Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T23:18:10.676Z Has data issue: false hasContentIssue false

5 - A burning issue: community stability and alternative stable states in relation to fire

from Part II - Nonequilibrium and Equilibrium in Communities

Published online by Cambridge University Press:  05 March 2013

Klaus Rohde
Affiliation:
University of New England, Australia
Get access

Summary

Introduction

Fire regimes have long been thought to drive plant community change in biomes by altering feedbacks that maintain “stable” community assemblages (see Jackson, 1968; Mutch, 1970). The occurrence of contrasting vegetation types in otherwise comparable environments, where flammable communities are juxtaposed with those that rarely burn, is often explained by alternative stable state (ASS) theory, where shifts in equilibrium are triggered by catastrophic fire (Petraitis & Latham, 1999; Scheffer & Carpenter, 2003). When high-intensity fires burn into less flammable communities, compositional change is thought to occur because, firstly, an ecological threshold is reached beyond which the disturbance is large enough to remove species that perpetuate the exclusion of fire, secondly, space is then opened up for colonization by more flammable species and finally self-reinforcing pyrogenic dominance is achieved (Figure 5.1). Alternative stable states are often invoked in fire-prone regions and climates where there are sharp boundaries between communities (Figure 5.2). One of the most cited examples of alternative stable states is the fire-triggered transformation of rainforest to more flammable assemblages (Jackson, 1968; Webb, 1968; Bowman, 2000; Beckage et al., 2009; Hoffmann et al., 2009; Warman & Moles, 2009). Other examples of ASS include the conversion of boreal forest to deciduous forest (Johnstone et al., 2010), tropical savanna to grassland (Hoffmann & Jackson, 2000) and the replacement of arid shrublands by more flammable grassland (Nicholas et al., 2011). Fluctuations in community composition are the norm for most plant communities and in this sense they are “meta-stable” at Holocene timescales even under the effects of severe disturbance. In contrast, transformation in structure and complete floristic turnover at decadal timescales are those associated with ASS.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ash, J. (1988). The location and stability of rainforest boundaries in North-Eastern Queensland, Australia. Journal of Biogeography, 15, 619–630.CrossRefGoogle Scholar
Banfai, D. S., & Bowman, D. M. J. S. (2005). Dynamics of a savanna-forest mosaic in the Australian monsoon tropics inferred from stand structures and historical aerial photography. Australian Journal of Botany, 53, 185–194CrossRefGoogle Scholar
Banfai, D. S., & Bowman, D. M. J. S. (2006). Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia. Biological Conservation, 131, 553–565.CrossRefGoogle Scholar
Barrett, D. J., & Ash, J. E. (1992). Growth and carbon partitioning in rainforest and eucalypt forest species of south coastal New South Wales, Australia. Australian Journal of Botany, 40, 13–25.CrossRefGoogle Scholar
Beckage, B., & Ellingwood, C. (2008). Fire feedbacks with vegetation and alternative stable states. Complex Systems, 18, 159–173.Google Scholar
Beckage, B., Platt, W. J., & Gross, L. J. (2009). Vegetation, fire, and feedbacks: a disturbance-mediated model of savannas. The American Naturalist, 174, 805–818.Google ScholarPubMed
Berry, Z. C., Wevill, K., & Curran, T. J. (2011). The invasive weed Lantana camara increases fire risk in dry rainforest by altering fuel beds. Weed Research, 51, 525–533.CrossRefGoogle Scholar
Bond, W. J. (2008). What limits trees in C4 grasslands and savanna?Annual Review of Ecology, Evolution and Systematics, 39, 641–659.CrossRefGoogle Scholar
Bond, W. J., & Midgley, J. J. (1995). Kill thy neighbour: an individualistic argument for the evolution of flammability. Oikos, 73, 79–85.CrossRefGoogle Scholar
Bond, W. J., Woodward, F. I., & Midgley, G. F. (2005). The global distribution of ecosystems in a world without fire. New Phytologist, 165, 525–538.CrossRefGoogle Scholar
Bowman, D. M. J. S. (2000). Australian Rainforests: Islands of Green in a Land of Fire. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Bowman, D. M. J. S., & Wilson, B. A. (1988). Fuel characteristics of coastal monsoon forests, Northern Territory, Australia. Journal of Biogeography, 15, 807–817.CrossRefGoogle Scholar
Bowman, D. M. J. S., Boggs, G. S., & Prior, L. D. (2008). Fire maintains an Acacia aneura shrubland and Triodia hummock grassland mosaic in central Australia. Journal of Arid Environments, 72, 34–47.CrossRefGoogle Scholar
Bowman, D. M. J. S., Balch, J. K., Artaxo, P., et al. (2009). Fire in the earth system. Science, 324, 481–484.CrossRefGoogle ScholarPubMed
Bowman, D. M. J. S., Murphy, B. P., & Banfai, D. S. (2010). Has global environmental change caused monsoon rainforest to expand in the Australian monsoon tropics?Landscape Ecology, 25, 1247–1260.CrossRefGoogle Scholar
Bradstock, R. A. (2010). A biogeographic model of fire regimes in Australia: current and future implications. Global Ecology and Biogeography, 19, 145–158.CrossRefGoogle Scholar
Brooks, M. L., D’Antonio, C. M., Richardson, D. M., et al. (2004). Effects of invasive alien plants on fire regimes. BioScience, 54, 677–688.CrossRefGoogle Scholar
Clarke, P. J., Latz, P. K., & Albrecht, D. E. (2005). Long-term changes in semi-arid vegetation: invasion of an exotic perennial grass has larger effects than rainfall variability. Journal of Vegetation Science, 16, 237–248.CrossRefGoogle Scholar
Close, D. C., Davidson, N. J., Johnson, D. W., et al. (2009). Premature decline of Eucalyptus and altered ecosystem processes in the absence of fire in some Australian forests. Botanical Review, 75, 191–202.CrossRefGoogle Scholar
Cochrane, M. A. (2003). Fire science for rainforests. Science, 421, 913–918.Google ScholarPubMed
Cochrane, M. A., & Schulze, M. D. (1999). Fire as a recurrent event in tropical forests of eastern Amazon: effects of forest structure, biomass and species composition. Biotropica, 31, 2–16.Google Scholar
Cochrane, M. A., Alencar, A., Schulze, M. D., et al. (2003). Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science, 284, 1832–1835.CrossRefGoogle Scholar
Coetsee, C., Bond, W. J., & February, E. C. (2010). Frequent fire affects soil nitrogen and carbon in an African savanna by changing woody cover. Oecologia, 162, 1027–1034.CrossRefGoogle Scholar
Crisp, M. D., Burrows, G. E., Cook, L. G., Thornhill, A. H., & Bowman, D. M. J. S. (2011). Flammable biomes dominated by eucalypts originated at the Cretaceous-Palaeogene boundary. Nature Communications, 2, 193.CrossRefGoogle ScholarPubMed
D’Antonio, C. M., & Vitousek, P. M. (1992). Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annual Review of Ecology and Systematics, 23, 63–87.CrossRefGoogle Scholar
Duncan, R. S., & Duncan, V. E. (2000). Forest succession and distance from forest edge in an Afro-tropical grassland. Biotropica, 32, 33–41.CrossRefGoogle Scholar
Fairfax, R., Fensham, R., Butler, D., et al. (2009). Effects of multiple fires on tree invasion in montane grasslands. Landscape Ecology, 24, 1363–1373.CrossRefGoogle Scholar
Fensham, R. J., Fairfax, R. J., Butler, D. W., & Bowmann, D. M. J. S. (2003). Effects of fire and drought in a tropical eucalypt savanna colonized by rain forest. Journal of Biogeography, 30, 1405–1414.CrossRefGoogle Scholar
Flannigan, M. D., Krawchuk, M. A., de Groot, W. J., Wotton, B. M., & Gowman, L. M. (2009). Implications of changing climate for global wildland fire. International Journal of Wildland Fire, 18, 483–507.CrossRefGoogle Scholar
Frelich, L. E., & Reich, P. B. (1999). Neighbourhood effects, disturbance severity and community stability in forests. Ecosystems, 2, 151–166.CrossRefGoogle Scholar
Harvest, T., Davidson, N. J., & Close, D. C. (2008). Is decline in high altitude eucalypt forests related to rainforest understorey development and altered soil bacteria following the long absence of fire?Austral Ecology, 33, 880–890.CrossRefGoogle Scholar
Hatten, J. A., & Zabowski, D. (2009). Changes in soil organic matter pools and carbon mineralization as influenced by fire severity. Soil Science Society of America Journal, 73, 262–273.CrossRefGoogle Scholar
Higgins, S. I., Bond, W. J., February, E. C., et al. (2007). Effects of four decades of fire manipulation on woody vegetation structure in savanna. Ecology, 88, 1119–1125.CrossRefGoogle ScholarPubMed
Hill, R. S. (1994). History of Australian Vegetation. Melbourne: Cambridge University Press.Google Scholar
Hoffmann, W. A., & Jackson, R. B. (2000). Vegetation-climate feedbacks in the conversion of tropical savanna to grassland. Journal of Climate, 13, 1593–1602.2.0.CO;2>CrossRefGoogle Scholar
Hoffmann, W. A., Adasme, R., Haridasan, M., et al. (2009). Tree topkill, not mortality, governs the dynamics of savanna-forest boundaries under frequent fire in central Brazil. Ecology, 90, 1326–1337.CrossRefGoogle Scholar
Jackson, W. D. (1968). Fire, air, water and earth – an elemental ecology of Tasmania. Proceedings of the Ecological Society of Australia, 3, 9–16.Google Scholar
Johnstone, J. F., Hollingsworth, T. N., Chapin, F. S. III, & Mack, M. C. (2010). Change in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Global Change Biology, 16, 1281–1295.CrossRefGoogle Scholar
Keeley, J. E., & Brennan, T. J. (2012). Fire-driven alien invasion in a fire-adapted ecosystem. Oecologia 69, 1043–1052. .CrossRefGoogle Scholar
Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J., & Bradstock, R. A. (2011). Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science, 16, 406–411.CrossRefGoogle ScholarPubMed
Knox, K. J. E., & Clarke, P. J. (2012). Fire severity, feedback effects and resilience to alternative community states in forest assemblages. Forest Ecology and Management, 265, 47–54.CrossRefGoogle Scholar
Laurance, W. F., Oliveira, A. A., Laurance, S. G., et al. (2005). Altered tree communities in undisturbed Amazonian forests: a consequence of global change?Biotropica, 37, 160–162.CrossRefGoogle Scholar
Lawes, M. J., Murphy, B. P., Midgley, J. J., & Russell-Smith, J. (2011). Are the eucalypt and non-eucalypt components of Australian tropical savannas independent?Oecologia, 166, 229–239.CrossRefGoogle ScholarPubMed
Lehmann, C. E. R., Prior, L. D., & Bowman, D. M. J. S. (2009). Fire controls population size structure in four dominant tree species in Australian mesic eucalyptus savanna. Oecologia, 161, 505–515.CrossRefGoogle Scholar
Malhi, Y., Aragao, L., Galbraith, D., et al. (2009). Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proceedings of the National Academy of Sciences of the USA, 106, 20610–20615.CrossRefGoogle ScholarPubMed
McGlone, M. S., Wilmshurst, J. M., & Leach, H. M. (2005). An ecological and historical review of bracken (Pteridium esculentum) in New Zealand, and its cultural significance. New Zealand Journal of Ecology, 29, 165–184.Google Scholar
Miller, G., Friedel, M., Adam, P., & Chewings, V. (2010). Ecological impacts of buffel grass (Cenchrus ciliaris L.) invasion in central Australia – does field evidence support a fire-invasion feedback?The Rangeland Journal, 32, 352–265.CrossRefGoogle Scholar
Mutch, R. W. (1970). Wildland fires and ecosystems-a hypothesis. Ecology, 51, 1046–1051.CrossRefGoogle Scholar
Nano, C. E. M., & Clarke, P. J. (2010). Woody-grass ratios in a grassy arid system are limited by multi-causal interactions of abiotic constraint, competition and fire. Oecologia, 162, 719–732.CrossRefGoogle Scholar
Nano, C. E. M., Clarke, P. J., & Pavey, C. R. (2012). Fire regimes in arid hummock grasslands and Acacia shrublands. In Bradstock, R. A., Gill, M. A. & Williams, R. J. (Eds.), Flammable Australia: Fire Regimes, Biodiversity and Ecosystems in a Changing World. Melbourne: CSIRO.Google Scholar
Nepstad, D., Carvalho, G., Barros, A. C., et al. (2001). Road paving, fire regime feedbacks, and the future of Amazon forests. Forest Ecology and Management, 154, 395–407.CrossRefGoogle Scholar
Nicholas, A. M. M., Franklin, D. C., & Bowman, D. M. J. S. (2011). Florsitic uniformity across abrupt boundaries between Triodia hummock grassland and Acacia shrubland on an Australian desert sandplain. Journal of Arid Environments, 75, 1090–1096.CrossRefGoogle Scholar
Odion, D. C., Moritz, M. A., & DellaSala, D. A. (2010). Alternative community states maintained by fire in the Klamath Mountains, USA. Journal of Ecology, 98, 96–105.CrossRefGoogle Scholar
Petraitis, P. S., & Latham, R. E. (1999). The importance of scale in testing the origins of alternative community states. Ecology, 80, 429–442.CrossRefGoogle Scholar
Poorter, H., Niinemets, U., Poorter, L., Wright, I. J., & Villar, R. (2009). Cause and consequence of variation in leaf mass per unit area (LMA): a meta-analysis. New Phytologist, 182, 565–588.CrossRefGoogle Scholar
Prior, L. D., Murphy, B. P., & Russell-Smith, J. (2009). Environmental and demographic correlates of tree recruitment and mortality in north Australian savannas. Forest Ecology and Management, 257, 66–74.CrossRefGoogle Scholar
Prior, L. D., Williams, R. J., & Bowman, D. M. J. S. (2010). Experimental evidence that fire causes a tree recruitment bottleneck in an Australian tropical savanna. Journal of Tropical Ecology, 26, 595–603.CrossRefGoogle Scholar
Rossiter, N. A., Setterfield, S. A., Douglas, M. M., & Hutley, L. M. (2003). Testing the grass fire cycle: exotic grass invasion in the tropical savannas of northern Australia. Diversity and Distributions, 9, 169–176.CrossRefGoogle Scholar
Rossiter-Rachor, N. A., Setterfield, S. A., Douglas, M. M., Hutley, L. B., & Cook, G. D. (2008). Andropogon gayanus (Gamba grass) invasion increases fire-mediated nitrogen losses in the tropical savannas of northern Australia. Ecosystems, 11, 77–88.CrossRefGoogle Scholar
Rossiter-Rachor, N. A., Setterfield, S. A., Douglas, M. M., et al. (2009). Invasive Andropogon gayanus (Gamba grass) is an ecosystem transformer of nitrogen relations in Australia’s tropical savanna. Ecological Applications, 19, 1546–1560.CrossRefGoogle Scholar
Russell-Smith, J., Whitehead, P. J., Cook, G. D., & Hoare, J. L. (2003). Response of Eucalyptus-dominated savanna to frequent fires: lessons from Munmarlary, 1973–1996. Ecological Monographs, 73, 349–375.CrossRefGoogle Scholar
Russell-Smith, J., Stanton, P. J., Edwards, A. C., & Whitehead, P. J. (2004). Rain forest invasion of eucalypt-dominated woodland savanna, Iron Range, north-eastern Australia: II. Rates of landscape change. Journal of Biogeography, 31, 1305–1316.CrossRefGoogle Scholar
Sankaran, M., Hanan, N. P., Scholes, R. J., et al. (2005). Determinants of woody cover in African savannas. Nature, 438, 846–849.CrossRefGoogle ScholarPubMed
Scheffer, M., & Carpenter, S. R. (2003). Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecology and Evolution, 18, 648–656.CrossRefGoogle Scholar
Schwilk, D. W., & Kerr, B. (2002). Genetic niche-hiking: an alternative explanation for the evolution of flammability. Oikos, 99, 431–442.CrossRefGoogle Scholar
Setterfield, S. A., Rossiter-Rachor, N. A., Hutley, L. B., Douglas, M. M., & Williams, R. J., (2010). Turning up the heat: the impacts of Andropogon gayanus (gamba grass) invasion on fire behaviour in northern Australian savannas. Diversity and Distributions, 16, 854–861.CrossRefGoogle Scholar
Shakesbury, R. A., & Doerr, S. H. (2006). Wildfire as a hydrological and geomorphological agent. Earth Science Review, 74, 269–307.CrossRefGoogle Scholar
Slik, J., Breman, F., Bernard, C., et al. (2010). Fire as a selective force in a Bornean tropical everwet forest. Oecologia, 164, 841–849.CrossRefGoogle Scholar
Staver, A. C., Archibald, S., & Levin, S. (2011a). Tree cover in sub-Saharan Africa: rainfall and fire constrain forest and savanna as alternative stable states. Ecology, 92, 1063–1072.CrossRefGoogle ScholarPubMed
Staver, A. C., Archibald, S., & Levin, S. (2011b). The global extent of determinants of savanna and forest as alternative biome states. Science, 334, 230–232.CrossRefGoogle ScholarPubMed
Uhl, C., & Kauffman, J. B. (1990). Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon. Ecology, 71, 437–449.CrossRefGoogle Scholar
van Langevelde, F., van de Vijver, C., Kumar, L., et al. (2003). Effects of fire and herbivory on the stability of savanna ecosystems. Ecology, 84, 337–350.CrossRefGoogle Scholar
Van Nieuwstadt, M. G. L., & Sheil, D. (2005). Drought, fire and tree survival in a Borneo rain forest, East Kalimantan, Indonesia. Journal of Ecology, 93, 191–201.CrossRefGoogle Scholar
Warman, L., & Moles, A. T. (2009). Alternative stable states in Australia’s Wet Tropics: a theoretical framework for the field data and a field-case for the theory. Landscape Ecology, 24, 1–13.CrossRefGoogle Scholar
Webb, L. J. (1968). Environmental relationships of the structural types of Australian rain forest vegetation. Ecology, 49, 296–311.CrossRefGoogle Scholar
Werner, P. A., & Franklin, D. C. (2010). Resprouting and mortality of juvenile eucalypts in an Australian savanna: impacts of fire season and annual sorghum. Australian Journal of Botany, 58, 619–628.CrossRefGoogle Scholar
Westfall, R. H., Everson, C. S., & Everson, T. M. (1983). The vegetation of the protected plots at Thabamhlope research station. South African Journal of Botany, 2, 15–25.CrossRefGoogle Scholar
Wigley, B. J., Bond, W. J., & Hoffman, M. T. (2010). Thicket expansion in a South African savanna under divergent land use: local vs. global drivers?Global Change Biology, 16, 964–976.CrossRefGoogle Scholar
Woinarski, J. C. Z., Risler, J., & Kean, L. (2004). Response of vegetation and vertebrate fauna to 23 years of fire exclusion in a tropical Eucalyptus open forest, Northern Territory, Australia. Austral Ecology, 29, 156–176.CrossRefGoogle Scholar
Wood, S. W., & Bowman, D. M. J. S. (2011). Alternative stable states and the role of fire-vegetation-soil feedbacks in the temperate wilderness of southwest Tasmania. Landscape Ecology, 27, 13–28.CrossRefGoogle Scholar
Wright, B. R., & Clarke, P. J. (2007). Fire regime (recency, interval and season) changes the composition of spinifex (Triodia spp.)-dominated desert dunes. Australian Journal of Botany, 55, 709–724.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×