Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-16T10:03:22.790Z Has data issue: false hasContentIssue false

2 - Theory of laser–atom interactions

Published online by Cambridge University Press:  05 January 2012

C. J. Joachain
Affiliation:
Université Libre de Bruxelles
N. J. Kylstra
Affiliation:
Université Libre de Bruxelles
R. M. Potvliege
Affiliation:
University of Durham
Get access

Summary

In this chapter, we shall discuss the theory of laser–atom interactions, using a semi-classical method in which the laser field is treated classically, while the atom is studied by using quantum mechanics. This semi-classical approach constitutes an excellent approximation for intense laser fields, since in that case the number of photons per laser mode is very large [1, 2]. In addition, spontaneous emission can be neglected. We begin therefore by giving in Section 2.1 a classical description of the laser field in terms of electric- and magnetic-field vectors satisfying Maxwell's equations. We start by considering plane wave solutions of these equations. Then general solutions describing laser pulses are introduced. The dynamics of a classical electron in the laser field, and in particular the ponderomotive energy and force, are discussed in Section 2.2. Neglecting first relativistic effects, we write down in Section 2.3 the time-dependent Schrödinger equation (TDSE), which is the starting point of the theoretical study of atoms in intense laser fields, and introduce the dipole approximation. In the subsequent two sections, we study the behavior of the TDSE under gauge transformations and the Kramers frame transformation. In view of the central role that the time evolution operator plays in the development of the theory of laser–atom interactions, some general properties of this operator are reviewed in Section 2.6.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Mittleman, M. H., Introduction to the Theory of Laser–Atom Interactions, 2nd edn. (New York: Plenum Press, 1993).CrossRefGoogle Scholar
[2] Joachain, C. J., Theory of laser-atom interactions. In More, R. M., ed., Laser Interactions with Atoms, Solids and Plasmas (New York: Plenum Press, 1994), p. 39.CrossRefGoogle Scholar
[3] Glauber, R. J., Phys. Rev. 130, 2529 (1963).CrossRef
[4] Glauber, R. J., Phys. Rev. 131, 2766 (1963).CrossRef
[5] Mandel, L. and Wolf, E., Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press, 1995).CrossRefGoogle Scholar
[6] Parker, J. and Stroud, C. R., Phys. Rev. Lett. 56, 716 (1986).CrossRef
[7] Král, P., Thanopoulos, I. and Shapiro, M., Rev. Mod. Phys. 79, 53 (2007).CrossRef
[8] Geissler, M., Tempea, G., Scrinzi, A., Schnürer, M., Krausz, F. and Brabec, T., Phys. Rev. Lett. 83, 2930 (1999).CrossRef
[9] Siegmann, A. E., Lasers, (Mill Valley, Calif.: University Science, 1986).Google Scholar
[10] Gouy, L. G., Comptes Rendus Acad. Sci. Paris 110, 1251 (1890).
[11] Lindner, F., Paulus, G. G., Walther, H.et al., Phys. Rev. Lett. 92, 113001 (2004).CrossRef
[12] Bharucha-Reid, A. T., Elements of the Theory of Markov Processes and their Applications, 3rd edn (New York: McGraw Hill, 1960).Google Scholar
[13] Daniele, R., Ferrante, G., Morales, F. and Trombetta, F., Fundamentals of Laser Interactions, Lecture Notes in Physics, 229 (Berlin: Springer-Verlag, 1985).Google Scholar
[14] Bivona, S., Burlon, R., Zangara, R. and Ferrante, G., J. Phys. B 18, 3149 (1985).CrossRef
[15] Francken, P. and Joachain, C. J., J. Opt. Soc. Am. B 7, 554 (1990).CrossRef
[16] Zoller, P., J. Phys. B 13, L249 (1980).CrossRef
[17] Daniele, R., Faisal, F. H. M. and Ferrante, G., J. Phys. B 16, 3831 (1983).CrossRef
[18] Zoller, P., J. Phys. B 11, 805 (1978).CrossRef
[19] Trombetta, F., Ferrante, G., Wodkiewicz, K. and Zoller, P., J. Phys. B 18, 2915 (1985).CrossRef
[20] Francken, P. and Joachain, C. J., Europhys. Lett. 3, 11 (1987).CrossRef
[21] Francken, P. and Joachain, C. J., Europhys. Lett. 9, 517 (1989).CrossRef
[22] Shore, B. W., J. Opt. Soc. Am. B 1, 176 (1984).CrossRef
[23] Brissaud, A. and Frisch, U., J. Math. Phys. 15, 524 (1974).CrossRef
[24] Wodkiewicz, K., Shore, B. W. and Eberly, J. H., J. Opt. Soc. Am. B 1, 398 (1984).CrossRef
[25] Kampen, N. G., Stochastic Processes in Physics and Chemistry (Amsterdam: North Holland, 1981).Google Scholar
[26] Trombetta, F., Ferrante, G. and Zoller, P., Opt. Commun. 60, 213 (1986).CrossRef
[27] Jackson, J. D., Classical Electrodynamics, 3rd edn (New York: Wiley, 1998).Google Scholar
[28] Salamin, Y. I., Hu, S. X., Hatsagortsyan, K. Z. and Keitel, C. H., Phys. Rep. 427, 41 (2006).CrossRef
[29] Pauli, W. and Fierz, M., Nuovo Cimento 15, 1167 (1938).CrossRef
[30] Kramers, H. A., Collected Scientific Papers (Amsterdam: North Holland, 1956), p. 272.Google Scholar
[31] Henneberger, W. C., Phys. Rev. Lett. 21, 838 (1968).CrossRef
[32] Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions (New York: Dover, 1970).Google Scholar
[33] Joachain, C. J., Quantum Collision Theory, 3rd edn (Amsterdam: North Holland, 1983).Google Scholar
[34] Gordon, W., Z. Phys. 40, 117 (1926).CrossRef
[35] Volkov, D. M., Z. Phys. 94, 250 (1935).
[36] Bransden, B. H. and Joachain, C. J., Physics of Atoms and Molecules, 2nd edn (Harlow, UK: Prentice Hall-Pearson, 2003).Google Scholar
[37] Joachain, C. J. and Kylstra, N. J., Laser Phys. 11, 212 (2001).
[38] Joachain, C. J., Kylstra, N. J. and Potvliege, R. M., J. Mod. Opt. 50, 313 (2003).CrossRef
[39] Maquet, A., Taïeb, R. and Véniard, V., Relativistic laser–atom physics. In Brabec, T., ed. Strong Field Laser Physics, Springer Series in Optical Sciences 134, (New York: Springer, 2009), p. 477.Google Scholar
[40] Kylstra, N. J., Potvliege, R. M. and Joachain, C. J., J. Phys. B 34, L55 (2001).CrossRef
[41] Bransden, B. H. and Joachain, C. J., Quantum Mechanics 2nd edn (Harlow, UK: Prentice Hall-Pearson, 2000).Google Scholar
[42] Hartemann, F. V. and Kerman, A. K., Phys. Rev. Lett. 76, 624 (1996).CrossRef
[43] Pauli, W. and Weisskopf, V., Helv. Phys. Acta 7, 709 (1934).
[44] Brown, L. S. and Kibble, T. W. B., Phys. Rev. 133A, 705 (1964).CrossRef
[45] Foldy, L. L. and Wouthuysen, S. A., Phys. Rev. 78, 29 (1950).CrossRef
[46] Messiah, A., Quantum Mechanics (Amsterdam: North Holland, 1968).Google Scholar
[47] Bjorken, J. D. and Drell, S. D., Relativistic Quantum Mechanics (New York: McGraw Hill, 1964).Google Scholar
[48] Hu, S. X. and Keitel, C. H., Phys. Rev. Lett. 83, 4709 (1999).CrossRef
[49] Sauter, F., Z. Phys. 69, 742 (1931).CrossRef
[50] Schwinger, J., Phys. Rev. 82, 664 (1951).CrossRef
[51] Schwinger, J., Phys. Rev. 93, 615 (1954).CrossRef
[52] Brezin, E. and Itzykson, C., Phys. Rev. D 2, 1191 (1970).CrossRef
[53] Perelomov, A. M., Popov, V. S. and Terent'ev, M. V., Sov. Phys. JETP 23, 924 (1966).
[54] Perelomov, A. M., Popov, V. S. and Terent'ev, M. V., Sov. Phys. JETP 24, 207 (1967).
[55] Bethe, H. A. and Heitler, W., Proc. R. Soc. London A 146, 83 (1934).CrossRef
[56] Müller, C., Voitkiv, A. B. and Grün, N., Phys. Rev. A 67, 063407 (2003).CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×