Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T21:35:11.840Z Has data issue: false hasContentIssue false

6 - Type III–delivered toxins that target signalling pathways

Published online by Cambridge University Press:  15 September 2009

Luís J Mota
Affiliation:
Division of Molecular Microbiology, Biozentrum, Universität Basel
Guy R Cornelis
Affiliation:
Division of Molecular Microbiology, Biozentrum, Universität Basel
Alistair J. Lax
Affiliation:
King's College London
Get access

Summary

Upon infection, pathogenic bacteria must evade the immune defence of their host in order to multiply. To this end, many bacteria secrete toxins as part of their virulence mechanism. In a classical view, toxins are molecules that cause intoxication upon their release by bacteria into the body fluids. However, in the last 10 years a different class of bacterial toxin has been recognised. These molecules are not simply secreted by the bacterium, but instead they are delivered directly from the bacterial cytoplasm into the cytoplasm of the eukaryotic cell by specialised secretion machines present exclusively in Gram-negative bacteria. These are the so-called type III or type IV secretion systems, depending on whether they use a structure resembling the flagella or conjugative pili, respectively. In this chapter, we will describe the mode of action of toxins delivered by type III secretion systems (TTSSs). These molecules, currently known as type III effectors, have been shown to act on different host signalling pathways controlling a number of responses, and in some cases interfere with cell growth.

TYPE III SECRETION SYSTEMS

TTSSs are present not only in bacteria that are pathogenic for animals but also in bacteria pathogenic for plants or even in symbionts for plants and insects (Cornelis and Van Gijsegem, 2000). We will restrict our analysis to the action of type III effectors of animal pathogens. Among these, type III effectors have been identified in Yersinia spp., in Salmonella spp., in Shigella spp., in enteropathogenic and enterohaemorrhagic Escherichia coli, in Pseudomonas aeruginosa, and more recently, in Burkholderia pseudomallei (Stevens et al., 2003).

Type
Chapter
Information
Bacterial Protein Toxins
Role in the Interference with Cell Growth Regulation
, pp. 117 - 146
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aepfelbacher, M, Trasak, C, Wilharm, G, Wiedemann, A, Trulzsch, K, Krauss, K, Gierschik, P, and Heesemann, J (2003). Characterization of YopT effects on Rho GTPases in Yersinia enterocolitica-infected cells. J. Biol. Chem., 278, 33217–33223CrossRefGoogle ScholarPubMed
Alonso, A, Bottini, N, Bruckner, S, Rahmouni, S, Williams, S, Schoenberger, S P, and Mustelin, T (2004). Lck dephosphorylation at Tyr394 and inhibition of T cell antigen receptor signalling by Yersinia phosphatase YopH. J. Biol. Chem. 279, 4922–4928CrossRefGoogle Scholar
Ador, A, Trulzsch, K, Essler, M, Roggenkamp, A, Wiedemann, A, Heesemann, J, and Aepfelbacher, M (2001). YopE of Yersinia, a GAP for Rho GTPases, selectively modulates Rac-dependent actin structures in endothelial cells. Cell Microbiol., 3, 301–310CrossRefGoogle Scholar
Barbieri, A M, Sha, Q, Bette-Bobillo, P, Stahl, P D, and Vidal, M (2001). ADP-ribosylation of Rab5 by ExoS of Pseudomonas aeruginosa affects endocytosis. Infect. Immun., 69, 5329–5234CrossRefGoogle ScholarPubMed
Black, D S and Bliska, J B (2000). The RhoGAP activity of the Yersinia pseudotuberculosis cytotoxin YopE is required for antiphagocytic function and virulence. Mol. Microbiol., 37, 515–527CrossRefGoogle ScholarPubMed
Black, D S, Marie-Cardine, A, Schraven, B, and Bliska, J B (2000). The Yersinia tyrosine phosphatase YopH targets a novel adhesion-regulated signalling complex in macrophages. Cell. Microbiol., 2, 401–414CrossRefGoogle ScholarPubMed
Bliska, J B and Black, D S (1995). Inhibition of the Fc receptor-mediated oxidative burst in macrophages by the Yersinia pseudotuberculosis tyrosine phosphatase. Infect Immun., 63, 681–685Google ScholarPubMed
Boise, L H and Collins, C M (2001). Salmonella-induced cell death: Apoptosis, necrosis or programmed cell death?Trends. Microbiol., 9, 64–67CrossRefGoogle ScholarPubMed
Boland, A and Cornelis, G R (1998). Role of YopP in suppression of tumor necrosis factor alpha release by macrophages during Yersinia infection. Infect Immun., 66, 1878–1884Google ScholarPubMed
Boquet, P (2000). Small GTP binding proteins and bacterial virulence. Microbes Infect., 2, 837–843CrossRefGoogle ScholarPubMed
Bourdet-Sicard, R, Rudiger, M, Jockusch, B M, Gounon, P, Sansonetti, P J, and Nhieu, G T (1999). Binding of the Shigella protein IpaA to vinculin induces F-actin depolymerization. EMBO J., 18, 5853–5862CrossRefGoogle ScholarPubMed
Buttner, D and Bonas, U (2002). Port of entry – the type III secretion translocon. Trends Microbiol., 10, 186–192CrossRefGoogle ScholarPubMed
Caron, E and Hall, A (1998). Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science, 282, 1717–1721CrossRefGoogle ScholarPubMed
Chen, L M, Kaniga, K, and Galán, J E (1996a). Salmonella spp. are cytotoxic for cultured macrophages. Mol Microbiol., 21, 1101–1115CrossRefGoogle Scholar
Chen, Y, Smith, M R, Thirumalai, K, and Zychlinsky, A (1996b). A bacterial invasin induces macrophage apoptosis by binding directly to ICE. EMBO J., 15, 3853–60Google Scholar
Cornelis, G R (2002). Yersinia type III secretion: send in the effectors. J. Cell Biol., 158, 401–408CrossRefGoogle ScholarPubMed
Cornelis, G R and Gijsegem, F (2000). Assembly and function of type III secretory systems. Annu. Rev. Microbiol., 54, 735–774CrossRefGoogle ScholarPubMed
Crane, J K, Majumdar, S, and Pickhardt, D P (1999). Host cell death due to enteropathogenic Escherichia coli has features of apoptosis. Infect. Immun., 67, 2575–2584Google Scholar
Crane, J K, McNamara, B P, and Donnenberg, M S (2001). Role of EspF in host cell death induced by enteropathogenic Escherichia coli. Cell. Microbiol., 3, 197–211CrossRefGoogle ScholarPubMed
Dacheux, D, Goure, J, Chabert, J, Usson, Y, and Attree, I (2001). Pore-forming activity of type III system-secreted proteins leads to oncosis of Pseudomonas aeruginosa-infected macrophages. Mol. Microbiol., 40, 76–85CrossRefGoogle ScholarPubMed
Deleuil, F, Mogemark, L, Francis, M S, Wolf-Watz, H, and Fallman, M (2003). Interaction between the Yersinia protein tyrosine phosphatase YopH and eukaryotic Cas/Fyb is an important virulence mechanism. Cell. Microbiol., 5, 53–64CrossRefGoogle ScholarPubMed
Denecker, G, Declercq, W, Geuijen, C A, Boland, A, Benabdillah, R, Gurp, M, Sory, M P, Vandenabeele, P, and Cornelis, G R (2001). Yersinia enterocolitica YopP-induced apoptosis of macrophages involves the apoptotic signalling cascade upstream of Bid. J. Biol. Chem., 276, 19706–19714CrossRefGoogle Scholar
Denecker, G, Totemeyer, S, Mota, L J, Troisfontaines, P, Lambermont, I, Youta, C, Stainier, I, Ackermann, M, and Cornelis, G R (2002). Effect of low- and high-virulence Yersinia enterocolitica strains on the inflammatory response of human umbilical vein endothelial cells. Infect. Immun., 70, 3510–3520CrossRefGoogle ScholarPubMed
Dukuzumuremyi, J M, Rosqvist, R, Hallberg, B, Akerstrom, B, Wolf-Watz, H, and Schesser, K (2000). The Yersinia protein kinase A is a host factor inducible RhoA/Rac-binding virulence factor. J. Biol. Chem., 275, 35281–35290CrossRefGoogle ScholarPubMed
Elliot, S J, Krejany, E O, Mellies, J L, Robins-Browne, R M, Sasakawa, C, and Kaper, J B (2001). EspG, a novel type III system-secreted protein from enteropathogenic Escherichia coli with similarities to VirA of Shigella flexneri. Infect. Immun., 69, 4027–4033CrossRefGoogle Scholar
Feng, Y, Wente, S R, and Majerus, P W (2001). Overexpression of the inositol phosphatase SopB in human 293 cells stimulates cellular chloride influx and inhibits nuclear mRNA export. Proc. Natl. Acad. Sci. USA, 98, 875–879CrossRefGoogle ScholarPubMed
Finck-Barbancon, V, Goranson, J, Zhu, L, Sawa, T, Wiener-Kronish, J P, Fleiszig, S M, Wu, C, Mende-Mueller, L, and Frank, D W (1997). ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol. Microbiol., 25, 547–557CrossRefGoogle ScholarPubMed
Frank, D W (1997). The exoenzyme S regulon of Pseudomonas aeruginosa. Mol. Microbiol., 26, 621–629CrossRefGoogle ScholarPubMed
Fraylick, J E, LaRocque, J R, Vincent, T S, and Olson, J C (2001). Independent and coordinate effects of ADP-ribosyltransferase and GTPase-activating activities of exoenzyme S on HT-29 epithelial cell function. Infect. Immun., 69, 5318–5328CrossRefGoogle ScholarPubMed
Fraylick, J E, Riese, M J, Vincent, T S, Barbieri, J T, and Olson, J C (2002). ADP-ribosylation and functional effects of Pseudomonas Exoenzyme S on cellular RalA. Biochem., 41, 9680–9687CrossRefGoogle ScholarPubMed
Frithz-Lindsten, E, Du, Y, Rosqvist, R, and Forsberg, A (1997). Intracellular targeting of exoenzyme S of Pseudomonas aeruginosa via type III-dependent translocation induces phagocytosis resistance, cytotoxicity and disruption of actin microfilaments. Mol. Microbiol., 25, 1125–1139CrossRefGoogle ScholarPubMed
Fu, Y and Galán, J E (1999). A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature, 401, 293–297CrossRefGoogle ScholarPubMed
Galán, J E (2001). Salmonella interactions with host cells: Type III secretion at work. Annu. Rev. Cell Dev. Biol., 17, 53–86CrossRefGoogle ScholarPubMed
Galyov, E E, Hakansson, S, Forsberg, A, and Wolf-Watz, H (1993). A secreted protein kinase of Yersinia pseudotuberculosis is an indispensable virulence determinant. Nature, 361, 730–732CrossRefGoogle ScholarPubMed
Ganesan, A K, Frank, D W, Misra, R P, Schmidt, G, and Barbieri, J T (1998). Pseudomonas aeruginosa exoenzyme S ADP-ribosylates Ras at multiple sites. J. Biol. Chem., 273, 7332–7337CrossRefGoogle ScholarPubMed
Ganesan, A K, Vincent, T S, Olson, J C, and Barbieri, J T (1999). Pseudomonas aeruginosa exoenzyme S disrupts Ras-mediated signal transduction by inhibiting guanine nucleotide exchange factor-catalyzed nucleotide exchange. J. Biol. Chem., 274, 21823–21829CrossRefGoogle ScholarPubMed
Garrington, T P and Johnson, G L (1999). Organization and regulation of mitogen-activated protein kinase signalling pathways. Curr. Opin. Cell Biol., 11, 211–218CrossRefGoogle Scholar
Garrity-Ryan, L, Kazmierczak, B, Kowal, R, Comolli, J, Hauser, A, and Engel, J N (2000). The arginine finger domain of ExoT contributes to actin cytoskeleton disruption and inhibition of internalization of Pseudomonas aeruginosa by epithelial cells and macrophages. Infect. Immun., 68, 7100–7113CrossRefGoogle ScholarPubMed
Geiser, T K, Kazmierczak, B I, Garrity-Ryan, L K, Matthay, M A, and Engel, J N (2001). Pseudomonas aeruginosa ExoT inhibits in vitro lung epithelial wound repair. Cell. Microbiol., 3, 223–236CrossRefGoogle ScholarPubMed
Goehring, U M, Schmidt, G, Pederson, K J, Aktories, K, and Barbieri, J T (1999). The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. J. Biol. Chem., 274, 36369–36372CrossRefGoogle ScholarPubMed
Goosney, D L, Gruenheid, S, and Finlay, B B (2000). Gut feelings: Enteropathogenic E. coli (EPEC) interactions with the host. Annu. Rev. Cell Dev. Biol., 16, 173–189CrossRefGoogle Scholar
Grosdent, N, Maridonneau-Parini, I, Sory, M P, and Cornelis, G R (2002). Role of Yops and adhesins in resistance of Yersinia enterocolitica to phagocytosis. Infect. Immun., 70, 4165–4176CrossRefGoogle ScholarPubMed
Hakansson, S, Galyov, E E, Rosqvist, R, and Wolf-Watz, H (1996). The Yersinia YpkA Ser/Thr kinase is translocated and subsequently targeted to the inner surface of the HeLa cell plasma membrane. Mol. Microbiol., 20, 593–603CrossRefGoogle ScholarPubMed
Hall, A (1998). Rho GTPases and the actin cytoskeleton. Science, 279, 509–514CrossRefGoogle ScholarPubMed
Hamid, N, Gustavsson, A, Andersson, K, McGee, K, Persson, C, Rudd, C E, and Fallman, M (1999). YopH dephosphorylates Cas and Fyn-binding protein in macrophages. Microb. Pathogenesis, 27, 231–242CrossRefGoogle ScholarPubMed
Haraga, A and Miller, S I (2003). A Salmonella enterica serovar Typhimurium translocated leucine-rich repeat effector protein inhibits NF-κB-dependent gene expression. Infect. Immun., 71, 4052–4058CrossRefGoogle Scholar
Hardt, W D, Chen, L M, Schuebel, K E, Bustelo, X R, and Galán, J E (1998). S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell, 93, 815–826CrossRefGoogle ScholarPubMed
Hauser, A R and Engel, J N (1999). Pseudomonas aeruginosa induces type-III-secretion-mediated apoptosis of macrophages and epithelial cells. Infect. Immun., 67, 5530–5537Google ScholarPubMed
Hernandez, L D, Pypaert, M, Flavell, R A, and Galán, J E (2003). A Salmonella protein causes macrophage cell death by inducing autophagy. J. Cell. Biol., 163, 1123–1131CrossRefGoogle ScholarPubMed
Hersh, D, Monack, D M, Smith, M R, Ghori, N, Falkow, S, and Zychlinsky, A (1999). The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc. Natl. Acad. Sci. USA, 96, 2396–2401CrossRefGoogle ScholarPubMed
Hilbi, H, Moss, J E, Hersh, D, Chen, Y, Arondel, J, Banerjee, S, Flavell, R A, Yuan, J, Sansonetti, P J, and Zychlinsky, A (1998). Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB. J. Biol. Chem., 273, 32895–32900CrossRefGoogle ScholarPubMed
Iriarte, M and Cornelis, G R (1998). YopT, a new Yersinia Yop effector protein, affects the cytoskeleton of host cells. Mol. Microbiol., 29, 915–929CrossRefGoogle ScholarPubMed
Jesenberger, V, Procyk, K J, Yuan, J, Reipert, S, and Baccarini, M (2000). Salmonella-induced caspase-2 activation in macrophages: A novel mechanism in pathogen-mediated apoptosis. J. Exp. Med., 192, 1035–1046CrossRefGoogle ScholarPubMed
Journet, L, Agrain, C, Brosz, P, and Cornelis, G R (2003). The needle length of bacterial injectisomes is determined by a molecular ruler. Science, 302, 1757–1760CrossRefGoogle ScholarPubMed
Juris, S J, Rudolph, A E, Huddler, D, Orth, K, and Dixon, J E (2000). A distinctive role for the Yersinia protein kinase: Actin binding, kinase activation, and cytoskeleton disruption. Proc. Natl. Acad. Sci. USA, 97, 9431–9436CrossRefGoogle ScholarPubMed
Kaniga, K, Uralil, J, Bliska, J B, and Galán, J E (1996). A secreted protein tyrosine phosphatase with modular effector domains in the bacterial pathogen Salmonella typhimurium. Mol. Microbiol., 21, 633–641CrossRefGoogle ScholarPubMed
Karin, M and Lin, A (2002). NF-κB at the crossroads of life and death. Nat. Immunol., 3, 221–227CrossRefGoogle ScholarPubMed
Kaufman, M R, Jia, J, Zeng, L, Ha, U, Chow, M, and Jin, S (2000). Pseudomonas aeruginosa mediated apoptosis requires the ADP-ribosylating activity of ExoS. Microbiology, 146, 2531–2541CrossRefGoogle ScholarPubMed
Kazmierczak, B I and Engel, J N (2002). Pseudomonas aeruginosa ExoT acts in vivo as a GTPase-activating protein for RhoA, Rac1, and Cdc42. Infect. Immun., 70, 2198–2205CrossRefGoogle ScholarPubMed
Kenny, B, Ellis, S, Leard, A D, Warawa, J, Mellor, H, and Jepson, M A (2002). Co-ordinate regulation of distinct host cell signalling pathways by multifunctional enteropathogenic Escherichia coli effector molecules. Mol. Microbiol., 44, 1095–1107CrossRefGoogle ScholarPubMed
Kenny, B and Jepson, M (2000). Targeting of an enteropathogenic Escherichia coli (EPEC) effector protein to host mitochondria. Cell. Microbiol., 2, 579–90CrossRefGoogle ScholarPubMed
Krall, R, Schmidt, G, Aktories, K, and Barbieri, J T (2000). Pseudomonas aeruginosa ExoT is a Rho GTPase-activating protein. Infect. Immun., 68, 6066–6068CrossRefGoogle ScholarPubMed
Krall, R, Sun, J, Pederson, K J, and Barbieri, J T (2002). In vivo Rho GTPase-activating protein activity of Pseudomonas aeruginosa cytotoxin ExoS. Infect. Immun., 70, 360–367CrossRefGoogle ScholarPubMed
Kubori, T and Galán, J (2003). Temporal regulation of Salmonella virulence factor function by proteasome-dependent protein degradation. Cell, 115, 333–342CrossRefGoogle Scholar
Lindgren, S W, Stojilkovic, I, and Heffron, F (1996). Macrophage killing is an essential virulence mechanism of Salmonella typhimurium. Proc. Natl. Acad. Sci. USA, 93, 4197–4201CrossRefGoogle ScholarPubMed
Lyczak, J B, Cannon, C L, and Pier, G B (2000). Establishment of Pseudomonas aeruginosa infection: Lessons from a versatile opportunist. Microbes Infect., 2, 1051–1060CrossRefGoogle ScholarPubMed
Marcus, S L, Wenk, M R, Steele-Mortimer, O, and Finlay, B B (2001). A synaptojanin-homologous region of Salmonella typhimurium SigD is essential for inositol phosphatase activity and Akt activation. FEBS Lett., 494, 201–207CrossRefGoogle ScholarPubMed
McDonald, C, Vacratsis, P O, Bliska, J B, and Dixon, J E (2003). The Yersinia virulence factor YopM forms a novel protein complex with two cellular kinases. J. Biol. Chem., 278, 18514–18523CrossRefGoogle ScholarPubMed
McGuffie, E M, Frank, D W, Vincent, T S, and Olson, J C (1998). Modification of Ras in eukaryotic cells by Pseudomonas aeruginosa exoenzyme S. Infect. Immun., 66, 2607–2613Google ScholarPubMed
McNamara, B P, Koutsouris, A, O'Connell, C B, Nougayrede, J P, Donnenberg, M S, and Hecht, G (2001). Translocated EspF protein from enteropathogenic Escherichia coli disrupts host intestinal barrier function. J. Clin. Invest., 107, 621–629CrossRefGoogle ScholarPubMed
Menard, R, Prevost, M C, Gounon, P, Sansonetti, P, and Dehio, C (1996). The secreted Ipa complex of Shigella flexneri promotes entry into mammalian cells. Proc. Natl. Acad. Sci. USA, 93, 1254–1258CrossRefGoogle ScholarPubMed
Mills, S D, Boland, A, Sory, M P, Smissen, P, Kerbourch, C, Finlay, B B, and Cornelis, G R (1997). Yersinia enterocolitica induces apoptosis in macrophages by a process requiring functional type III secretion and translocation mechanisms and involving YopP, presumably acting as an effector protein. Proc. Natl. Acad. Sci. USA, 94, 12638–12643CrossRefGoogle ScholarPubMed
Monack, D M, Mecsas, J, Ghori, N, and Falkow, S (1997). Yersinia signals macrophages to undergo apoptosis and YopJ is necessary for this cell death. Proc. Natl. Acad. Sci. USA, 94, 10385–10390CrossRefGoogle ScholarPubMed
Monack, D M, Raupach, B, Hromockyj, A E, and Falkow, S (1996). Salmonella typhimurium invasion induces apoptosis in infected macrophages. Proc. Natl. Acad. Sci. USA, 94, 9833–9838CrossRefGoogle Scholar
Murli, S, Watson, R O, and Galán, J E (2001). Role of tyrosine kinases and the tyrosine phosphatase SptP in the interaction of Salmonella with host cells. Cell. Microbiol., 3, 795–810CrossRefGoogle ScholarPubMed
Niebuhr, K, Jouihri, N, Allaoui, A, Gounon, P, Sansonetti, P J, and Parsot, C (2000). IpgD, a protein secreted by the type III secretion machinery of Shigella flexneri, is chaperoned by IpgE and implicated in entry focus formation. Mol. Microbiol., 38, 8–19CrossRefGoogle ScholarPubMed
Niebuhr, K, Giuriato, S, Pedron, T, Philpott, D J, Gaits, F, Sable, J, Sheetz, M P, Parsot, C, Sansonetti, P J and Payrastre, B (2002). Conversion of PtdIns(4,5)P(2) into PtdIns(5)P by the Shigella flexneri effector IpgD reorganizes host cell morphology. EMBO J., 21, 5069–5078CrossRefGoogle ScholarPubMed
Norris, F A, Wilson, M P, Wallis, T S, Galyov, E E, and Majerus, P W (1998). SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc. Natl. Acad. Sci. USA, 95, 14057–14059CrossRefGoogle ScholarPubMed
Olson, J C, Fraylick, J E, McGuffie, E M, Dolan, K M, Yahr, T L, Frank, D W, and Vincent, T S (1999). Interruption of multiple cellular processes in HT-29 epithelial cells by Pseudomonas aeruginosa exoenzyme S. Infect. Immun., 67, 2847–54Google ScholarPubMed
Orth, K (2002). Function of the Yersinia effector YopJ. Curr. Opin. Microbiol., 5, 38–43CrossRefGoogle ScholarPubMed
Orth, K, Palmer, L E, Bao, Z Q, Stewart, S, Rudolph, A E, Bliska, J B, and Dixon, J E (1999). Inhibition of the mitogen-activated protein kinase kinase superfamily by a Yersinia effector. Science, 285, 1920–1923CrossRefGoogle ScholarPubMed
Orth, K, Xu, Z, Mudgett, M B, Bao, Z Q, Palmer, L E, Bliska, J B, Mangel, W F, Staskawicz, B, and Dixon, J E (2000). Disruption of signalling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science, 290, 1594–1597CrossRefGoogle Scholar
Pederson, K J, Vallis, A J, Aktories, K, Frank, D W, and Barbieri, J T (1999). The amino-terminal domain of Pseudomonas aeruginosa ExoS disrupts actin filaments via small-molecular-weight GTP-binding proteins. Mol. Microbiol., 32, 393–401CrossRefGoogle ScholarPubMed
Persson, C, Nordfelth, R, Andersson, K, Forsberg, A, Wolf-Watz, H, and Fallman, M (1999). Localization of the Yersinia PTPase to focal complexes is an important virulence mechanism. Mol. Microbiol., 33, 828–838CrossRefGoogle ScholarPubMed
Phillips, R M, Six, D A, Dennis, E A, and Ghosh, P (2003). In vivo phospholipase activity of the Pseudomonas aeruginosa cytotoxin ExoU and protection of mammalian cells with phospholipase A2 inhibitors. J. Biol. Chem., 278, 41326–41332CrossRefGoogle ScholarPubMed
Riese, M J, Wittinghofer, A, and Barbieri, J T (2001). ADP ribosylation of Arg41 of Rap by ExoS inhibits the ability of Rap to interact with its guanine nucleotide exchange factor, C3G. Biochemistry, 40, 3289–94CrossRefGoogle ScholarPubMed
Rosqvist, R, Bolin, I, and Wolf-Watz, H (1988). Inhibition of phagocytosis in Yersinia pseudotuberculosis: A virulence plasmid-encoded ability involving the Yop2b protein. Infect. Immun., 56, 2139–2143Google ScholarPubMed
Rosqvist, R, Forsberg, A, and Wolf-Watz, H (1991). Intracellular targeting of the Yersinia YopE cytotoxin in mammalian cells induces actin microfilament disruption. Infect. Immun., 59, 4562–4569Google ScholarPubMed
Ruckdeschel, K, Mannel, O, Richter, K, Jacobi, C A, Trulzsch, K, Rouot, B, and Heesemann, J (2001). Yersinia outer protein P of Yersinia enterocolitica simultaneously blocks the nuclear factor-kappa B pathway and exploits lipopolysaccharide signalling to trigger apoptosis in macrophages. J. Immunol., 166, 1823–1831CrossRefGoogle Scholar
Ruiz-Albert, J, Yu, X J, Beuzon, C R, Blakey, A N, Galyov, E E, and Holden, D W (2002). Complementary activities of SseJ and SifA regulate dynamics of the Salmonella typhimurium vacuolar membrane. Mol. Microbiol., 44, 645–661CrossRefGoogle ScholarPubMed
Salcedo, S P and Holden, D W (2003). SseG, a virulence protein that targets Salmonella to the Golgi network. EMBO J., 22, 5003–5014CrossRefGoogle ScholarPubMed
Sansonetti, P J (2001). Rupture, invasion and inflammatory destruction of the intestinal barrier by Shigella, making sense of prokaryote-eukaryote cross-talks. FEMS Microbiol. Rev., 25, 3–14Google ScholarPubMed
Sato, H, Frank, D W, Hillard, C J, Feix, J B, Pankhaniya, R R, Moriyama, K, Finck-Barbancon, V, Buchaklian, A, Lei, M, Long, R M, Wiener-Kronish, J, and Sawa, T (2003). The mechanism of action of the Pseudomonas aeruginosa-encoded type III cytotoxin, ExoU. EMBO J., 22, 2959–2969CrossRefGoogle ScholarPubMed
Sauvonnet, N, Lambermont, I, Bruggen, P, and Cornelis, G R (2002). YopH prevents monocyte chemoattractant protein 1 expression in macrophages and T-cell proliferation through inactivation of the phosphatidylinositol 3-kinase pathway. Mol. Microbiol., 45, 805–815CrossRefGoogle ScholarPubMed
Schesser, K, Spiik, A K, Dukuzumuremyi, J M, Neurath, M F, Pettersson, S, and Wolf-Watz, H (1998). The yopJ locus is required for Yersinia-mediated inhibition of NF-κB activation and cytokine expression: YopJ contains a eukaryotic SH2-like domain that is essential for its repressive activity. Mol. Microbiol., 28, 1067–1079CrossRefGoogle ScholarPubMed
Shao, F, Merritt, P M, Bao, Z, Innes, R W, and Dixon, J E (2002). A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell, 109, 575–588CrossRefGoogle Scholar
Shao, F, Vacratsis, P O, Bao, Z, Bowers, K E, Fierke, C A, and Dixon, J E (2003). Biochemical chracterization of the Yersinia YopT protease: Cleavage site and recognition element in Rho GTPases. Proc. Natl. Acad. Sci. USA, 100, 904–909CrossRefGoogle Scholar
Skoudy, A, Nhieu, G T, Mantis, N, Arpin, M, Mounier, J, Gounon, P, and Sansonetti, P (1999). A functional role for ezrin during Shigella flexneri entry into epithelial cells. J. Cell Sci., 112, 2059–68Google ScholarPubMed
Steele-Mortimer, O, Knodler, L A, Marcus, S L, Scheid, M P, Goh, B, Pfeifer, C G, Duronio, V, and Finlay, B B (2000). Activation of Akt/protein kinase B in epithelial cells by the Salmonella typhimurium effector sigD. J. Biol. Chem., 275, 37718–37724CrossRefGoogle ScholarPubMed
Stender, S, Friebel, A, Linder, S, Rohde, M, Mirold, S, and Hardt, W D (2000). Identification of SopE2 from Salmonella typhimurium, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell. Mol. Microbiol., 36, 1206–1221CrossRefGoogle ScholarPubMed
Stevens, M P, Friebel, A, Taylor, L A, Wood, M W, Brown, P J, Hardt, W D, and Galyov, E E (2003). A Burkholderia pseudomallei type III secreted protein, BopE, facilitates bacterial invasion of epithelial cells and exhibits guanine nucelotide exchange factor activity. J. Bacteriol., 185, 4992–4996CrossRefGoogle Scholar
Sundin, C, Henriksson, M L, Hallberg, B, Forsberg, A, and Frithz-Lindsten, E (2001). Exoenzyme T of Pseudomonas aeruginosa elicits cytotoxicity without interfering with Ras signal transduction. Cell. Microbiol., 3, 237–246CrossRefGoogle Scholar
Takai, Y, Sasaki, T, and Matosaki, T (2001). Small GTP-binding proteins. Physiol. Rev., 81, 153–208CrossRefGoogle ScholarPubMed
Terebiznik, M R, Vieira, O V, Marcus, S L, Slade, A, Yip, C M, Trimble, W S, Meyer, T, Finlay, B B, and Grinstein, S (2002). Elimination of host cell PtdIns(4,5)P(2) by bacterial SigD promotes membrane fission during invasion by Salmonella. Nat. Cell. Biol., 4, 766–773CrossRefGoogle ScholarPubMed
Tran Van Nhieu, G, Bourdet-Sicard, R, Dumenil, G, Blocker, A, and Sansonetti, P J (2000). Bacterial signals and cell responses during Shigella entry into epithelial cells. Cell. Microbiol., 2, 187–193CrossRefGoogle ScholarPubMed
Nhieu, G T, Caron, E, Hall, A, and Sansonetti, P J (1999). IpaC induces actin polymerization and filopodia formation during Shigella entry into epithelial cells. EMBO J., 18, 3249–3262CrossRefGoogle Scholar
Uchiya, K, Tobe, T, Komatsu, K, Suzuki, T, Watarai, M, Fukuda, I, Yoshikawa, M, and Sasakawa, C (1995). Identification of a novel virulence gene, virA, on the large plasmid of Shigella, involved in invasion and intercellular spreading. Mol. Microbiol., 17, 241–250CrossRefGoogle ScholarPubMed
Vallis, A J, Finck-Barbancon, V, Yahr, T L, and Frank, D W (1999). Biological effects of Pseudomonas aeruginosa type III-secreted proteins on CHO cells. Infect. Immun., 67, 2040–2044Google ScholarPubMed
Velden, A W, Lindgren, S W, Worley, M J, and Heffron, F (2000). Salmonella pathogenicity island 1-independent induction of apoptosis in infected macrophages by Salmonella enterica serotype Typhimurium. Infect. Immun., 68, 5702–5709CrossRefGoogle ScholarPubMed
Vanhaesebroeck, B and Alessi, D R (2000). The PI3K-PDK1 connection: more than just a road to PKB. Biochem. J., 346, 561–576Google ScholarPubMed
Viboud, G I, So, S S K, Ryndak, M B, and Bliska, J B (2003). Proinflammatory signalling stimulated by the type III translocation factor YopB is counteracted by multiple effectors in epithelial cells infected with Yersinia pseudotuberculosis. Mol. Microbiol., 47, 1305–1315CrossRefGoogle ScholarPubMed
Vincent, T S, Fraylick, J E, McGuffie, E M, and Olson, J C (1999). ADP-ribosylation of oncogenic Ras proteins by Pseudomonas aeruginosa exoenzyme S in vivo. Mol. Microbiol., 32, 1054–1064CrossRefGoogle ScholarPubMed
Visser, L G, Annema, A, and vanFurth, R (1995). Role of Yops in inhibition of phagocytosis and killing of opsonized Yersinia enterocolitica by human granulocytes. Infect. Immun., 63, 2570–2575Google ScholarPubMed
Pawel-Rammingen, U, Telepnev, M V, Schmidt, G, Aktories, K, Wolf-Watz, H, and Rosqvist, R (2000). GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: A mechanism for disruption of actin microfilament structure. Mol. Microbiol., 36, 737–748CrossRefGoogle Scholar
Yao, T, Mecsas, J, Healy, J I, Falkow, S, and Chien, Y (1999). Suppression of T and B lymphocyte activation by a Yersinia pseudotuberculosis virulence factor, YopH. J. Exp. Med., 190, 1343–50CrossRefGoogle Scholar
Waterman, S R and Holden, D W (2003). Functions and effectors of the Salmonella pathogenicity island 2 type III secretion system. Cell. Microbiol., 5, 510–511CrossRefGoogle ScholarPubMed
Yoshida, S, Katayama, E, Kuwae, A, Mimuro, H, Suzuki, T, and Sasakawa, C (2002). Shigella deliver an effector protein to trigger host microtubule destabilization, which promotes Rac1 activity and efficient bacterial internalization. EMBO J., 21, 2923–2935CrossRefGoogle ScholarPubMed
Zhou, D, Chen, L M, Hernandez, L, Shears, S B, and Gálan, J E (2001). A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Mol. Microbiol., 39, 248–259CrossRefGoogle ScholarPubMed
Zumbihl, R, Aepfelbacher, M, Andor, A, Jacobi, C A, Ruckdeschel, K, Rouot, B, and Heesemann, J (1999). The cytotoxin YopT of Yersinia enterocolitica induces modification and cellular redistribution of the small GTP-binding protein RhoA. J. Biol. Chem. 274, 29289–29293CrossRefGoogle Scholar
Zychlinsky, A, Kenny, B, Menard, R, Prevost, M C, Holland, I B, and Sansonetti, P J (1994). IpaB mediates macrophage apoptosis induced by Shigella flexneri. Mol. Microbiol., 11, 619–627CrossRefGoogle ScholarPubMed
Zychlinsky, A, Prevost, M C, and Sansonetti, P J (1992). Shigella flexneri induces apoptosis in infected macrophages. Nature, 358, 167–169CrossRefGoogle ScholarPubMed
Zychlinsky, A, Thirumalai, K, Arondel, J, Cantey, J R, Aliprantis, A O, and Sansonetti, P J (1996). In vivo apoptosis in Shigella flexneri infections. Infect. Immun. 64, 5357–5365Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×