Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T19:34:38.850Z Has data issue: false hasContentIssue false

2 - Atomic structure

Published online by Cambridge University Press:  05 June 2012

Anil K. Pradhan
Affiliation:
Ohio State University
Sultana N. Nahar
Affiliation:
Ohio State University
Get access

Summary

As mentioned in the first chapter, astrophysical applications played a crucial role in the development of atomic physics. In their 1925 paper, Russell and Saunders [2] derived the rules for spectroscopic designations of various atomic states based on the coupling of orbital angular momenta of all electrons into a total L, and the coupling of all spin momenta into a total S, called the LS coupling scheme. Each atomic state is thus labelled according to the total L and S.

Atomic structure refers to the organization of electrons in various shells and subshells. Theoretically it means the determinations of electron energies and wavefunctions of bound (and quasi-bound) states of all electrons in the atom, ion or atomic system (such as electron–ion). As fermions, unlike bosons, electrons form structured arrangements bound by the attractive potential of the nucleus. Different atomic states arise from quantization of motion, orbital and spin angular momenta of all electrons. Transitions among those states involve photons, and are seen as lines in observed spectra.

This chapter first describes the quantization of individual electron orbital and spin angular momenta as quantum numbers l and s, and the principal quantum number n, related to the total energy E of the hydrogen atom. The dynamic state of an atom or ion is described by the Schrödinger equation. For hydrogen, the total energy is the sum of electron kinetic energy and the potential energy in the electric field of the proton.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×