Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T04:04:20.191Z Has data issue: false hasContentIssue false

11 - The Developmental Origins of Health and Disease

Early Life Health Conditions and Adult Age at Death in Europe

Published online by Cambridge University Press:  29 October 2018

Richard H. Steckel
Affiliation:
Ohio State University
Clark Spencer Larsen
Affiliation:
Ohio State University
Charlotte A. Roberts
Affiliation:
University of Durham
Joerg Baten
Affiliation:
Eberhard-Karls-Universität Tübingen, Germany
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Backbone of Europe
Health, Diet, Work and Violence over Two Millennia
, pp. 325 - 351
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amoroso, A.; Garcia, S. J.; Cardoso, H. F. V. (2014). Age at death and linear enamel hypoplasias: testing the effects of childhood stress and adult socioeconomic circumstances in premature mortality, American Journal of Human Biology, 26: 461468.Google Scholar
Angel, J. L. (1966). Porotic hyperostosis, anaemias, malaria, and marshes in the prehistoric eastern Mediterranean, Science, 153: 760763.Google Scholar
Armelagos, G. J.; Goodman, A. H.; Harper, K. N.; et al. (2009). Enamel hypoplasia and early mortality: bioarcheological support for the Barker hypothesis, Evolutionary Anthropology, 18: 261271.CrossRefGoogle Scholar
Ateli, H. E.; Zhou, G.; Lee, M.-C.; et al. (2011). Topography as a modifier of breeding habitats and concurrent vulnerability to malaria risk in the western Kenya highlands, Parasites and Vectors. DOI: 10.1186/1756-3305-4-241.CrossRefGoogle Scholar
Barker, D. J. P. (1992). Fetal and Infant Origins of Adult Disease, London: BMJ Books.Google Scholar
Barker, D. J. P. (1994). Mothers, Babies and Health in Later Life, New York: Churchill Livingstone.Google Scholar
Barker, D. J. P. (2005). Infant growth and income 50 years later, Archives of Disease in Childhood, 90: 272273.Google Scholar
Barker, D. J. P.; Gluckman, P. D.; Godfrey, K. M.; et al. (1993). Fetal nutrition and cardiovascular disease in adult life, Lancet, 341(8850): 938941.Google Scholar
Barker, D. J. P.; Osmond, C. (1986). Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales, Lancet, 1(8489): 10771081.Google Scholar
Barker, D. J. P.; Osmond, C.; Winter, P. D.; et al. (1989). Weight in infancy and death from ischaemic heart disease, Lancet, 2(8663): 577580.Google Scholar
Beaumont, J.; Montgomery, J. A.; Buckberry, J.; et al. (2015). Infant mortality and isotopic complexity: new approaches to stress, maternal health and weaning, American Journal of Physical Anthropology, 157: 441457.Google Scholar
Binder, M.; Roberts, C. A. (2014). Calcified structures associated with human skeletal remains: possible atherosclerosis affecting the population buried at Amara West, Sudan (1300–800 BC), International Journal of Paleopathology, 6: 2029.CrossRefGoogle Scholar
Boldsen, J. W.; Milner, G. R.; Konigsberg, L. W.; et al. (2002). Transition analysis: a new method for estimating age-indicator methods. In: Hoppa, R. D.; Vaupel, J. W. (eds.), Palaeodemography, Age Distributions from Skeletal Samples, Cambridge: Cambridge University Press, pp. 73106.Google Scholar
Cameron, N.; Demerath, E. W. (2002). Critical periods in human growth and their relationship to diseases of aging, Yearbook of Physical Anthropology, 45: 159184.Google Scholar
Clark, G. A. (1988). New method for assessing changes in growth and sexual dimorphism in paleoepidemiology, American Journal of Physical Anthropology, 77: 105116.Google Scholar
Clark, G. A.; Hall, N. R.; Armelagos, G. J.; et al. (1986). Poor early growth prior to childhood: decreased health and life‐span in the adult, American Journal of Physical Anthropology, 70: 145160.Google Scholar
Cohen, M.; Armelagos, G. (eds.) (1984). Paleopathology at the Origins of Agriculture, Orlando: Academic Press.Google Scholar
Cohen, M. N.; Crane-Kramer, G. M. M. (eds.) (2007). Ancient Health: Skeletal Indicators of Agricultural and Economic Intensification, Gainesville, University Press of Florida.Google Scholar
Cook, D. E.; Buikstra, J. E. (1979). Health and differential survival in prehistoric populations: prenatal dental defects, American Journal of Physical Anthropology, 51: 649664.Google Scholar
DeWitte, S. N. (2010). Sex differentials in frailty in medieval England, American Journal of Physical Anthropology, 143: 285297.Google Scholar
DeWitte, S. N. (2012). Sex differences in periodontal disease in catastrophic and attritional assemblages from medieval London, American Journal of Physical Anthropology, 149: 405416.Google Scholar
DeWitte, S. N.; Bekvalac, J. (2010). Oral health and frailty in the Medieval English cemetery of St Mary Graces, American Journal of Physical Anthropology, 142: 341354.Google Scholar
DeWitte, S. N.; Bekvalac, J. (2011). The association between periodontal disease and periosteal lesions in the St. Mary Graces cemetery, London, England A.D. 1350–1538, American Journal of Physical Anthropology, 146: 609618Google Scholar
DeWitte, S. N.; Hughes-Morey, G. (2012). Stature and frailty during the Black Death: the effect of stature on risks of epidemic mortality in London, A.D. 1348–1350, Journal of Archaeological Science, 39: 14121419.Google Scholar
DeWitte, S. N.; Wood, J. W. (2008). Selectivity of Black Death mortality with respect to preexisting health, Proceedings of the National Academy of Sciences, 105: 14361441.Google Scholar
Duray, S. M. (1996). Dental indicators of stress and reduced age at death in prehistory Native Americans, American Journal of Physical Anthropology, 99: 275286.Google Scholar
Freedman, D. A. (2009). Statistical Models: Theory and Practice, Cambridge: Cambridge University Press.Google Scholar
Friedman, H. S. (2008). The multiple linkages of personality and disease, Brain, Behavior, and Immunity, 22: 668675.Google Scholar
Gamble, J. A.; Boldsen, J. L.; Hopp, R. D. (2017). Stressing out in medieval Denmark: an investigation of dental enamel defects and age at death in two medieval Danish cemeteries, International Journal of Paleopathology, 17: 5266.Google Scholar
Garad, Y.; Maximova, K.; Mackinnon, N.; et al. (2017). Sex-specific differences in the association between childhood adversity and cardiovascular disease in adulthood: evidence from a national cohort study, Canadian Journal of Cardiology, 33: 10131019.Google Scholar
Gluckman, P.; Hanson, M. (2006). Mismatch: The Lifestyle Diseases Timebomb, Oxford: Oxford University Press.Google Scholar
Gluckman, P. D.; Low, F. M.; Buklijas, T.; et al. (2011). How evolutionary principles improve the understanding of human health and disease, Evolutionary Applications, 4: 249263.Google Scholar
Godfrey, K.; Hanson, M. (2009). The developmental origins of health and disease. In: Panter-Brick, C.; Fuentes, A. (eds.), Health, Risk and Adversity, Oxford: Berghahn Books, pp. 185208.Google Scholar
Goodman, A. H.; Armelagos, G. J.; Rose, J. C. (1980). Enamel hypoplasias as indicators of stress in three prehistoric populations from Illinois, Human Biology, 52: 515528.Google Scholar
Goodman, A.; Brooke, T. R.; Swedlund, A.; et al. (1988). Biocultural perspectives on stress in prehistoric, historical and contemporary population research, Yearbook of Physical Anthropology, 31: 169202.Google Scholar
Gowland, R. L. (2015). Entangled lives: implications of the developmental origins of health and disease hypothesis for bioarchaeology and the life course, American Journal of Physical Anthropology, 158: 530540.Google Scholar
Gunnell, D.; Rogers, J.; Dieppe, P. (2001). Height and health: predicting longevity from bone length in archaeological remains, Journal of Epidemiology and Community Health, 55: 505507.Google Scholar
Hales, C. N.; Barker, D. J. P.; Cark, P. M. S.; et al. (1991). Fetal and infant growth and impaired glucose tolerance at age 64 years, British Medical Journal, 3003: 10191022.Google Scholar
Hillson, S. (1996). Dental Anthropology, Cambridge: Cambridge University Press.Google Scholar
Keenleyside, A.; Panayotova, K. (2006). Cribra orbitalia and porotic hyperostosis in a Greek colonial population (5th to 3rd centuries BC) from the Black Sea, International Journal of Osteoarchaeology, 16: 373384.Google Scholar
Kiple, K. F.; Coneè Ornelas, K. (eds.) (2000). The Cambridge World History of Food, Cambridge: Cambridge University Press.Google Scholar
Klein, S. L.; Flanagan, K. L. (2016) Sex differences in immune responses, Nature Reviews Immunology, 16: 626638.Google Scholar
Knick, S. G. (1982). Linear enamel hypoplasia and tuberculosis in the pre-Columbian North America, Ossa, 8: 131138.Google Scholar
Krenz-Niedbała, M.; Kozłowski, T. (2013). Comparing the chronological distribution of enamel hypoplasia in Rogowo, Poland (2nd century AD) using two methods of defect timing estimation, International Journal of Osteoarchaeology, 23: 410420.Google Scholar
Larsen, C. S. (2015). Bioarchaeology. Interpreting Behavior from the Human Skeleton, 2nd edition, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Lopuhaa, C. E.; Roseboom, T. J.; Osmond, C.; et al. (2000). Atopy, lung function, and obstructive airways disease after prenatal exposure to famine, Thorax, 55: 555561.Google Scholar
Lukasik, S.; Krenz-Niedbala, M. (2014). Age of linear enamel hypoplasia formation based on Massler and colleagues’ and Reid and Dean’s standards in a Polish sample dated to 13th–18th century CE, Homo, 65: 296301.CrossRefGoogle Scholar
Marciniak, S.; Prowse, T. L.; Herring, D. A.; et al. (2016). Plasmodium falciparum malaria in 1st–2nd century CE southern Italy, Current Biology. DOI: http://dx.doi.org/10.1016/j.cub.2016.10.016.Google Scholar
Martin, S. A.; Guatelli-Steinberg, D.; Sciulli, P. W.; et al. (2008). Brief communication: comparison of methods for estimating chronological age at linear enamel formation on anterior dentition, American Journal of Physical Anthropology, 135: 362365.CrossRefGoogle ScholarPubMed
McIlvaine, B. K. (2015). Implications of reappraising the iron-deficiency anemia hypothesis, International Journal of Osteoarchaeology, 25(6): 9971000.Google Scholar
Mitchell, P. D. (2012). Integrating historical sources with paleopathology. In: Grauer, A. L. (ed.), A Companion to Paleopathology, Cambridge: Cambridge University Press, pp. 310323.Google Scholar
Molleson, T.; Cox, M. (1993). The Spitalfields Project. Volume 2: The Anthropology – The Middling Sort, York: Council for British Archaeology.Google Scholar
Morrow, E. (2015). The evolution of sex differences in disease, Biology of Sex Differences. DOI: 10.1186/s13293-015-0023-0.CrossRefGoogle Scholar
Newman, S.; Gowland, R. L. (2015). The use of non-adult vertebral dimensions as indicators of growth disruption and non-specific health stress in skeletal populations, International Journal of Osteoarchaeology, 158: 155164.Google Scholar
Ortner, D. (1998). Male–female immune reactivity and its implications for interpreting evidence in human skeletal palaeopathology. In: Grauer, A.; Stuart-Macadam, P. (eds.), Sex and Gender in Paleopathological Perspective, Cambridge: Cambridge University Press, pp. 7992.Google Scholar
Oxenham, M. F.; Cavill, I. (2010) Porotic hyperostosis and cribra orbitalia: the erythropoietic response to iron-deficiency anaemia, Anthropological Science, 118: 199200.Google Scholar
Painter, R. C.; de Rooij, S. R.; Bossuyt, P. M.; et al. (2006). A possible link between prenatal exposure to famine and breast cancer: a preliminary study, American Journal of Human Biology, 18: 853856.Google Scholar
Räikkönen, K.; Pesonen, A.-K.; Heinonen, K.; et al. (2008). Infant growth and hostility in adult life, Psychosomatic Medicine, 70: 306313.Google Scholar
Ravelli, A. C. J.; van der Meulen, J. H. P; Osmond, C.; et al. (2000). Infant feeding and adult glucose tolerance, lipid profile, obesity and blood pressure: the Dutch famine birth cohort study, Archives of Disease in Childhood, 82: 248252.Google Scholar
Resnick, D. (1995). Hemoglobinopathies and other anemias. In: Resnick, D.; Niwayama, G. (eds.), Diagnosis of Bone and Joint Disorders, 3rd edition, London: W.B. Saunders, pp. 21072146.Google Scholar
Ribot, I.; Roberts, C. A. (1996). A study of non-specific stress indicators and skeletal growth in two Medieval subadult populations, Journal of Archaeological Science, 23: 6779.Google Scholar
Ritzman, T. B.; Baker, B. J.; Schwartz, G. T. (2008). A fine line: a comparison of methods for estimating ages of linear enamel hypoplasia formation, American Journal of Physical Anthropology, 135: 348361.Google Scholar
Rivera, F.; Lahr, M. M. (2017). New evidence suggesting a dissociated etiology for cribra orbitalia and porotic hyperostosis, American Journal of Physical Anthropology. DOI: 10.1002/ajpa.23258.Google Scholar
Roberts, C. A.; Cox, M. (2003). Health and Disease in Britain: Prehistory to the Present Day, Gloucester: Sutton Publishing.Google Scholar
Roberts, C. A.; Lucy, D.; Manchester, K. (1994). Inflammatory lesions of ribs: an analysis of the Terry Collection. American Journal of Physical Anthropology, 95: 169182.Google Scholar
Ryan, A. S. (1997). Iron-deficiency anemia in infant development: implications for growth, cognitive development, resistance to infection, and iron supplementation, Yearbook of Physical Anthropology, 40: 2562.Google Scholar
Sarnat, B. G.; Schour, I. (1941). Enamel hypoplasia (chronologic enamel aplasia) in relation to systemic disease: chronologic, morphologic and etiological classification, Journal of the American Dental Association, 28: 19892000.CrossRefGoogle Scholar
Sarnat, B. G.; Schour, I. (1942). Enamel hypoplasia (chronologic enamel aplasia) in relation to systemic disease: chronologic, morphologic and etiological classification, Journal of the American Dental Association, 29: 297418.Google Scholar
Scheuer, L.; Black, S. (2000), Developmental Juvenile Osteology, London: Academic Press.Google Scholar
Simon, A. K.; Hollander, G. A.; McMichael, A. (2015). Evolution of the immune system in humans from infancy to old age, Proceedings of the Royal Society B, 282: 20143085.Google Scholar
Steckel, R. H. (2005). Young adult mortality following severe physiological stress in childhood: skeletal evidence, Economics and Human Biology, 3: 314328.CrossRefGoogle ScholarPubMed
Steckel, R. H.; Rose, J. C. (2002). The Backbone of History: Health and Nutrition in the Western Hemisphere, Cambridge: Cambridge University Press.Google Scholar
Stinson, S. (1985). Sex differences in environmental sensitivity during growth and development, Yearbook of Physical Anthropology, 28: 123147.Google Scholar
Stuart-Macadam, P. (1985). Porotic hyperostosis: representative of a childhood condition, American Journal of Physical Anthropology, 66: 391398.Google Scholar
Stuart-Macadam, P. (1992). Porotic hyperostosis: a new perspective, American Journal of Physical Anthropology, 87: 3947.Google Scholar
Stuart-Macadam, P. (2006). Integrative anthropology: a focus on iron-deficiency anemia, Archeological Papers of the American Anthropological Association, 16: 129137.CrossRefGoogle Scholar
Thompson, C.; Syddall, H.; Rodin, I.; et al. (2001). Birthweight and the risk of depressive disorder in later life, British Journal of Psychiatry, 179: 450455.Google Scholar
Trotter, M. (1970). Estimation of stature from intact long limb bones. In: Stewart, T. D. (ed.), Personal Identification in Mass Disasters, Washington: National Museum of Natural History, pp. 7183.Google Scholar
Wahlbeck, K.; Forsén, T.; Osmond, C.; et al. (2001). Association of schizophrenia with low maternal body mass index, small size at birth and thinness during childhood, Archives of General Psychiatry, 58: 4852.Google Scholar
Walker, D.; Henderson, M. (2010). Smoking and health in London’s East End in the first half of the 19th century, Post-Medieval Archaeology, 44(1): 209222.Google Scholar
Walker, P. L. (1986). Porotic hyperostosis in a marine-dependent Californian Indian population, American Journal of Physical Anthropology, 69: 345354.Google Scholar
Walker, P. L.; Bathurst, R. R.; Richman, R. (2009). The cause of porotic hyperostosis and cribra orbitalia: a reappraisal of the iron-deficiency anemia hypothesis, American Journal of Physical Anthropology, 139: 109125.Google Scholar
Wapler, U.; Crubezy, E.; Schultz, M. (2004). Is cribra orbitalia synonymous with anemia? Analysis and interpretation of cranial pathology in Sudan, American Journal of Physical Anthropology, 123: 333339.Google Scholar
Watts, R. (2011). Non-specific indicators of stress and their association with age at death in Medieval York: using stature and vertebral neural canal size to examine the effects of stress occurring during different periods of development, International Journal of Osteoarchaeology, 21: 568576.Google Scholar
Watts, R. (2013). Childhood development and adult longevity in an archaeological population from Barton-upon-Humber, Lincolnshire, England, International Journal of Paleopathology, 3: 95104.Google Scholar
Watts, R. (2015). The long-term impact of developmental stress: evidence from later medieval and post-medieval London (AD1117–1853), American Journal of Physical Anthropology, 158: 569580.Google Scholar
Wood, J. W.; Milner, G. R.; Harpending, H. C.; et al. (1992). The osteological paradox: problems of inferring health from the skeleton, Current Anthropology, 33(4): 3437.Google Scholar
World Health Organization (2016). World Malaria Report, Geneva: World Health Organization.Google Scholar
Yakoob, N. Y.; Low, C. W. (2017). Nutrition (micronutrients) in child growth and development: a systematic review on current evidence, recommendations and opportunities for further research, Journal of Developmental & Behavioral Pediatrics. DOI: 10.1097/DBP.0000000000000482.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×