution, 59, 2256–2263.CrossRefGoogle ScholarPubMed
Nuismer, S. L., & Thompson, J. N. (2001). Plant polyploidy and non-uniform effects on insect herbivores. Proceedings of the Royal Society of London B, 268, 1937–1940.CrossRefGoogle ScholarPubMed
Nylin, S., & Janz, N. (2009). Butterfly host plant range: an example of plasticity as a promoter of speciation? Evolutionary Ecology, 23, 137–146.CrossRefGoogle Scholar
Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Reviews of Ecology, Evolution and Systematics, 37, 637–669.CrossRefGoogle Scholar
Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J., & Hansen, C. E. (Eds.) (2007). Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
Patz, J. A., Olson, S. H., Uejio, C. K., & Gibbs, H. K. (2008). Disease emergence from global climate and land use change. Medical Clinics of North America, 92, 1473–1491.CrossRefGoogle ScholarPubMed
Radtke, A., McLennan, D. A., & Brooks, D. R. (2002). Evolution of host specificity in Telorchis spp. (Digenea: Plagiorchiformes: Telorchiidae). Journal of Parasitology, 88, 874–879.CrossRefGoogle Scholar
Rosenthal, B. M. (2008). How has agriculture influenced the geography and genetics of animal parasites? Trends in Parasitology, 25, 67–70.CrossRefGoogle ScholarPubMed
Scheffer, S. J., & Wiegmann, B. M. (2000). Molecular phylogenetics of the holly leaf miners (Diptera: Agromyzidae: Phytomyza): species limits, speciation, and dietary specialization. Molecular Phylogenetics and Evolution, 1, 244–255.CrossRefGoogle Scholar
Segraves, K. A., Thompson, J. N., Soltis, P. S., & Soltis, D. E. (1999). Multiple origins of polyploidy and the geographic structure of Heuchera grossulariifolia. Molecular Ecology, 8, 253–262.CrossRefGoogle Scholar
Singer, M. C. (2003). Spatial and temporal patterns of checkerspot butterfly-hostplant association: the diverse roles of oviposition preference. In Boggs, C. L., Watt, W. B. & Ehrlich, P. R. (Eds.), Ecology and Evolution Taking Flight: Butterflies as Model Study Systems (pp. 207–208). Chicago, IL: University of Chicago Press.Google Scholar
Singer, M. S. (2008). Evolutionary ecology of polyphagy. In Tilmon, K. J. (Ed.), Specialization, Speciation, and Radiation: The Evolutionary Biology of Herbivorous Insects (pp. 29–42). Berkeley, CA: University of California Press.Google Scholar
Singer, M. C., Thomas, C. D., & Parmesan, C. (1993). Rapid human-induced evolution of insect-host associations. Nature, 366, 681–683.CrossRefGoogle Scholar
Singer, M. C., Wee, B., & Hawkins, S. (2008). Rapid anthropogenic and natural diet evolution: three examples from checkerspot butterflies. In Tilmon, K. J. (Ed.), Specialization, Speciation, and Radiation: The Evolutionary Biology of Herbivorous Insects (pp. 311–324). Berkeley, CA: University of California Press.Google Scholar
Symons, F. B., & Beccaloni, G. W. (1999). Phylogenetic indices for measuring the diet breadths of phytophagous insects. Oecologia, 119, 427–434.CrossRefGoogle ScholarPubMed
Tabashnik, B. E. (1983). Host range evolution: the shift from native legume hosts to alfalfa by the butterfly, Colias philodice eriphyle. Evolution, 37, 150–162.CrossRefGoogle ScholarPubMed
Termonia, A., Hsiao, T. H., Pasteels, J. M., & Milinkovitch, M. C. (2001). Feeding specialization and host-derived chemical defense in Chrysomeline leaf beetles did not lead to an evolutionary dead end. Proceedings of the National Academy of Sciences of the USA, 98, 3909–3914.CrossRefGoogle ScholarPubMed
Thompson, J. N. (1994). The Coevolutionary Process. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
Thompson, J. N. (1998). Rapid evolution as an ecological process. Trends in Ecology & Evolution, 13, 329–332.CrossRefGoogle ScholarPubMed
Thompson, J. N. (2005). The Geographic Mosaic of Coevolution. Chicago, IL: University of Chicago Press.Google Scholar
Thompson, J. N., & Fernandez, C. C. (2006). Temporal dynamics of antagonism and mutualism in a geographically variable plant-insect interaction. Ecology, 87, 103–112.CrossRefGoogle Scholar
Thompson, J. N., Nuismer, S. L., & Merg, K. (2004). Plant polyploidy and the evolutionary ecology of plant/animal interactions. Biological Journal of the Linnaean Society, 82, 511–519.CrossRefGoogle Scholar
Van Klinken, R. D., & Edwards, O. R. (2002). Is host-specificity of weed biological control agents likely to evolve rapidly following establishment? Ecology Letters, 5, 590–596.CrossRefGoogle Scholar
Via, S. (1991). The population structure of fitness in a spatial network: demography of pea aphid clones from two crops in a reciprocal transplant. Evolution, 45, 827–852.CrossRefGoogle Scholar
Wahlberg, N. (2001). The phylogenetics and biochemistry of host plant specialization in melitaeine butterflies (Lepidoptera: Nymphalidae). Evolution, 55, 522–537.CrossRefGoogle Scholar
Weaver, H. J., Hawdon, J. M., & Hoberg, E. P. (2010). Soil-transmitted helminthiases: implications of climate change and human behavior. Trends in Parasitology, 26, 574–581.CrossRefGoogle ScholarPubMed
West-Eberhard, M. J. (2003). Developmental Plasticity and Evolution. New York: Oxford University Press.Google Scholar
Wiegmann, B. M., Mitter, C., & Farrell, B. (1993). Diversification of carnivorous parasitic insects – extraordinary radiation or specialized dead-end. The American Naturalist, 142, 737–754.CrossRefGoogle Scholar
Wolfe, N. D., Panosian Dunavan, C., & Diamond, J. (2007). Origins of major human infectious diseases. Nature, 447, 279–283.CrossRefGoogle ScholarPubMed
Yotoko, K. S. C., Prado, P. I., Russo, C. A. M., & Solferini, V. N. (2005). Testing the trend towards specialization in herbivore–host plant associations using a molecular phylogeny of Tomoplagia (Diptera: Tephritidae). Molecular Phylogenetics and Evolution, 35, 701–711.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×