Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-26T18:26:21.322Z Has data issue: false hasContentIssue false

Chapter 4 - The impacts of climate change on Australian and New Zealand flora and fauna

Published online by Cambridge University Press:  05 November 2014

Abigail Cabrelli
Affiliation:
Macquarie University
Linda Beaumont
Affiliation:
Macquarie University
Lesley Hughes
Affiliation:
Macquarie University
Adam Stow
Affiliation:
Macquarie University, Sydney
Norman Maclean
Affiliation:
University of Southampton
Gregory I. Holwell
Affiliation:
University of Auckland
Get access

Summary

Summary

Over recent years, anthropogenic climate change has emerged as a considerable threat to the biota of Australia and New Zealand. Despite the relatively modest climatic changes that have occurred to date, species already appear to be responding by shifting their distributions, altering the timing of life-cycle events and modifying their behaviours. This chapter summarises the impacts of climate change on the species and ecosystems of Australia and New Zealand, describing the ways in which observed and projected responses differ from those occurring in the Northern Hemisphere due to the distinctiveness of our environment and biota. We also highlight the implications of these responses for species and ecosystem conservation.

Introduction

Nature’s calendar is something we become familiar with from a young age. The flowering of golden wattles takes place in late winter, while the arrival of migratory birds and the drone of cicadas herald spring. As the season progresses Common Brown Butterflies emerge, webs are spun by St Andrew’s Cross Spiders, and flame trees and jacarandas bloom. Sepal ‘flowers’ of the Christmas Bush turning red and Christmas Beetles littering the back porch signal the start of summer holidays. As the New Year dawns, By-the-Wind Sailor sea jellies can be found on our shores. Summer wanes, giving way to Autumn, leaves senesce and fall, while in the oceans Southern right and Humpback whales migrate to warmer waters.

Type
Chapter
Information
Austral Ark
The State of Wildlife in Australia and New Zealand
, pp. 65 - 82
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams-Hosking, C., Grantham, H. S., Rhodes, J. R., McAlpine, C. & Moss, P. T. 2011. Modelling climate-change-induced shifts in the distribution of the koala. Wildlife Research, 38, 122–130.CrossRefGoogle Scholar
Asner, G. P., Loarie, S. R. & Heyder, U. 2010. Combined effects of climate and land-use change on the future of humid tropical forests. Conservation Letters, 3, 395–403.CrossRefGoogle Scholar
Augee, M. & Fox, M. 2000. Biology of Australia and New Zealand. Sydney, Australia, Pearson Education.Google Scholar
Banks, S. C., Ling, S. D., Johnson, C. R. et al. 2010. Genetic structure of a recent climate change-driven range extension. Molecular Ecology, 19, 2011–2024.CrossRefGoogle ScholarPubMed
Battaglia, M., Bruck, J., Brack, C. & Baker, T. 2009. Climate change and Australia’s plantation estate: analysis of vulnerability and preliminary investigation of adaptation options. Forest and Wood Products, Australia.Google Scholar
Beaumont, L. J. & Duursma, D. 2012. Global projections of 21st century land-use changes in regions adjacent to protected areas. PLoS ONE, 7, e43714.CrossRefGoogle ScholarPubMed
Beaumont, L. J. & Hughes, L. 2002. Potential changes in the distributions of latitudinally restricted Australian butterfly species in response to climate change. Global Change Biology, 8, (954–971).CrossRefGoogle Scholar
Beaumont, L. J., Gallagher, R. V., Downey, P. O., et al. 2009. Modelling the impact of Hieracium spp. on protected areas in Australia under future climates. Ecography, 32, 757–764.CrossRefGoogle Scholar
BMT WBM 2010. Kakadu – Vulnerability to Climate Change Impacts. A report to the Australian Government of Climate Change and Energy Efficiency.
Bond, N., Thomson, J., Reich, P. & Stein, J. 2011. Using species distribution models to infer potential climate change-induced range shifts of freshwater fish in south-eastern Australia. Marine and Freshwater Research, 62, 1043–1061.CrossRefGoogle Scholar
Bourdôt, G. W., Lamoureaux, S. L., Watt, M. S., Manning, L. K. & Kriticos, D. J. 2012. The potential global distribution of the invasive weed Nassella neesiana under current and future climates. Biological Invasions, 14, 1545–1556.CrossRefGoogle Scholar
Bowman, D., Murphy, B. P. & Banfai, D. S. 2010. Has global environmental change caused monsoon rainforests to expand in the Australian monsoon tropics?Landscape Ecology, 25, 1247–1260.CrossRefGoogle Scholar
Bull, C. M. & Burzacott, D. 2006. Changes in climate and in the timing of pairing of the Australian lizard, Tiliqua rugosa: a 15-year study. Journal of Zoology, 256, 383–387.CrossRefGoogle Scholar
Chaloupka, M., Kamezaki, N. & Limpus, C. 2008. Is climate change affecting the population dynamics of the endangered Pacific Loggerhead sea turtle?Journal of Experimental Marine Biology and Ecology, 356, 136–143.CrossRefGoogle Scholar
Chambers, L. E., Altwegg, R., Barbraud, R., et al. 2013. Phenological changes in the Southern Hemisphere. PLoS ONE, 8(10), e75514.CrossRefGoogle ScholarPubMed
Chambers, L. E., Beaumont, L. J. & Hudson, I. L. 2014. Continental scale analysis of bird migration timing: influences of climate and life history traits – a generalized mixture model clustering approach. International Journal of Biometeorology, 58,1147–1162.CrossRefGoogle Scholar
Chen, I., Hill, J. K., Shiu, H. J. et al. 2011. Asymmetric boundary shifts of tropical montane Lepidoptera over four decades of climate warming. Global Ecology and Biogeography, 20, 34–45.CrossRefGoogle Scholar
Császár, N. B., Ralph, P. J., Frankham, R., Berkelmans, R. & Van Oppen, M. J. 2010. Estimating the potential for adaptation of corals to climate warming. PLoS ONE, 5, e9751.CrossRefGoogle ScholarPubMed
CSIRO & BOM 2007. Climate Change in Australia. Melbourne: CSIRO, Bureau of Meteorology.Google Scholar
Deo, R. C., Syktus, J. I., McAlpine, C. A., et al. 2009. Impact of historical land cover change on daily indices of climate extremes including droughts in eastern Australia. Geophysical Research Letters, 36, 5.CrossRefGoogle Scholar
Dunlop, M. & Brown, P. 2008. Implications of Climate Change for Australia’s National Reserve System: A Preliminary Assessment, Report to the Department of Climate Change. Canberra, Australia: Department of Climate Change, Canberra, Australia.Google Scholar
Fensham, R. J., Fairfax, R. J. & Ward, D. P. 2009. Drought-induced tree death in savanna. Global Change Biology, 15, 380–387.CrossRefGoogle Scholar
Fisher, M. C., Garner, T. W. J. & Walker, S. F. 2009. Global emergence of Batrachochytrium dendrobatidis and Amphibian Chytridiomycosis in space, time, and host. Annual Review of Microbiology, 63, 291–310.CrossRefGoogle Scholar
Fitzpatrick, M. C., Gove, A. D., Sanders, N. J. & Dunn, R. R. 2008. Climate change, plant migration, and range collapse in a global biodiversity hotspot: the Banksia (Proteaceae) of Western Australia. Global Change Biology, 14, 1337–1352.CrossRefGoogle Scholar
Fouquet, A., Ficetola, G. F., Haigh, A. & Gemmell, N. 2010. Using ecological niche modelling to infer past, present and future environmental suitability for Leiopelma hochstetteri, an endangered New Zealand native frog. Biological Conservation, 143, 1375–1384.CrossRefGoogle Scholar
Fuentes, M., Maynard, J., Guinea, M., et al. 2009. Proxy indicators of sand temperature help project impacts of global warming on sea turtles in northern Australia. Endangered Species Research, 9, 33–40.CrossRefGoogle Scholar
Gallagher, R. V., Hughes, L., Leishman, M. R. & Wilson, P. D. 2010. Predicted impact of exotic vines on an endangered ecological community under future climate change. Biological Invasions, 12, 4049–4063.CrossRefGoogle Scholar
Gardner, J. L., Heinsohn, R. & Joseph, L. 2009. Shifting latitudinal clines in avian body size correlate with global warming in Australian passerines. Proceedings of the Royal Society B – Biological Sciences, 276, 3845–3852.CrossRefGoogle ScholarPubMed
Gibson, L., McNeill, A., De Tores, P., Wayne, A. & Yates, C. 2010. Will future climate change threaten a range restricted endemic species, the quokka (Setonix brachyurus), in south west Australia?Biological Conservation, 143, 2453–2461.CrossRefGoogle Scholar
Grantham, B. A., Eckert, G. L. & Shanks, A. L. 2003. Dispersal potential of marine invertebrates in diverse habitats. Ecological Applications, 13, 108–116.CrossRefGoogle Scholar
Green, K. 2010. Alpine taxa exhibit differing responses to climate warming in the Snowy Mountains of Australia. Journal of Mountain Science, 7, 167–175.CrossRefGoogle Scholar
Green, K., Stein, J. A. & Driessen, M. M. 2008. The projected distributions of Mastacomys fuscus and Rattus lutreolus in south-eastern Australia under a scenario of climate change: potential for increased competition?Wildlife Research, 35, 113–119.CrossRefGoogle Scholar
Guerin, G. R. & Lowe, A. J. 2013. Leaf morphology shift: new data and analysis support climate link. Biology Letters, 9(1), 20120860.CrossRefGoogle ScholarPubMed
Guerin, G. R., Wen, H. X. & Lowe, A. J. 2012. Leaf morphology shift linked to climate change. Biology Letters, 8, 882–886.CrossRefGoogle ScholarPubMed
Guisan, A. & Zimmermann, N. E. 2000. Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147–186.CrossRefGoogle Scholar
Hannah, J. & Bell, R. G. 2012. Regional sea level trends in New Zealand. Journal of Geophysical Research: Oceans, 117, C01004.CrossRefGoogle Scholar
Harsch, M. A., Buxton, R., Duncan, R. P., et al. 2012 Causes of tree line stability: stem growth, recruitment and mortality rates over 15 years at New Zealand Nothofagus tree lines. Journal of Biogeography, 39, 2061–2071.CrossRefGoogle Scholar
Harvell, C. D., Mitchell, C. E., Ward, J. R., et al. 2002. Climate warming and disease risks for terrestrial and marine biota. Science, 296, 2158–2162.CrossRefGoogle ScholarPubMed
Hassall, C., Thompson, D., French, G. & Harvey, I. 2007. Historical changes in the phenology of British Odonata are related to climate. Global Change Biology, 13, 1–9.CrossRefGoogle Scholar
Hay, J., Sarre, S., Lambert, D., Allendorf, F. & Daugherty, C. 2010. Genetic diversity and taxonomy: a reassessment of species designation in tuatara (Sphenodon: Reptilia). Conservation Genetics, 11, 1063–1081.CrossRefGoogle Scholar
Hennessy, K., Whetton, P., Walsh, K., et al. 2007. Climate change effects on snow conditions in mainland Australia and adaptation at ski resorts through snowmaking. Climate Research, 35, 255–270.CrossRefGoogle Scholar
Hoekstra, J. M., Boucher, T. M., Ricketts, T. H. & Roberts, C. 2005. Confronting a biome crisis: global disparities of habitat loss and protection. Ecology Letters, 8, 23–29.CrossRefGoogle Scholar
Hovenden, M. J. & Williams, A. L. 2010. The impacts of rising CO2 concentrations on Australian terrestrial species and ecosystems. Austral Ecology, 35, 665–684.CrossRefGoogle Scholar
Hughes, L. 2008. 10 things to do about climate change. In: Lindenmayer, D., Dovers, S., Harriss Olsen, M. & Morton, S. (eds.) Ten Committments. Canberra: CSIRO Publishing.Google Scholar
Hughes, L. 2012. Can Australian biodiversity adapt to climate change? In: Lunney, D. & Hutchings, P. (eds.) Wildlife and Climate Change: Towards Robust Conservation Strategies for Australian Fauna. Mosman, NSW, Australia: Royal Zoological Society of NSW.Google Scholar
Hughes, L., Cawsey, E. M. & Westoby, M. 1996. Climatic range sizes of Eucalyptus species in relation to future climate change. Global Ecology and Biogeography Letters, 5, 23–29.CrossRefGoogle Scholar
Hunter, D. A., Speare, R., Marantelli, G., et al. 2010. Presence of the amphibian chytrid fungus Batrachochytrium dendrobatidis in threatened corroboree frog populations in the Australian Alps. Diseases of Aquatic Organisms, 92, 209–216.CrossRefGoogle ScholarPubMed
Kilpatrick, A. M., Briggs, C. J. & Daszak, P. 2010. The ecology and impact of chytridiomycosis: an emerging disease of amphibians. Trends in Ecology & Evolution, 25, 109–118.CrossRefGoogle ScholarPubMed
Kirschbaum, M. U. F., Watt, M. S., Tait, A. & Ausseil, A.-G. E. 2012. Future wood productivity of Pinus radiata in New Zealand under expected climatic changes. Global Change Biology, 18, 1342–1356.CrossRefGoogle Scholar
Klamt, M., Thompson, R. & Davis, J. 2011. Early response of the platypus to climate warming. Global Change Biology, 17, 3011–3018.CrossRefGoogle Scholar
Kriticos, D. J. 2012. Regional climate-matching to estimate current and future sources of biodiversity threats. Biological Invasions, 14, 1533–1544.CrossRefGoogle Scholar
Last, P. R., White, W. T., Gledhill, D. C. et al. 2010. Long-term shifts in abundance and distribution of a temperate fish fauna: a response to climate change and fishing practices. Global Ecology and Biogeography, 20, 58–72.CrossRefGoogle Scholar
Laurance, W. F., Dell, B., Turton, S. M., et al. 2011. The 10 Australian ecosystems most vulnerable to tipping points. Biological Conservation, 144, 1472–1480.CrossRefGoogle Scholar
Ling, S., Johnson, C., Ridgway, K., Hobday, A. & Haddon, M. 2008. Climate-driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics. Global Change Biology, 15, 719–731.CrossRefGoogle Scholar
Lough, J. M. 2008. Shifting climate zones for Australia’s tropical marine ecosystems. Geophysical Research Letters, 35, L14708.CrossRefGoogle Scholar
Lundquist, C. J., Ramsay, D., Bell, R., Swales, A. & Kerr, S. 2011. Predicted impacts of climate change on New Zealand’s biodiversity. Pacific Conservation Biology, 17, 179–191.CrossRefGoogle Scholar
McAlpine, C. A., Syktus, J., Deo, R. C., et al. 2007. Modeling the impact of historical land cover change on Australia’s regional climate. Geophysical Research Letters, 34.CrossRefGoogle Scholar
McAlpine, C. A., Ryan, J. G., Seabrook, L., et al. 2010. More than CO2: a broader paradigm for managing climate change and variability to avoid ecosystem collapse. Current Opinion in Environmental Sustainability, 2, 334–346.CrossRefGoogle Scholar
McGlone, M. & Walker, S. 2011. Potential Effects of Climate Change on New Zealand’s Terrestrial Biodiversity and Policy Recommendations for Mitigation, Adaptation and Research, Wellington, Department of Conservation.Google Scholar
MFE 2008. Climate change effects and impacts assessment: a guidance manual for local government in New Zealand. In: Mullan, B., Wratt, D., Dean, S., et al. (eds.) 2 edn. Wellington: Ministry for the Environment.
Mitchell, N. J., Allendorf, F. W., Keall, S. N., Daugherty, C. H. & Nelson, N. J. 2010. Demographic effects of temperature-dependent sex determination: will tuatara survive global warming?Global Change Biology, 16, 60–72.CrossRefGoogle Scholar
Mitchell, N. J., Kearney, M. R., Nelson, N. J. & Porter, W. P. 2008. Predicting the fate of a living fossil: how will global warming affect sex determination and hatching phenology in tuatara?Proceedings of the Royal Society B – Biological Sciences, 275, 2185–2193.CrossRefGoogle ScholarPubMed
Mitchell, N. J., Nelson, N. J., Cree, A., et al. 2006. Support for a rare pattern of temperature-dependent sex determination in archaic reptiles: evidence from two species of tuatara (Sphenodon). Frontiers in Zoology, 3, .CrossRefGoogle Scholar
Mullan, A. B., Stuart, S. J., Hadfield, M. G. & Smith, M. J. 2010. Report on the Review of NIWA’s ‘Seven-Station’ Temperature Series. NIWA Information Series No. 78. New Zealand.Google Scholar
Narisma, G. & Pitman, A. 2003. The impact of 200 years of land cover change on the Australian near-surface climate. Journal of Hydrometeorology, 4, 424–436.2.0.CO;2>CrossRefGoogle Scholar
Nelson, N. J., Thompson, M. B., Pledger, S., Keall, S. N. & Daugherty, C. H. 2004. Do TSD, sex ratios, and nest characteristics influence the vulnerability of tuatara to global warming?International Congress Series, 1275, 250–257.CrossRefGoogle Scholar
Parmesan, C. & Yohe, G. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37–42.CrossRefGoogle ScholarPubMed
Penman, T. D., Pike, D. A., Webb, J. K. & Shine, R. 2010. Predicting the impact of climate change on Australia’s most endangered snake, Hoplocephalus bungaroides. Diversity and Distributions, 16, 109–118.CrossRefGoogle Scholar
Pickering, C., Good, R. & Green, K. 2004. Potential Effects of Global Warming on the Biota of the Australian Alps, Canberra, Technical Report. Australian Greenhouse Office.Google Scholar
Pitt, N. R., Poloczanska, E. S. & Hobday, A. J. 2010. Climate-driven range changes in Tasmanian intertidal fauna. Marine and Freshwater Research, 61, 963–970.CrossRefGoogle Scholar
Pittock, J. & Finlayson, C. M. 2011. Australia’s Murray–Darling Basin: freshwater ecosystem conservation options in an era of climate change. Marine and Freshwater Research, 62, 232–243.CrossRefGoogle Scholar
Reside, A. E., VanDerWal, J., Kutt, A., Watson, I. & Williams, S. 2012. Fire regime shifts affect bird species distributions. Diversity and Distributions, 18, 213–225.CrossRefGoogle Scholar
Ridgway, K. R. 2007. Long-term trend and decadal variability of the southward penetration of the East Australian Current. Geophysical Research Letters, 34, L13613.CrossRefGoogle Scholar
Rosenzweig, C., Karoly, D., Vicarelli, M., et al. 2008. Attributing physical and biological impacts to anthropogenic climate change. Nature, 453, 354–358.CrossRefGoogle ScholarPubMed
Smale, D. A. & Wernberg, T. 2013. Extreme climatic event drives range contraction of a habitat-forming species. Proceedings of the Royal Society B – Biological Sciences, 280, 20122829.CrossRefGoogle ScholarPubMed
Steffen, W., Burbidge, A. A., Hughes, L., et al. 2009. Australia’s Biodiversity and Climate Change: A Strategic Assessment of the Vulnerability of Australia’s Biodiversity to Climate Change. A report to the Natural Resource Management Ministerial Council Commissioned by the Australian Government.
Telemeco, R. S., Elphick, M. J. & Shine, R. 2009. Nesting lizards (Bassiana duperreyi) compensate partly, but not completely, for climate change. Ecology, 90, 17–22.CrossRefGoogle Scholar
Towns, D. R. & Daugherty, C. H. 1994. Patterns of range contractions and extinctions in the New Zealand herpetofauna following human colonisation. New Zealand Journal of Zoology, 21, 325–339.CrossRefGoogle Scholar
Umina, P. A., Weeks, A. R., Kearney, M. R., McKechnie, S. W. & Hoffmann, A. A. 2005. A rapid shift in the classic clinal pattern in Drosophila reflecting climate change. Science, 308, 691–693.CrossRefGoogle ScholarPubMed
Ummenhofer, C. C., Sen Gupta, A. & England, M. H. 2009. Causes of late twentieth-century trends in New Zealand precipitation. Journal of Climate, 22, 3–19.CrossRefGoogle Scholar
UN General Assembly 1994. Article 2. United Nations Framework Convention on Climate Change: resultion / adopted by the General Assembly. Available at [Accessed 4th September 2013].
VanDerWal, J., Murphy, H. T., Kutt, A. S., et al. 2012. Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nature Climate Change, 3, 239–243.CrossRefGoogle Scholar
Watt, M. S., Stone, J. K., Hood, I. A. & Manning, L. K. 2011. Using a climatic niche model to predict the direct and indirect impacts of climate change on the distribution of Douglas-fir in New Zealand. Global Change Biology, 17, 3608–3619.CrossRefGoogle Scholar
Webb, L., Whetton, P. & Barlow, E. 2011. Observed trends in winegrape maturity in Australia. Global Change Biology, 17, 2707–2719.CrossRefGoogle Scholar
Welbergen, J. A., Klose, S. M., Markus, N. & Eby, P. 2008. Climate change and the effects of temperature extremes on Australian flying-foxes. Proceedings of the Royal Society B – Biological Sciences, 275, 419–425.CrossRefGoogle ScholarPubMed
Wernberg, T., Smale, D., Tuya, F., et al. 2013. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nature Climate Change, 3, 78–82.CrossRefGoogle Scholar
Williams, S. E., Bolitho, E. E. & Fox, S. 2003. Climate change in Australian tropical rainforests: an impending environmental catastrophe. Proceedings of the Royal Society of London B, 270, 1887–1892.CrossRefGoogle ScholarPubMed
Willis, K. & Macdonald, G. 2011. Long-term ecological records and their relevance to climate change predictions for a warmer world. Annual Review of Ecology, Evolution, and Systematics, 42, 267–287.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×