Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T13:12:17.644Z Has data issue: false hasContentIssue false

2 - CD1 and nonpeptide antigen recognition systems in microbial immunity

from Part I - Recognition of bacteria

Published online by Cambridge University Press:  13 August 2009

Kayvan R. Niazi
Affiliation:
Division of Dermatology and Department of Microbiology, Immunology and Molecular Genetics, School of Medicine, University of California, Los Angeles, CA 90095, USA
Steven A. Porcelli
Affiliation:
Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
Robert L. Modlin
Affiliation:
Division of Dermatology and Department of Microbiology, Immunology and Molecular Genetics, School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
Brian Henderson
Affiliation:
University College London
Petra C. F. Oyston
Affiliation:
Defence Science and Technology Laboratory, Salisbury
Get access

Summary

INTRODUCTION

Until recently, it was generally believed that proteins encoded within the MHC (or major histocompatibility complex) locus carry out the majority of the immunologically relevant antigen presentation functions necessary to alert the immune system to pathogenic or oncogenic challenges. This notion was initially based on the identification of the MHC as the critical genetic locus involved in tissue graft rejection. Genetic and immunological studies identified the protein products of two distinct families of genes called MHC I and MHC II as being responsible for graft rejection. Additional studies demonstrated that the primary role of these proteins is to signal the immune system to respond to invading pathogens through the presentation of peptide fragments derived from endogenous and exogenous protein sources to different classes of T lymphocytes. Thus, two distinct pathways of peptide antigen presentation for the detection of invading intracellular and extracellular pathogens (or pathogens which reside in intracellular vacuoles) by MHC I and MHC II, respectively, were identified and investigated. The role of the key cell population, the dendritic cell, in antigen presentation has been described in Chapter 1. In the past ten years, however, a new paradigm in immunology has emerged whereby nonpeptide lipid antigens are presented to T cells by the MHC-related protein, CD1.

EVOLUTION OF CD1

The human CD1 (hCD1) polypeptides are members of a family of glycoproteins that are conserved throughout mammalian evolution and were initially identified as thymocyte differentiation antigens (Porcelli and Modlin, 1999).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albertson, D. G., Fishpool, R., Sherrington, P., Nacheva, E., and Milstein, C. (1988). Sensitive and high resolution in situ hybridization to human chromosomes using biotin labelled probes: assignment of the human thymocyte CD1 antigen genes to chromosome 1. European Molecular Biology Organisation Journal 7, 2801–2805Google ScholarPubMed
Alcami, A. and Koszinowski, U. H. (2000). Viral mechanisms of immune evasion. Trends in Microbiology 8, 410–418CrossRefGoogle ScholarPubMed
Amiot, M., Dastot, H., Fabbi, M., Degos, L., Bernard, A., and Boumsell, L. (1988). Intermolecular complexes between three human CD1 molecules on normal thymus cells. Immunogenetics 27, 187–195CrossRefGoogle ScholarPubMed
Angenieux, C., Salamero, J., Fricker, D., Cazenave, J. P., Goud, B., Hanau, D., and Salle, H. (2000). Characterization of CD1e, a third type of CD1 molecule expressed in dendritic cells. Journal of Biological Chemistry 275, 37,757–37,764CrossRefGoogle ScholarPubMed
Authier, F., Posner, B. I., and Bergeron, J. J. (1996). Endosomal proteolysis of internalized proteins. FEBS Letters 389, 55–60CrossRefGoogle ScholarPubMed
Beckman, E. M., Porcelli, S. A., Morita, C. T., Behar, S. M., Furlong, S. T., and Brenner, M. B. (1994). Recognition of a lipid antigen by CD1-restricted alpha beta+ T cells [see comments]. Nature 372, 691–694CrossRefGoogle Scholar
Beckman, E. M., Melian, A., Behar, S. M., Sieling, P. A., Chatterjee, D., Furlong, S. T., Matsumoto, R., Rosat, J. P., Modlin, R. L., and Porcelli, S. A., (1996). CD1c restricts responses of mycobacteria-specific T cells. Evidence for antigen presentation by a second member of the human CD1 family. Journal of Immunology 157, 2795–2803Google ScholarPubMed
Briken, V., Jackman, R. M., Watts, G. F., Rogers, R. A., and Porcelli, S. A. (2000). Human CD1b and CD1c isoforms survey different intracellular compartments for the presentation of microbial lipid antigens. Journal of Experimental Medicine 192, 281–288CrossRefGoogle ScholarPubMed
Calabi, F., Jarvis, J. M., Martin, L., and Milstein, C. (1989). Two classes of CD1 genes. European Journal of Immunology 19, 285–292CrossRefGoogle ScholarPubMed
Chun, T., Wang, K., Zuckermann, F. A., and Gaskins, H. R. (1999). Molecular cloning and characterization of a novel CD1 gene from the pig. Journal of Immunology 162, 6562–6571Google ScholarPubMed
Cisternas, P. A., and Armati, P. J. (2000). Immune system cell markers in the northern brown bandicoot, Isoodon macrourus. Developmental and Comparative Immunology 24, 771–782CrossRefGoogle ScholarPubMed
Denham, S., Shimizu, M., Bianchi, A. T., Zwart, R. J., Carr, M. M., and Parkhouse, R. M. (1994). Monoclonal antibodies recognising differentiation antigens on porcine B cells. Veterinary Immunology and Immunopathology 43, 259–267CrossRefGoogle ScholarPubMed
Ernst, W. A., Maher, J., Cho, S., Niazi, K. R., Chatterjee, D., Moody, D. B., Besra, G. S., Watanabe, Y., Jensen, P. E., Porcelli, S. A., Kronenberg, M., and Modlin, R. L. (1998). Molecular interaction of CD1b with lipoglycan antigens. Immunity 8, 331–340CrossRefGoogle ScholarPubMed
Fairhurst, R. M., Wang, C. X., Sieling, P. A., Modlin, R. L., and Braun, J. (1998). CD1 presents antigens from a gram-negative bacterium, Haemophilus influenzae type B. Infection and Immunity 66, 3523–3526Google ScholarPubMed
Geho, D. H., Fayen, J. D., Jackman, R. M., Moody, D. B., Porcelli, S. A., and Tykocinski, M. L. (2000). Glycosyl-phosphatidylinositol reanchoring unmasks distinct antigen-presenting pathways for CD1b and CD1c. Journal of Immunology 165, 1272–1277CrossRefGoogle ScholarPubMed
Grant, E. P., Degano, M., Rosat, J. P., Stenger, S., Modlin, R. L., Wilson, I. A., Porcelli, S. A., and Brenner, M. B. (1999). Molecular recognition of lipid antigens by T cell receptors. Journal of Experimental Medicine 189, 195–205CrossRefGoogle ScholarPubMed
Jackman, R. M., Stenger, S., Lee, A., Moody, D. B., Rogers, R. A., Niazi, K. R., Sugita, M., Modlin, R. L., Peters, P. J., and Porcelli, S. A. (1998). The tyrosine-containing cytoplasmic tail of CD1b is essential for its efficient presentation of bacterial lipid antigens. Immunity 8, 341–351CrossRefGoogle ScholarPubMed
Kasinrerk, W., Baumruker, T., Majdic, O., Knapp, W., and Stockinger, H. (1993). CD1 molecule expression on human monocytes induced by granulocyte-macrophage colony-stimulating factor. Journal of Immunology 150, 579–584Google ScholarPubMed
Kefford, R. F., Calabi, F., Fearnley, I. M., Burrone, O. R., and Milstein, C. (1984). Serum beta 2-microglobulin binds to a T-cell differentiation antigen and increases its expression. Nature 308, 641–642CrossRefGoogle ScholarPubMed
Lee, J. M., Kay, C. M., and Watts, T. H. (1992). Conformational changes in mouse MHC class II proteins at acidic pH. International Immunology 4, 889–897CrossRefGoogle ScholarPubMed
Luder, C. G., Lang, T., Beuerle, B., and Gross, U., (1998). Down-regulation of MHC class II molecules and inability to up-regulate class I molecules in murine macrophages after infection with Toxoplasma gondii. Clinical Experimental Immunology 112, 308–316CrossRefGoogle Scholar
Melian, A., Watts, G. F., Shamshiev, A., Libero, G., Clatworthy, A., Vincent, M., Brenner, M. B., Behar, S., Niazi, K., Modlin, R. L., Almo, S., Ostrov, D., Nathenson, S. G., and Porcelli, S. A. (2000). Molecular recognition of human CD1b antigen complexes: evidence for a common pattern of interaction with alpha beta TCRs. Journal of Immunology 165, 4494–4504CrossRefGoogle ScholarPubMed
Modlin, R. L. (1998). An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 282, 121–125Google Scholar
Moody, D. B., Reinhold, B. B., Guy, M. R., Beckman, E. M., Frederique, D. E., Furlong, S. T., Ye, S., Reinhold, V. N., Sieling, P. A., Modlin, R. L., Besra, G. S., and Porcelli, S. A. (1997). Structural requirements for glycolipid antigen recognition by CD1b-restricted T cells. Science 278, 283–286CrossRefGoogle ScholarPubMed
Moody, D. B., Reinhold, B. B., Reinhold, V. N., Besra, G. S., and Porcelli, S. A. (1999). Uptake and processing of glycosylated mycolates for presentation to CD1b-restricted T cells. Immunology Letters 65, 85–91CrossRefGoogle ScholarPubMed
Moody, D. B., Ulrichs, T., Muhlecker, W., Young, D. C., Gurcha, S. S., Grant, E., Rosat, J. P., Brenner, M. B., Costello, C. E., Besra, G. S., and Porcelli, S. A. (2000). CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature 404, 884–888CrossRefGoogle ScholarPubMed
Niazi, K. R., Chiu, M. W., Mendoza, R. M., Degano, M., Khurana, S., Moody, D. B., Melian, A., Wilson, I. A., Kronenberg, M., Porcelli, S. A., and Modlin, R. L. (2001). The A′ and F′ pockets of human CD1b are both required for optimal presentation of lipid antigens to T cells. Journal of Immunology 166, 2562–2570CrossRefGoogle ScholarPubMed
Ochoa, M. T., Stenger, S., Sieling, P. A., Thoma-Uszynski, S., Sabet, S., Cho, S., Krensky, A. M., Rollinghoff, M., Nunes, S. E., Burdick, A. E., Rea, T. H., and Modlin, R. L. (2001). T-cell release of granulysin contributes to host defense in leprosy. Nature Medicine 7, 174–179CrossRefGoogle ScholarPubMed
Porcelli, S., Morita, C. T., and Brenner, M. B., (1992). CD1b restricts the response of human CD4-8-T lymphocytes to a microbial antigen. Nature 360, 593–597CrossRefGoogle ScholarPubMed
Porcelli, S. A. and Modlin, R. L. (1999). The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annual Review of Immunology 17, 297–329CrossRefGoogle Scholar
Prigozy, T. I., Sieling, P. A., Clemens, D., Stewart, P. L., Behar, S. M., Porcelli, S. A., Brenner, M. B., Modlin, R. L., and Kronenberg, M. (1997). The mannose receptor delivers lipoglycan antigens to endosomes for presentation to T cells by CD1b molecules. Immunity 6, 187–197CrossRefGoogle Scholar
Rosat, J. P., Grant, E. P., Beckman, E. M., Dascher, C. C., Sieling, P. A., Frederique, D., Modlin, R. L., Porcelli, S. A., Furlong, S. T., and Brenner, M. B. (1999). CD1-restricted microbial lipid antigen-specific recognition found in the CD8+ alpha beta T cell pool. Journal of Immunology 162, 366–371Google ScholarPubMed
Sallusto, F. and Lanzavecchia, A. (1994). Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. Journal of Experimental Medicine 179, 1109–1118CrossRefGoogle ScholarPubMed
Schaible, U. E., Hagens, K., Fischer, K., Collins, H. L., and Kaufmann, S. H. (2000). Intersection of group I CD1 molecules and mycobacteria in different intracellular compartments of dendritic cells. Journal of Immunology 164, 4843–4852CrossRefGoogle Scholar
Sieling, P. A., Chatterjee, D., Porcelli, S. A., Prigozy, T. I., Mazzaccaro, R. J., Soriano, T., Bloom, B. R., Brenner, M. B., Kronenberg, M., Brennan, P. J., and Modlin, R. L. (1995). CD1-restricted T cell recognition of microbial lipoglycan antigens. Science 269, 227–230CrossRefGoogle ScholarPubMed
Sieling, P. A., Jullien, D., Dahlem, M., Tedder, T. F., Rea, T. H., Modlin, R. L., and Porcelli, S. A. (1999): CD1 expression by dendritic cells in human leprosy lesions: correlation with effective host immunity. Journal of Immunology 162, 1851–1858Google ScholarPubMed
Sieling, P. A., Ochoa, M. T., Jullien, D., Leslie, D. S., Sabet, S., Rosat, J. P., Burdick, A. E., Rea, T. H., Brenner, M. B., Porcelli, S. A., and Modlin, R. L. (2000). Evidence for human CD4+ T cells in the CD1-restricted repertoire: derivation of mycobacteria-reactive T cells from leprosy lesions. Journal of Immunology 164, 4790–4796CrossRefGoogle ScholarPubMed
Shinkai, K. and Locksley, R. M. (2000). CD1, tuberculosis, and the evolution of major histocompatibility complex molecules. Journal of Experimental Medicine 191, 907–914CrossRefGoogle ScholarPubMed
Stenger, S., Mazzaccaro, R. J., Uyemura, K., Cho, S., Barnes, P. F., Rosat, J. P., Sette, A., Brenner, M. B., Porcelli, S. A., Bloom, B. R., and Modlin, R. L. (1997). Differential effects of cytolytic T cell subsets on intracellular infection. Science 276, 1684–1687CrossRefGoogle ScholarPubMed
Stenger, S., Hanson, D. A., Teitelbaum, R., Dewan, P., Niazi, K. R., Froelich, C. J., Ganz, T., Thoma-Uszynski, S., Melian, A., Bogdan, C., Porcelli, S. A., Bloom, B. R., Krensky, A. M., and Modlin, R. L. (1998a). An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 282, 121–125CrossRefGoogle Scholar
Stenger, S., Niazi, K. R., and Modlin, R. L. (1998b). Down-regulation of CD1 on antigen-presenting cells by infection with Mycobacterium tuberculosis. Journal of Immunology 161, 3582–3588Google Scholar
Sturgill-Koszycki, S., Schlesinger, P. H., Chakraborty, P., Haddix, P. L., Collins, H. L., Fok, A. K., Allen, R. D., Gluck, S. L., Heuser, J., and Russell, D. G. (1994). Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase [see comments] [published erratum appears in Science 1994 Mar 11; 263 (5152): 1359]. Science 263, 678–681CrossRefGoogle Scholar
Sugita, M., Jackman, R. M., Donselaar, E., Behar, S. M., Rogers, R. A., Peters, P. J., Brenner, M. B., and Porcelli, S. A. (1996). Cytoplasmic tail-dependent localization of CD1b antigen-presenting molecules to MIICs. Science 273, 349–352CrossRefGoogle ScholarPubMed
Sugita, M., Grant, E. P., Donselaar, E., Hsu, V. W., Rogers, R. A., Peters, P. J., and Brenner, M. B. (1999). Separate pathways for antigen presentation by CD1 molecules. Immunity 11, 743–752CrossRefGoogle ScholarPubMed
Sugita, M., Der, W., Rogers, R. A., Peters, P. J., and Brenner, M. B. (2000). CD1c molecules broadly survey the endocytic system. Proceedings of the National Academy of Sciences USA 97, 8445–8450CrossRefGoogle ScholarPubMed
Agthoven, A. and Terhorst, C. (1982). Further biochemical characterization of the human thymocyte differentiation antigen T6. Journal of Immunology 128, 426–432Google ScholarPubMed
Vogt, A. B., Arndt, S. O., Hammerling, G. J., and Kropshofer, H. (1999). Quality control of MHC class II associated peptides by HLA-DM/H2-M. Seminars in Immunopathology 11, 391–403CrossRefGoogle ScholarPubMed
Xu, S., Cooper, A., Sturgill-Koszycki, S., Heyningen, T., Chatterjee, D., Orme, I., Allen, P., and Russell, D. G. (1994). Intracellular trafficking in Mycobacterium tuberculosis and Mycobacterium avium-infected macrophages. Journal of Immunology 153, 2568–2578Google ScholarPubMed
Zeng, Z., Castano, A. R., Segelke, B. W., Stura, E. A., Peterson, P. A., and Wilson, I. A. (1997). Crystal structure of mouse CD1: An MHC-like fold with a large hydrophobic binding groove [see comments]. Science 277, 339–345CrossRefGoogle Scholar
Zhong, G., Fan, T., and Liu, L. (1999). Chlamydia inhibits interferon gamma-inducible major histocompatibility complex class II expression by degradation of upstream stimulatory factor 1. Journal of Experimental Medicine 189, 1931–1938CrossRefGoogle ScholarPubMed
Zhong, G., Liu, L., Fan, T., Fan, P., and Ji, H. (2000). Degradation of transcription factor RFX5 during the inhibition of both constitutive and interferon gamma-inducible major histocompatibility complex class I expression in chlamydia-infected cells. Journal of Experimental Medicine 191, 1525–1534CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • CD1 and nonpeptide antigen recognition systems in microbial immunity
    • By Kayvan R. Niazi, Division of Dermatology and Department of Microbiology, Immunology and Molecular Genetics, School of Medicine, University of California, Los Angeles, CA 90095, USA, Steven A. Porcelli, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Robert L. Modlin, Division of Dermatology and Department of Microbiology, Immunology and Molecular Genetics, School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
  • Edited by Brian Henderson, University College London, Petra C. F. Oyston, Defence Science and Technology Laboratory, Salisbury
  • Book: Bacterial Evasion of Host Immune Responses
  • Online publication: 13 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546266.003
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • CD1 and nonpeptide antigen recognition systems in microbial immunity
    • By Kayvan R. Niazi, Division of Dermatology and Department of Microbiology, Immunology and Molecular Genetics, School of Medicine, University of California, Los Angeles, CA 90095, USA, Steven A. Porcelli, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Robert L. Modlin, Division of Dermatology and Department of Microbiology, Immunology and Molecular Genetics, School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
  • Edited by Brian Henderson, University College London, Petra C. F. Oyston, Defence Science and Technology Laboratory, Salisbury
  • Book: Bacterial Evasion of Host Immune Responses
  • Online publication: 13 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546266.003
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • CD1 and nonpeptide antigen recognition systems in microbial immunity
    • By Kayvan R. Niazi, Division of Dermatology and Department of Microbiology, Immunology and Molecular Genetics, School of Medicine, University of California, Los Angeles, CA 90095, USA, Steven A. Porcelli, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Robert L. Modlin, Division of Dermatology and Department of Microbiology, Immunology and Molecular Genetics, School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
  • Edited by Brian Henderson, University College London, Petra C. F. Oyston, Defence Science and Technology Laboratory, Salisbury
  • Book: Bacterial Evasion of Host Immune Responses
  • Online publication: 13 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546266.003
Available formats
×