Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T03:42:56.673Z Has data issue: false hasContentIssue false

14 - Upper Neutral Atmosphere and Ionosphere

Published online by Cambridge University Press:  05 July 2017

Robert M. Haberle
Affiliation:
NASA Ames Research Center
R. Todd Clancy
Affiliation:
Space Science Institute, Boulder, Colorado
François Forget
Affiliation:
Laboratoire de Météorologie Dynamique, Paris
Michael D. Smith
Affiliation:
NASA-Goddard Space Flight Center
Richard W. Zurek
Affiliation:
NASA-Jet Propulsion Laboratory, California
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angelats i Coll, M., Forget, F., López-Valverde, M. A., et al. (2004) Upper atmosphere of Mars up to 120 km: Mars Global Surveyor data analysis with the LMD general circulation model, J. Geophys. Res., 109, E01011, doi:10.1029/2003JE002163.Google Scholar
Angelats i Coll, M., Forget, F., López-Valverde, M. A., and González-Galindo, F. (2005) The first Mars thermospheric general circulation model: the Martian atmosphere from the ground to 240 km, Geophys. Res. Lett., 32, L04201, doi:10.1029/2004GL021368.CrossRefGoogle Scholar
Arkani-Hamed, J. (2004) A coherent model of the crustal magnetic field of Mars, J. Geophys. Res., 109, E09005, doi:10.1029/2004JE002265.CrossRefGoogle Scholar
Baird, D. T., Tolson, R., Bougher, S. W., and Steers, B. (2007) Zonal wind calculation from MGS Accelerometer and rate data, AIAA J. Spacecraft and Rockets, 44 (6), 11801187.Google Scholar
Barth, C. A., Hord, C. W., Pearce, J. B., et al. (1971) Mariner 6 and 7 ultraviolet spectrometer experiment: upper atmosphere data, J. Geophys. Res., 76, 22132227.Google Scholar
Barth, C. A., Stewart, A. I., Hord, C. W., and Lane, A. L. (1972) Mariner 9 ultraviolet spectrometer experiment: Mars airglow spectroscopy and variations in Lyman alpha, Icarus, 17, 457468.Google Scholar
Barth, C. A., Stewart, A. I. F., Bougher, S. W., et al. (1992) Aeronomy of the current Martian atmosphere, In Mars (Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S. Eds), University of Arizona Press, Tucson, 10541089.Google Scholar
Bauer, S. J., and Lammer, H. (2004) Planetary Aeronomy: Atmosphere Environments in Planetary Systems, Springer, Berlin.Google Scholar
Bell, J. M., Bougher, S. W., and Murphy, J. R. (2007) Vertical dust mixing and the interannual variations in the Mars thermosphere, J. Geophys. Res., 112, E12002, doi:10.1029/2006JE002856.Google Scholar
Bertaux, J.-L., Leblanc, F., Perrier, S., et al. (2005a) Nightglow in the upper atmosphere of Mars and implications for atmospheric transport, Science, 307, 566569, doi:10.1126/science.1106957.Google Scholar
Bertaux, J.-L., Leblanc, F., Witasse, O., et al. (2005b) Discovery of an aurora on Mars, Nature, 435, 790794.Google Scholar
Bertaux, J.-L., Korablev, O., Perrier, S., et al. (2006) SPICAM on Mars Express: observing modes and overview of UV spectrometer data and scientific results, J. Geophys. Res., 111, E10S90, doi:10.1029/2006JE02690.Google Scholar
Bertaux, J.-L., Gondet, B., Bibring, J.-P., et al. (2011) First Detection of O2 Recombination Nightglow Emission at 1.27 µm in the Atmosphere of Mars with Omega/MEX and Comparison with Model in The Fourth International Workshop on the Mars Atmosphere: Modeling and observations, Paris, France.Google Scholar
Boqueho, V., and Blelly, P.-L. (2005) Contributions of a multimoment multispecies approach in modeling planetary atmospheres: example of Mars, J. Geophys. Res., 110, A01313, doi:10.1029/2004JA010414.Google Scholar
Bougher, S. W. (1995) Comparative thermospheres: Venus and Mars, Adv. Space Res., 15 (4), 2125.Google Scholar
Bougher, S. W., Hunten, D. M., and Roble, R. G. (1994) CO2 cooling in terrestrial planet thermospheres, J. Geophys. Res., 99, 1460914622.Google Scholar
Bougher, S. W., Keating, G., Zurek, R., et al. (1999a) Mars global surveyor aerobraking: atmospheric trends and model interpretation, Adv. Space Res., 23, 18871897, doi:10.1016/S0273-1177(99)00272-0.Google Scholar
Bougher, S. W., Engel, S., Roble, R. G., and Foster, B. (1999b) Comparative terrestrial planet thermospheres 2. Solar cycle variation of global structure and winds at equinox, J. Geophys. Res., 104, 1659116611, doi:10.1029/1998JE001019.Google Scholar
Bougher, S. W., Engel, S., Roble, R. G., and Foster, B. (2000) Comparative terrestrial planet thermospheres 3. Solar cycle variation of global structure and winds at solstices, J. Geophys. Res., 105, 1766917692, doi:10.1029/1999JE001232.Google Scholar
Bougher, S. W., Engel, S., Hinson, D. P., and Forbes, J. M. (2001) Mars Global Surveyor Radio Science electron density profiles: neutral atmosphere implications, Geophys. Res. Lett., 28, 30913094, doi:10.1029/2001GL012884.CrossRefGoogle Scholar
Bougher, S. W., Roble, R. G., and Fuller-Rowell, T. J. (2002) Simulations of the upper atmospheres of the terrestrial planets, In Atmospheres in the Solar System, Comparative Aeronomy (Mendillo, M., Nagy, A. F., and Waite, J. H., Jr. Eds), AGU Monograph #130, American Geophysical Union, Washington, D.C., 261288.Google Scholar
Bougher, S. W., Engel, S., Hinson, D. P., and Murphy, J. R. (2004) MGS Radio Science electron density profiles: interannual variability and implications for the Martian neutral atmosphere, J. Geophys. Res., 109, E03010, doi:10.1029/2003JE002154.Google Scholar
Bougher, S. W., Bell, J. M., Murphy, J. R., et al. (2006) Polar warming in the Mars thermosphere: seasonal variations owing to changing insolation and dust distributions, Geophys. Res. Lett., 33, L02203, doi:10.1029/2005GL024059.Google Scholar
Bougher, S. W., Blelly, P.-L., Combi, M., et al. (2008) Neutral upper atmosphere and ionosphere modeling, Space Sci. Rev., 139, 107141, doi:10.1007/s11214-008-9401-9.Google Scholar
Bougher, S. W., Valeille, A., Combi, M. R., and Tenishev, V. (2009a) Solar cycle and seasonal variability of the Martian thermosphere-ionosphere and associated impacts upon atmospheric escape, SAE Technical Paper #2009-01-2386, SAE International.Google Scholar
Bougher, S. W., McDunn, T. M., Zoldak, K. A., and Forbes, J. M. (2009b) Solar cycle variability of Mars dayside exospheric temperatures: model evaluation of underlying thermal balances, Geophys. Res. Lett., 36, L05201, doi:10.1029/2008GL036376.Google Scholar
Bougher, S. W., Simon, C., Gronoff, G., et al. (2010) Exospheric temperatures at Mars derived from SPICAM dayglow measurements, in 2010 Fall AGU Meeting, San Francisco, California.Google Scholar
Bougher, S. W., McDunn, T., Murphy, J., et al. (2011a) Coupling of Mars lower and upper atmosphere revisited: impacts of gravity wave momentum deposition on upper atmosphere structure, in The Fourth International Workshop on the Mars Atmosphere: Modeling and Observations, Paris, France.Google Scholar
Bougher, S. W., Ridley, A., Pawlowski, D., et al. (2011b) Development and validation of the ground-to-exosphere Mars GITM code: solar cycle and seasonal variations of the upper atmosphere, in The Fourth International Workshop on the Mars Atmosphere: Modeling and Observations, Paris, France.Google Scholar
Bougher, S. W., Pawlowski, D. J., and Murphy, J. R. (2011c) Toward an understanding of the time-dependent responses of the Martian upper atmosphere to dust storm events, in 2011 Fall AGU Meeting, San Francisco, California.Google Scholar
Bougher, S. W., Cravens, T. E., Grebowsky, J., and Luhmann, J. L. (2015a) The aeronomy of Mars: characterization by MAVEN of the upper atmosphere reservoir that regulates volatile escape, Space Science Rev., 195, 423456, doi:10.1007/s11214-014-0053-7.Google Scholar
Bougher, S. W., Pawlowski, D., Bell, J. M., et al. (2015b) Mars Global Ionosphere–Thermosphere Model: solar cycle, seasonal and diurnal variations of the Mars upper atmosphere, J. Geophys. Res., 120, 311342, doi:10.1002/2014JE004715.CrossRefGoogle Scholar
Brain, D. A., Bagenal, F., Acuña, M. H., and Connerney, J. E. P. (2003) Martian magnetic morphology: contributions from the solar wind and crust, J. Geophys. Res., 108, 1424, doi:10.1029/2002JA009482.Google Scholar
Brain, D. A., Halekas, J. S., Peticolas, L. M., et al. (2006) On the origin of aurorae on Mars, Geophys. Res. Lett., 33, L01201, doi:10.1029/2005GL024782.Google Scholar
Brecht, S. H., and Ledvina, S. A. (2006) The solar wind interaction with the Martian ionosphere/atmosphere, Space Sci. Rev., 126, 1538.Google Scholar
Chassefière, E., and Leblanc, F. (2004) Mars atmospheric escape and evolution: interaction with the solar wind, Planet. Space Sci., 52, 10391058.Google Scholar
Chaufray, J. Y., Leblanc, F., Quémerais, E., and Bertaux, J. L. (2009) Martian oxygen density at the exobase deduced from O I 130.4-nm observations by Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars on Mars Express, J. Geophys. Res., 114, E02006.Google Scholar
Chaufray, J.-Y., González-Galindo, F., Forget, F., et al. (2014) Three-dimensional Martian ionosphere model: II. Effect of transport processes due to pressure gradients, J. Geophys. Res., 119, 16141636, doi:10.1002/2013JE004551.Google Scholar
Chen, R. H., Cravens, T. E., and Nagy, A. F. (1978) The Martian ionosphere in light of the Viking observations, J. Geophys. Res., 83, 38713876.Google Scholar
Choi, Y. W., Kim, J., Min, K. W., et al. (1998) Effect of the magnetic field on the energetics of Mars ionosphere, Geophys. Res. Lett., 25, 27532756.Google Scholar
Cox, C., Saglam, A., Gérard, J.-C., et al. (2008) Distribution of the ultraviolet nitric oxide Martian night airglow: observations from Mars Express and comparisons with a one-dimensional model, J. Geophys. Res., 113, E08012, doi:10.1029/2007JE003037.Google Scholar
Cox, C., Gérard, J.-C., Hubert, B., et al. (2010) Mars ultraviolet dayglow variability: SPICAM observations and comparison with airglow model, J. Geophys. Res., 115, E04010, doi:10.1029/2009JE003504.Google Scholar
Cravens, T. E., Victor, G. A., and Dalgarno, A. (1975) The absorption of energetic electrons by molecular hydrogen gas, Planet. Space Sci., 23, 10591070.Google Scholar
Cravens, T. E., Brace, L. H., Taylor, H. A., et al. (1982) Disappearing ionospheres on the nightside of Venus, Icarus, 51, 271282.Google Scholar
Dalgarno, A., and Lejeune, G. (1971) The absorption of electrons in atomic oxygen, Planet. Space Sci., 19, 16531667.Google Scholar
DeMajistre, R., Paxton, L. J., Morrison, D., et al. (2004) Retrievals of nighttime electron density from Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission Global Ultraviolet Imager (GUVI) measurements, J. Geophys. Res., 109, A05305, doi:10.1029/2003JA010296.CrossRefGoogle Scholar
Deng, Y., Richmond, A. D., Ridley, A. J., and Liu, H.-L. (2008) Assessment of the non-hydrostatic effect on the upper atmosphere using a general circulation model (GCM), Geophys. Res., Lett., 35, L01104, doi:10.1029/2007GL032182.Google Scholar
Dong, C. F., Bougher, S. W., Ma, Y., et al. (2015) Solar wind interaction with the Martian upper atmosphere: crustal field orientation, solar cycle, and seasonal variations, J. Geophys. Res., 120, doi:10.1002/2015JA020990.Google Scholar
Dubinin, E., Modolo, R., Fraenz, M., et al. (2008) Plasma environment of Mars as observed by simultaneous MEX-ASPERA-3 and MEX-MARSIS observations, J. Geophys. Res., 113, A10217, doi:10.1029/2008JA013355.CrossRefGoogle Scholar
Duru, F., Gurnett, D. A., Morgan, D. D., et al. (2008) Electron densities in the upper ionosphere of Mars from the excitation of electron plasma oscillations, J. Geophys. Res., 113, A07302, doi:10.1029/2008JA013073.Google Scholar
Fillingim, M. O., Peticolas, L. M., Lillis, R. J., et al. (2007) Model calculations of electron precipitation induced ionization patches on the nightside of Mars, Geophys. Res. Lett., 34, L12101, 0.1029/2007GL029986.Google Scholar
Fjeldbo, G., and Eshleman, V. R. (1968) The atmosphere of Mars analyzed by integral inversion of the Mariner IV occultation data, Planet. Space Sci., 16, 10351059.Google Scholar
Fjeldbo, G., Kliore, A., and Seidel, B. (1970) The Mariner 1969 occultation measurements of the upper atmosphere of Mars, Radio Sci., 5, 381386.Google Scholar
Forbes, J. M., and Hagan, M. E. (2000) Diurnal Kelvin wave in the atmosphere of Mars: towards an understanding of “stationary” density structures observed by the MGS Accelerometer, Geophys. Res. Lett., 27, 21, doi:10.1029/2000GL011850.Google Scholar
Forbes, J. M., and Moudden, Y. (2009) Solar terminator wave in a Mars general circulation model, Geophys. Res. Lett., 36, L17201, doi:10.1029/2009GL039528.Google Scholar
Forbes, J. M., Bridger, A. F. C., Bougher, S. W., et al. (2002) Nonmigrating tides in the thermosphere of Mars, J. Geophys. Res., 107, 5113, doi:10.1029/2001JE001582.Google Scholar
Forbes, J. M., Lemoine, F. G., Bruinsma, S. L., et al. (2008) Solar flux variability of Mars’ exosphere densities and temperatures, Geophys. Res. Lett., 35, L01201, doi:10.1029/2007GL031904.Google Scholar
Forget, F., Hourdin, F., Fournier, R., et al. (1999) Improved general circulation models of the Martian atmosphere from the surface to above 80 km, J. Geophys. Res., 104, 2415524175.Google Scholar
Forget, F., Montmessin, F., Bertaux, J.-L., et al. (2009) Density and temperatures of the upper Martian atmosphere measured by stellar occultations with Mars Express SPICAM, J. Geophys. Res., 114, E01004, doi:10.1029/2008JE003086.Google Scholar
Formisano, V., Maturilli, A., Giuranna, M., et al. (2006) Observations of non-LTE emission at 4–5 microns with the Planetary Fourier Spectrometer aboard the Mars Express mission, Icarus, 182, 5167, doi:10.1016/j.icarus.2005.12.022.Google Scholar
Fox, J. L. (1992) Airglow and aurora in the atmospheres of Venus and Mars, in Venus and Mars: Atmospheres, Ionospheres, and Solar Wind Interactions, Geophys. Monogr. Ser., 66, American Geophysical Union, Washington, D.C., 191222.Google Scholar
Fox, J. L. (2004a) Response of the Martian thermosphere/ionosphere to enhanced fluxes of solar soft X rays, J. Geophys. Res., 109, A11310, doi:10.1029/2004JA010380.Google Scholar
Fox, J. L. (2004b) CO2+ dissociative recombination: a source of thermal and nonthermal C on Mars, J. Geophys. Res., 109, A08306, doi:10.1029/2004JA010514.Google Scholar
Fox, J. L. (2005) Effects of dissociative recombination on the composition of planetary atmospheres, Journal of Physics: Conference Series, 4, 3237.Google Scholar
Fox, J. L. (2006) Aeronomy, In Atomic, Molecular and Optical Physics Handbook (Drake, G. W. F. Ed), 2nd edn., American Institute of Physics Press, Woodbury, New York, 12591292.Google Scholar
Fox, J. L. (2009) Morphology of the dayside ionosphere of Mars: implication for ion outflows, J. Geophys. Res., 114, E12005, doi:10.1029/2009JE003432.Google Scholar
Fox, J. L., and Dalgarno, A. (1979) Ionization, luminosity, and heating of the upper atmosphere of Mars, J. Geophys. Res., 84, 73157333.Google Scholar
Fox, J. L., and Hać, A. B. (2009) Photochemical escape of oxygen from Mars: a comparison of the exobase approximation to a Monte Carlo method, Icarus, 204, 527544, doi:10.1016/j.icarus.2009.07.005.Google Scholar
Fox, J. L., and Hać, A. B. (2010) Isotope fractionation in the photochemical escape of O from Mars, Icarus, 208, 176191, doi:10.1016/j.icarus.2010.01.019.Google Scholar
Fox, J. L., and Stewart, A. I. F. (1991) The Venus ultraviolet aurora: a soft electron source, J. Geophys. Res., 96, 98219828.Google Scholar
Fox, J. L., and Sung, K. Y. (2001) Solar activity variations of the Venus thermosphere-ionosphere, J. Geophys. Res., 106, 2130521336, doi:10.1029/2001JA000069.Google Scholar
Fox, J. L., and Yeager, K. E. (2006) Morphology of the near-terminator Martian ionosphere: a comparison of models and data, J. Geophys. Res., 111, A10309, doi:10.1029/2006JA011697.Google Scholar
Fox, J. L., Brannon, J. F., and Porter, H. S. (1993) Upper limits to the nightside ionosphere of Mars, Geophys. Res. Lett., 20, 13391342.Google Scholar
Fox, J. L., Zhou, P., and Bougher, S. W. (1996) The thermosphere/ionosphere of Mars at high and low solar activities, Adv. Space Res., 17 (11), 203218.Google Scholar
Fox, J. L., Galand, M. I., and Johnson, R. E. (2008) Energy deposition in planetary atmospheres by charged particles and solar photons, Space Sci. Rev., 139, 362.Google Scholar
Frahm, R. A., Sharber, J. R., Winningham, J. D., et al. (2006) Locations of atmospheric photoelectron energy peaks within the Mars Environment, Space Sci. Rev., 126, 389402.Google Scholar
Fränz, M., Dubinin, E., Nielsen, E., et al. (2010) Transterminator ion flow in the Martian ionosphere, Planet. Space Sci., 58, 14421454.Google Scholar
Fuller-Rowell, T. J., and Rees, D. (1980) A three dimensional, time-dependent, global model of the thermosphere, J. Atmos. Sci., 37, 2545.Google Scholar
Galand, M., and Chakrabarti, S. (2002) Auroral processes in the solar system, In Atmospheres in the Solar System, Comparative Aeronomy (Mendillo, M., Nagy, A. F. and Waite, J. H., Jr. Eds), AGU Monograph 130, American Geophysical Union, Washington, D.C., 5576.CrossRefGoogle Scholar
Gilli, G., López-Valverde, M. A., Drossart, P., et al. (2009) Limb observations of CO2 and CO non-LTE emissions in the Venus atmosphere by VIRTIS/Venus Express, J. Geophys. Res., 114, E00B29, doi:10.1029/2008JE003112.Google Scholar
González-Galindo, F., López-Valverde, M. A., Angelats i Coll, M., and Forget, F. (2005) Extension of a Martian general circulation model to thermospheric altitudes: UV heating and photochemical models, J. Geophys. Res., 110, E09008, doi:10.1029/2004JE002312.CrossRefGoogle Scholar
González-Galindo, F., Gilli, G., López-Valverde, M. A., et al. (2008) Nitrogen and Ionospheric Chemistry in the Thermospheric LMD-MGCM in Third International Workshop on The Mars Atmosphere: Modeling and Observations, LPI Contribution No. 1447, 9007.Google Scholar
González-Galindo, F., Forget, F., López-Valverde, M. A., Angelats i Coll, M., and Millour, E. (2009a) A ground-to-exosphere Martian general circulation model: 1. Seasonal, diurnal, and solar cycle variation of thermospheric temperatures, J. Geophys. Res., 114, E04001, doi:10.1029/2008JE003246.Google Scholar
González-Galindo, F., Forget, F., López-Valverde, M. A., and Angelats i Coll, M. (2009b) A ground-to-exosphere Martian general circulation model: 2. Atmosphere during solstice conditions – thermospheric polar warming, J. Geophys. Res., 114, E08004, doi:10.1029/2008JE003277.Google Scholar
González-Galindo, F., Bougher, S. W., López-Valverde, M. A., Forget, F., and Murphy, J. (2010) Thermal and wind structure of the Martian thermosphere as given by two general circulation models, Planet. Space Sci., 58, 18321849, doi:10.1016/j.pss.2010.08.013.Google Scholar
González-Galindo, F., Chaufray, J.-Y., López-Valverde, M.A., et al. (2013) Three-dimensional Martian ionosphere model: I. The photochemical ionosphere below 180 km, J. Geophys. Res., 118, 21052123, doi:10.1002/jgre.20150Google Scholar
Grebowsky, J. M., Moses, J. I., and Pesnell, W. D. (2002) Meteoric material – an important component of planetary atmospheres, In Atmospheres in the Solar System: Comparative Aeronomy, Geophysical Monograph 130, AGU, Washington, DC, doi:10.1029/130GM15.Google Scholar
Gronoff, G., Lilensten, J., Simon, C., et al. (2008) Modelling the Venusian airglow, Astron. Astrophys., 482, 10151029.Google Scholar
Gronoff, G., Simon Wedlund, C., Mertens, C. J., and Lillis, R. J. (2012a) Computing uncertainties in ionosphere-airglow models. I. Electron flux and species production uncertainties for Mars, J. Gephys. Res., 117, A04306, doi:10.1029/2011JA016930.Google Scholar
Gronoff, G., Simon Wedlund, C., Mertens, C. J., et al. (2012b) Computing uncertainties in ionosphere-airglow models. II. The Martian airglow, J. Gephys. Res., 117, A05309, doi:10.1029/2011JA017308.Google Scholar
Gurnett, D. A., Kirchner, D. L., Huff, R. L., et al. (2005) Radar soundings of the ionosphere of Mars, Science, 310, 19291933.Google Scholar
Gurnett, D. A., Huff, R. L., Morgan, D. D., et al. (2008) An overview of radar soundings of the Martian ionosphere from the Mars Express spacecraft, Adv. Space Res., 41, 13351346.Google Scholar
Gurnett, D. A., Morgan, D. D., Duru, F., et al. (2010) Large density fluctuations in the Martian ionosphere as observed by the Mars Express radar sounder, Icarus, 206, 8394.Google Scholar
Gusev, O.A., and Kutepov, A.A. (2003) Non-LTE gas in planetary atmospheres, in Stellar Atmosphere Modeling, ASP Conference series, 288, 318330.Google Scholar
Haberle, R. M., Joshi, M. M., Murphy, J. R., et al. (1999) General circulation model simulations of the Mars Pathfinder atmospheric structure investigation/meteorology data, J. Geophys. Res., 104, 89578974, doi:10.1029/1998JE900040.Google Scholar
Haider, S. A., Seth, S. P., Choksi, V. R., and Oyama, K. I. (2006) Model of photoelectron impact ionization within the high latitude ionosphere at Mars: comparison of calculated and measured electron density, Icarus, 185, 102112.Google Scholar
Haider, S. A., Mahajan, K. K., and Kallio, E. (2011) Mars ionosphere: a review of experimental results and modeling studies, Rev. of Geophys., 49, RG4001, doi:10.1029/2011RG000357.Google Scholar
Hanson, W. B., and Mantas, G. P. (1988) Viking electron temperature measurements – evidence for a magnetic field in the Martian ionosphere, J. Geophys. Res., 93, 75387544.Google Scholar
Hanson, W. B., Sanatani, S., and Zuccaro, D. R. (1977) The Martian ionosphere as observed by the Viking Retarding Potential Analyzers, J. Geophys. Res., 82, 43514363.Google Scholar
Hartogh, P., Medvedev, A.S., Kuroda, T., et al. (2005) Description and climatology of a new general circulation model of the Martian atmosphere, J. Geophys. Res., 110, E11008, doi:10.1029/2005JE002498.Google Scholar
Hinson, D. P., Simpson, R. A., Twicken, J. D., et al. (1999) Initial results from radio occultation measurements with Mars Global Surveyor, J. Geophys. Res., 104, 2699727012.Google Scholar
Hourdin, F. (1992) A new representation of the absorption by the CO2 15-microns band for a Martian general circulation model, J. Geophys. Res., 97, 1831918335.Google Scholar
Huestis, D. L., Bougher, S. W., Fox, J. L., et al. (2008) Cross sections and reaction rates for comparative aeronomy, Space Sci. Rev., 139, 63106, doi:10.1007/s11214-008-9383-7.Google Scholar
Huestis, D. L., Slanger, T. G., Sharpee, B. D., and Fox, J. L. (2010) Chemical origins of the Mars ultraviolet dayglow, Faraday Discuss., 147, 307322.Google Scholar
Jakosky, B. M., Lin, R. P., Grebowsky, J. M., et al. (2015) The Mars Atmosphere and Volatile Evolution (MAVEN) mission to Mars, Space Sci. Rev., 195, 348, doi:10.1007/s11214-015-0139-x.Google Scholar
Johnson, R. E. (1978) Comment on the ion and electron temperatures in the Martian upper atmosphere, Geophys. Res. Lett., 5, 989992.Google Scholar
Kasprzak, W. T., Keating, G. M., Hsu, N. C., et al. (1997) Solar activity behavior of the thermosphere, in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, eds Bougher, S. W., Hunten, D. M., and Philips, R. J., Tucson, AZ, University of Arizona Press, 225.Google Scholar
Keating, G. M., Bougher, S. W., Zurek, R. W., et al. (1998) The structure of the upper atmosphere of Mars: in situ accelerometer measurements from Mars Global Surveyor, Science, 279, 16721676.Google Scholar
Keating, G. M., Theriot, M., Tolson, R., et al. (2003) Brief Review on the Results Obtained with the MGS and Mars Odyssey 2001 Accelerometer Experiments in Mars Atmosphere: Modeling and Observations Workshop, Granada, Spain.Google Scholar
Keating, G. M., Bougher, S. W., Theriot, M. E., et al. (2006) Atmospheric Structure from Mars Reconnaissance Orbiter Accelerometer Measurements in Proceedings of European Planetary Science Congress, Berlin, Germany.Google Scholar
Keating, G. M., Bougher, S. W., Theriot, M. E., and Tolson, R. H. (2008) Properties of the Mars Upper Atmosphere Derived from Accelerometer Measurements in Proceedings of 37th COSPAR Scientific Assembly 2008 and 50th Anniversary, Montreal, Canada.Google Scholar
Kelley, M. C. (2009) The Earth’s Ionosphere: Plasma Physics and Electrodynamics, 2nd edn. Academic Press, New York.Google Scholar
Kliore, A. J., Cain, D. L., Fjeldbo, G., et al. (1972) The atmosphere of Mars from Mariner 9 radio occultation measurements, Icarus, 17, 484516.Google Scholar
Kolosov, M. A., Iakovlev, G. D., Iakovleva, O. I., et al. (1975) Results of investigations of the atmosphere of Mars by the method of radio transillumination by means of the automatic interplanetary stations “Mars-2”, “Mars-4”, and “Mars-6”, Cosmic Research, 13 (1), 4650 (transl. Kosmicheskie Issledovaniia, 13, 5459).Google Scholar
Krasnopolsky, V. A. (1986) Photochemistry of the Atmospheres of Mars and Venus, Springer, New York.Google Scholar
Krasnopolsky, V. A. (2002) Mars’ upper atmosphere and ionosphere at low, medium, and high solar activities: implications for evolution of water, J. Geophys. Res., 107, 51285139.Google Scholar
Krasnopolsky, V. A. (2006) Photochemistry of the Martian atmosphere: seasonal, latitudinal, and diurnal variations, Icarus, 185, 153170.CrossRefGoogle Scholar
Krasnopolsky, V. A. (2010) Solar activity variations of thermospheric temperatures on Mars and a problem of CO in the lower atmosphere, Icarus, 207, 638647.Google Scholar
Krymskii, A. M., Breus, T. K., Ness, N. F., et al. (2003) Effect of crustal magnetic fields on the near terminator ionosphere at Mars: comparison of in situ magnetic field measurements with the data of radio science experiments on board Mars Global Surveyor, J. Geophys. Res. – Space Physics, 108, 14311444.Google Scholar
Kutepov, A. A., Gusev, O. A., and Ogibalov, V. P. (1998) Solution of the non-LTE problem for molecular gas in planetary atmospheres: superiority of accelerated lambda iteration, J. Quant. Spectrosc. Radiat. Transf., 60, 199220.Google Scholar
Leblanc, F., Chaufray, J. Y., Lilensten, J., Witasse, O., and Bertaux, J.-L. (2006a) Martian dayglow as seen by the SPICAM UV spectrograph on Mars Express, J. Geophys. Res., 111 (9), E09S11, doi:10.1029/2005JE002664.Google Scholar
Leblanc, F., Witasse, O., Winningham, J., et al. (2006b) Origins of the Martian aurora observed by Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars (SPICAM) on board Mars Express, J. Geophys. Res., 111, AO9313, doi:10.1029/2006JA011763.Google Scholar
Leblanc, F., Witasse, O., Lilensten, J., et al. (2008) Observations of aurorae by SPICAM ultraviolet spectrograph on board Mars Express: simultaneous ASPERA-3 and MARSIS measurements, J. Geophys. Res., 113, 8311, doi:10.1029/2008JA013033.Google Scholar
Lefèvre, F., Lebonnois, S., Montmessin, F., and Forget, F. (2004) Three-dimensional modeling of ozone on Mars, J. Geophys. Res., 109, E07004, doi:10.1029/2004JE002268.Google Scholar
Leovy, C. B., and Mintz, Y. (1969) Numerical simulation of the weather and climate of Mars, J. Atmos. Phys., 26, 11691190.Google Scholar
Lewis, S. R., Collins, M., Read, P. L., et al. (1999) A climate database for Mars, J. Geophys. Res., 104, 2417724194.Google Scholar
Liemohn, M. W., Ma, Y., Nagy, A. F., et al. (2007) Numerical modeling of the magnetic topology near Mars auroral observations, Geophys. Res. Lett., 34, 24202, doi:10.1029/2007GL031806.Google Scholar
Lilensten, J., and Blelly, P. L. (2002) The TEC and F2 parameters as tracers of the ionosphere and thermosphere, J. Atmos. Sol. Terr. Phys., 64, 775793.Google Scholar
Lillis, R. J., Fillingim, M. O., Peticolas, L. M., et al. (2009) Nightside ionosphere of Mars: modeling the effects of crustal magnetic fields and electron pitch angle distributions on electron impact ionization, J. Geophys. Res., 114, E11009, 10.1029/2009JE003379.Google Scholar
Lillis, R. J., Bougher, S. W., González-Galindo, F., et al. (2010) Four Martian years of nightside upper thermospheric mass densities derived from electron reflectometry: method extension and comparison with GCM simulations, J. Geophys. Res., 115, E07014, doi:10.1029/2009JE003529.Google Scholar
Lillis, R. J., Fillingim, M., and Brain, D. A. (2011) Three-dimensional structure of the Martian nightside ionosphere: predicted rates of impact ionization from Mars Global Surveyor Magnetometer and Electron Reflectometer measurements of precipitating electrons, J. Geophys. Res., 116, A12317, doi:10.1029/2011JA016982.Google Scholar
Lindal, G. F., Hotz, H. B., Sweetnam, D. N., et al. (1979) Viking radio occultation measurements of the atmosphere and topography of Mars – data acquired during 1 Martian year of tracking, J. Geophys. Res., 84, 84438456.Google Scholar
Lollo, A., Withers, P., Fallows, K., et al. (2012) Numerical simulations of the ionosphere of Mars during a solar flare, J. Geophys. Res., 117, A05314, doi:10.1029/2011JA017399.Google Scholar
López-Puertas, M., and López-Valverde, M. A. (1995) Radiative energy balance of CO2 non-LTE infrared emissions in the Martian atmosphere, Icarus, 114, 113129.Google Scholar
López-Puertas, M., and Taylor, F. W. (2001) Non-LTE Radiative Transfer in the Atmosphere, World Scientific, Singapore.Google Scholar
López-Valverde, M. A., and López-Puertas, M. (1994a) A non-local thermodynamic equilibrium radiative transfer model for infrared emissions in the atmosphere of Mars. 1: Theoretical basis and nighttime populations of vibrational levels, J. Geophys. Res., 99, 1309313115.Google Scholar
López-Valverde, M. A., and López-Puertas, M. (1994b) A non-local thermodynamic equilibrium radiative transfer model for infrared emissions in the atmosphere of Mars. 2: Daytime populations of vibrational levels, J. Geophys. Res., 99, 1311713132.Google Scholar
López-Valverde, M. A., and López-Puertas, M. (2001) A fast computation of radiative heating rates under non-LTE in a CO2 atmosphere, In IRS 2000: Current Problems in Atmospheric Radiation (Smith, W., and Timofeyev, V. Eds), Deepak Publishing, Hampton, Virginia.Google Scholar
López-Valverde, M. A., Edwards, D. P., López-Puertas, M., and Roldán, C. (1998) Non-local thermodynamic equilibrium in general circulation models of the Martian atmosphere 1. Effects of the local thermodynamic equilibrium approximation on thermal cooling and solar heating, J. Geophys. Res., 103, 1679916812.Google Scholar
López-Valverde, M. A., Haberle, R. M., and López-Puertas, M. (2000) Non-LTE radiative mesospheric study for Mars Pathfinder entry, Icarus, 146, 360365.Google Scholar
López-Valverde, M. A., López-Puertas, M., López-Moreno, J. J., et al. (2005) Analysis of CO2 non-LTE emissions at 4.3µm in the Martian atmosphere as observed by PFS/Mars Express and SWS/ISO, Planet. Space Sci., 53, 10791087.Google Scholar
López-Valverde, M. A., González-Galindo, F., and Forget, F. (2006) 1-D and 3-D modeling of the upper atmosphere of Mars, in 2nd Workshop on Mars Atmosphere Modeling and Observations, Granada, Spain.Google Scholar
López-Valverde, M. A., Drossart, P., Carlson, R., et al. (2007) Non-LTE infrared observations at Venus: from NIMS/Galileo to VIRTIS/Venus Express, Planet. Space Sci., 55, 17571771.Google Scholar
Lundin, R., Winningham, D., Barabash, S., et al. (2006) Plasma acceleration above Martian magnetic anomalies, Science, 311, 980983.Google Scholar
Ma, Y., and Nagy, A. F. (2007) Ion escape fluxes from Mars, Geophys. Res. Lett., 34, L08201, 10.1029/2006GL029208.Google Scholar
Ma, Y., Nagy, A. F., Sokolov, I. V., and Hansen, K. C. (2004) Three-dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars, J. Geophys. Res., 109, A07211, doi:10.1029/2003JA010367.Google Scholar
Mahaffy, P. R., Benna, M., King, T., et al. (2015) The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution mission, Space Sci. Rev., 195, 4973, doi:10.1007/s11214-014-0091-1.Google Scholar
Mantas, G. P., and Hanson, W. B. (1979) Photoelectron fluxes in the Martian ionosphere, J. Geophys. Res., 84, 369385.Google Scholar
Martinis, C. R, Wilson, J. K., and Mendillo, M. J. (2003) Modeling day-to-day ionospheric variability on Mars, J. Geophys. Res., 108, 1383, doi:10.1029/2003JA009973.Google Scholar
Mazarico, E., Zuber, M. T., Lemoine, F. G., and Smith, D. E. (2007) Martian exospheric density using Mars Odyssey radio tracking data, J. Geophys. Res., 112, E05014, doi:10.1029/2006JE002734.Google Scholar
McConnell, J. C., and McElroy, M. B. (1970) Excitation processes for Martian dayglow, J. Geophys. Res., 75, 72907293.Google Scholar
McDunn, T. L., Bougher, S. W., Murphy, J., et al. (2010) Simulating the density and thermal structure of the middle atmosphere (80–130 km) of Mars using the MGCMMTGCM: a comparison with MEX/SPICAM observations, Icarus, 206, 517.Google Scholar
McElroy, M. B. (1967) The upper atmosphere of Mars, Astrophys. J., 150, 11251138.Google Scholar
Medvedev, A. S. and Yigit, E. (2012) Thermal effects of internal gravity waves in the Martian upper atmosphere, Geophys. Res. Lett., 39, L05201, doi:10.1029/2012GL050852.Google Scholar
Medvedev, A. S., Yigit, E., Hartogh, P., and Becker, E. (2011) Influence of gravity waves on the Martian atmosphere: general circulation modeling, J. Geophys. Res., 116 (E10004), 1432.Google Scholar
Medvedev, A. S., Yigit, E., Kuroda, T., et al. (2013) General circulation modeling of the Martian upper atmosphere during global dust storms, J. Geophys. Res., 118, 22342246, doi:10.1002/2013JE004429.Google Scholar
Medvedev, A. S., González-Galindo, F., Yigit, E., et al. (2015) Cooling of the Martian thermosphere by CO2 radiation and gravity waves: an intercomparison study with two general circulation models, J. Geophys. Res., 120, doi:10.1002/2015JE004802.Google Scholar
Mendillo, M., Smith, S., Wroten, J., et al. (2003) Simultaneous ionospheric variability on Earth and Mars, J. Geophys. Res., 108, 1432, doi:10.1029/2003JA009961.Google Scholar
Mendillo, M. J., Pi, X., Smith, S., et al. (2004) Ionospheric effects upon a satellite navigation system at Mars, Radio Science, 39, RS2028, doi:10.1029/2003RS002933.Google Scholar
Mendillo, M., Withers, P., Hinson, D., et al. (2006) Effects of solar flares on the ionosphere of Mars, Science, 311, 11351138.Google Scholar
Mendillo, M. J., Lollo, A., Withers, P., et al. (2011) Modeling Mars’ ionosphere with constraints from same-day observations by Mars Global Surveyor and Mars Express, J. Geophys. Res., 116, A11303, doi:10.1029/2011JA016865.Google Scholar
Mitchell, D. L., Lin, R. P., Mazelle, C., et al. (2001) Probing Mars’ crustal magnetic field and ionosphere with the MGS Electron Reflectometer, J. Geophys. Res., 106, 2341923428.Google Scholar
Moffat-Griffin, T., Aylward, A. D., and Nicholson, W. (2007) Thermal structure and dynamics of the Martian upper atmosphere at solar minimum from global circulation model simulations, Ann. Geophys., 25, 21472158.Google Scholar
Molina-Cuberos, G. J., Witasse, O., Lebreton, J.-P., et al. (2003) Meteoric ions in the atmosphere of Mars, Planet. Space Sci., 51, 239249.Google Scholar
Montmessin, F., Forget, F., Rannou, P., et al. (2004) Origin and role of water ice clouds in the Martian water cycle as inferred from a general circulation model, J. Geophys. Res., 109, E10004, doi:10.1029/2004JE002284.Google Scholar
Morgan, D. D., Gurnett, D. A., Kirchner, D. L., et al. (2008) Variation of the Martian ionospheric electron density from Mars Express radar soundings, J. Geophys. Res., 113, A09303, doi:10.1029/2008JA013313.Google Scholar
Moudden, Y., and Forbes, J. M. (2008) Effects of vertically propagating thermal tides on the mean structure and dynamics of Mars’ lower thermosphere, Geophys. Res. Lett., 35, L23805, doi:10.1029/2008GL036086.Google Scholar
Moudden, Y., and Forbes, J. M. (2010) A new interpretation of Mars aerobraking variability: planetary wave–tide interactions, J. Geophys. Res., 115, E09005, doi:10.1029/2009JE003542.Google Scholar
Moudden, Y., and McConnell, J. C. (2005) A new model for multiscale modeling of the Martian atmosphere, GM3, J. Geophys. Res., 110, E04001, doi:10.1029/2004JE002354.Google Scholar
Moudden, Y., and McConnell, J. C. (2007) Three-dimensional on-line chemical modeling in a Mars general circulation model, Icarus, 188, 1834, doi:10.1016/j.icarus.2006.11.005.Google Scholar
Müller-Wodarg, I. C. F., Yelle, R. V., Mendillo, M., et al. (2000) The thermosphere of Titan simulated by a global three-dimensional time-dependent model, J. Geophys. Res., 105, 2083320856, doi:10.1029/2000JA000053.Google Scholar
Müller-Wodarg, I. C. F., Strobel, D. F., Moses, J. I., et al. (2008) Neutral atmospheres, Space Sci. Rev., 139, doi:10.1007/s11214-008-9404-6.Google Scholar
Němec, F., Morgan, D. D., Gurnett, D. A., and Duru, F. (2010) Nightside ionosphere of Mars: radar soundings by the Mars Express spacecraft, J. Geophys. Res., 115, E12009, 10.1029/2010JE003663.Google Scholar
Němec, F., Morgan, D. D., Gurnett, D. A., and Brain, D. A. (2011) Areas of enhanced ionization in the deep nightside ionosphere of Mars, J. Geophys. Res., 116, E06006, 10.1029/2011JE003804.Google Scholar
Ness, N. F., Acuña, M. H., Connerney, J. E. P., et al. (2000) Effects of magnetic anomalies discovered at Mars on the structure of the Martian ionosphere and solar wind interaction as follows from radio occultation experiments, J. Geophys. Res., 105, 1599116004.Google Scholar
Nicholson, W. P., Gronoff, G., Lilensten, J., et al. (2009) A fast computation of the secondary ion production in the ionosphere of Mars, MNRAS, 400, 369382.Google Scholar
Nielsen, E., Fraenz, M., Zou, H., et al. (2007) Local plasma processes and enhanced electron densities in the lower ionosphere in magnetic cusp regions on Mars, Planet. Space Sci., 55, 21642172.Google Scholar
Nier, A. O., and McElroy, M. B. (1977) Composition and structure of Mars’ upper atmosphere: results from the Neutral Mass Spectrometers on Viking 1 and 2, J. Geophys. Res., 82, 43414349.Google Scholar
Pätzold, M., Tellmann, S., Häusler, B., et al. (2005) A sporadic third layer in the ionosphere of Mars, Science, 310, 837839.Google Scholar
Pawlowski, D. J., and Bougher, S. W. (2010) Ground to exobase modeling of the Martian atmosphere using M-GITM, in 2010 Fall AGU Meeting, Abstract #P52A-08, San Francisco, California.Google Scholar
Pawlowski, D. J., and Bougher, S. W. (2012) Comparative aeronomy: the effects of solar flares at Earth and Mars, in Comparative Climatology of Terrestrial Planets Conference, Boulder, Colorado.Google Scholar
Pawlowski, D. J., Bougher, S. W., and Chamberlain, P. (2011) Modeling the response of the Martian upper atmosphere to solar flares, in 2011 Fall AGU Meeting, San Francisco, California.Google Scholar
Paxton, L. J., and Anderson, D. E. (1992) Far ultraviolet remote sensing of Venus and Mars. In Venus and Mars: Atmospheres, Ionospheres and Solar Wind Interactions (Luhmann, J. G., Tatrallyay, M., and Pepin, R. O. Eds), Geophysical Monograph #66, American Geophysical Union, Washington, D.C., 113189.Google Scholar
Pesnell, W. D., and Grebowsky, J. (2000) Meteoric magnesium ions in the Martian atmosphere, J. Geophys. Res., 105, 16951708.Google Scholar
Picardi, G. (2008) An overview of radar soundings of the Martian ionosphere from the Mars Express spacecraft, Adv. Space Res., 41, 13351346.Google Scholar
Plane, J. M. C. (2003) Atmospheric chemistry of meteoric metals, Chem. Rev., 103, 49634984.Google Scholar
Ridley, A. J., Deng, Y., and Tóth, G. (2006) The global ionosphere thermosphere model, J. Atmos. Solar-Terr. Phys., 68, 839864.Google Scholar
Rishbeth, H., and Mendillo, M. (2004) Ionospheric layers of Mars and Earth, Planet. Space Sci., 52, 849852.Google Scholar
Rodrigo, R., García-Alvarez, E., López-González, M. J., and López-Moreno, J. J. (1990) A nonsteady one-dimensional theoretical model of Mars’ neutral atmospheric composition between 30 and 200 km, J. Geophys. Res., 95, 1479514810.Google Scholar
Rohrbaugh, R. P., Nisbet, J. S., Bleuler, E., and Herman, J. R. (1979) The effect of energetically produced O2+ on the ion temperatures of the Martian thermosphere, J. Geophys. Res., 84, 33273338.Google Scholar
Roldán, C., López-Valverde, M. A., López-Puertas, M., and Edwards, D. P. (2000) Non-LTE infrared emissions of CO2 in the atmosphere of Venus, Icarus, 147, 1125.Google Scholar
Sadourny, R., and Laval, K. (1984) January and July performance of the LMD general circulation model, In New Perspectives in Climate Modeling (Berger, A., and Nicolis, C. Eds), Elsevier, Amsterdam, 173197.Google Scholar
Safaeinili, A., Kofman, W., Mouginot, J., et al. (2007) Estimation of the total electron content of the Martian ionosphere using radar sounder surface echoes, Geophys. Res. Lett., 34, L23204, doi:10.1029/2007GL032154.Google Scholar
Schunk, R., and Nagy, A. (2009) Ionospheres: Physics, Plasma Physics, and Chemistry, 2nd edition. Cambridge University Press, New York.Google Scholar
Seiff, A., and Kirk, D. B. (1977) Structure of the atmosphere of Mars in summer at mid-latitudes, J. Geophysical Res., 82, 43644378.Google Scholar
Shematovich, V. I., Bisikalo, D. V., and Gérard, J. C. (1994) A kinetic model of the formation of the hot oxygen geocorona. 1: Quiet geomagnetic conditions, J. Geophys. Res., 99, 2321723228.Google Scholar
Shematovich, V. I., Bisikalo, D. V., Gérard, J.-C., et al. (2008) Monte Carlo model of electron transport for the calculation of Mars dayglow emissions, J. Geophys. Res., 113, 2011, doi:10.1029/2007JE002938.Google Scholar
Shinagawa, H., and Cravens, T. E. (1989) A one-dimensional multispecies magnetohydrodynamic model of the dayside ionosphere of Mars, J. Geophys. Res., 94, 65066516.Google Scholar
Simon, C., Witasse, O., Leblanc, F., Gronoff, G., and Bertaux, J.-L. (2009) Dayglow on Mars: kinetic modelling with SPICAM UV limb data, Planet. Space Sci., 57, 10081021.Google Scholar
Simon Wedlund, C., Gronoff, G., Lilensten, J., Ménager, H., and Bartélemy, M. (2011) Comprehensive calculation of the energy per ion pair or W values for five major planetary upper atmospheres, Ann. Geophys., 29, 187195.Google Scholar
Slanger, T. G., and Wolven, B. C. (2002) Airglow processes in planetary atmospheres, In Atmospheres in the Solar System: Comparative Aeronomy (Mendillo, M., Nagy, A., and Waite, J. H. Eds), Geophys. Monog. Ser. 130, American Geophysical Union, Washington, D.C., 7793.Google Scholar
Slanger, T. G., Cosby, P. C., Sharpee, B. D., et al. (2006) O(1S–1D,3P) branching ratio as measured in the terrestrial nightglow, J. Geophys. Res., 111, 12318, doi:10.1029/2006JA011972.Google Scholar
Slanger, T. G., Cravens, T. E., Crovisier, J., et al. (2008) Photoemission phenomena in the solar system, Space Sci. Rev., 139, 267310.Google Scholar
Smith, M. D. (2004) Interannual variability in TES atmospheric observations of Mars during 1999–2003, Icarus, 167, 148165.Google Scholar
Stewart, A. I. (1972) Mariner 6 and 7 ultraviolet spectrometer experiment: implications of CO2+, CO and O airglow, J. Geophysical Res., 77, 5468, doi:10.1029/JA077i001p00054.Google Scholar
Stewart, A. I. F. (1987) Revised time dependent model of the Martian atmosphere for use in orbit lifetime and sustenance studies, LASP-JPL Internal Report, NQ-802429, Jet Propulsion Lab, Pasadena, California.Google Scholar
Stewart, A. I., Barth, C. A., Hord, C. W., and Lane, A. L. (1972) Mariner 9 ultraviolet spectrometer experiment: structure of Mars’s upper atmosphere, Icarus, 17, 469474.Google Scholar
Stewart, A. I., Alexander, M. J., Meier, R. R., et al. (1992) Atomic oxygen in the Martian thermosphere, J. Geophys. Res., 97, 91102.Google Scholar
Stiepen, A., Gerard, J.-C., Bougher, S. W., et al. (2015) Mars thermospheric scale height: CO Cameron and CO2+ dayglow observations from Mars Express, Icarus, 245, 295305.Google Scholar
Strickland, D. J., and Donahue, T. M. (1970) Excitation and radiative transport of OI 1304 Å resonance radiation – I: The dayglow, Planet. Space Sci., 18, 661689.Google Scholar
Strickland, D. J., Thomas, G. E., and Sparks, P. R. (1972) Mariner 6 and 7 ultraviolet spectrometer experiment: analysis of the O I 1304- and 1356-Å emissions, J. Geophys. Res., 77, 40524068.Google Scholar
Strickland, D. J., Stewart, A. I., Barth, C. A., et al. (1973) Mariner 9 ultraviolet spectrometer experiment: Mars atomic oxygen 1304-Å emission, J. Geophys. Res., 78, 45474559.Google Scholar
Tolson, R. H., Keating, G. M., Cancro, G. J., et al. (1999) Application of accelerometer data to Mars Global Surveyor aerobraking operations, J. Spacecraft and Rockets, 36 (3), 323329.Google Scholar
Tolson, R. H., Dwyer, A. M., Hanna, J. L., et al. (2005) Application of accelerometer data to Mars aerobraking and atmospheric modeling, J. Spacecraft and Rockets, 42 (3), 435443.Google Scholar
Tolson, R. H., Keating, G. M., Zurek, R. W., et al. (2007) Application of accelerometer data to atmospheric modeling during Mars aerobraking operations, J. Spacecraft and Rockets, 44 (6), 11721179.Google Scholar
Tolson, R. H., Bemis, E., Hough, S., et al. (2008) Atmospheric modeling using accelerometer data during Mars Reconnaissance Orbiter aerobraking operations, J. Spacecraft and Rockets, 45 (3), 511518.Google Scholar
Valeille, A., Combi, M. R., Bougher, S. W., et al. (2009) Three-dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 2. Solar cycle, seasonal variations and evolution over history, J. Geophys. Res., 114, E11006, doi:10.1029/2009JE003389.Google Scholar
Valeille, A., Combi, M. R., Tenishev, V., et al. (2010) A study of suprathermal oxygen atoms in Mars upper thermosphere and exosphere over the range of limiting conditions, Icarus, 206, 1827.Google Scholar
Whalley, C. L., and Plane, J. M. C. (2010) Meteoric ion layers in the Martian atmosphere, Faraday Discussions, 147, 349368.Google Scholar
Wilson, R. J. (2002) Evidence for non-migrating thermal tides in the Mars upper atmosphere from the Mars Global Surveyor Accelerometer Experiment, Geophys. Res. Lett., 29 (7), doi:10.1029/2001GL013975.Google Scholar
Winchester, C., and Rees, D. (1995) Numerical models of the Martian coupled thermosphere and ionosphere, Adv. Space Res., 15, 51.Google Scholar
Witasse, O., Dutuit, O., Lilensten, J., et al. (2002) Prediction of a CO22+ layer in the atmosphere of Mars, Geophys. Res. Lett., 29, 1263, doi:10.1029/2002GL014781.Google Scholar
Withers, P. G. (2006) Mars Gobal Surveyor and Mars Odyssey accelerometer observations of the Martian upper atmosphere during aerobraking, Geophys. Res. Lett., 33, L02201, doi:10.1029/2005GL024447.Google Scholar
Withers, P. G. (2009) A review of observed variability in the dayside ionosphere of Mars, Adv. Space Res., 44, 277307.Google Scholar
Withers, P. G., Bougher, S. W., and Keating, G. M. (2003) The effects of topographically controlled thermal tides in the Martian upper atmosphere as seen by the MGS Accelerometer, Icarus, 164, 1432.Google Scholar
Withers, P. G., Mendillo, M., Risbeth, H., et al. (2005) Ionospheric characteristics above Martian crustal magnetic anomalies, Geophys. Res. Lett., 32, L16204, doi:10.1029/2005GL023483.Google Scholar
Withers, P., Mendillo, M., Hinson, D. P., and Cahoy, K. (2008) Physical characteristics and occurrence rates of meteoric plasma layers detected in the Martian ionosphere by the Mars Global Surveyor Radio Science Experiment, J. Geophys. Res., 113, A12314, 110.1029/2008JA013636.Google Scholar
Yigit, E., Aylward, A. D., and Medvedev, A. S. (2008) Parameterization of the effects of vertically propagating gravity waves for thermosphere general circulation models: sensitivity study, J. Geophys. Res., 113, D19106, doi:10.1029/2008JD010135.Google Scholar
Zhang, M. H. G., Luhmann, J. G., Kliore, A. J., and Kim, J. (1990a) A post-Pioneer Venus reassessment of the Martian dayside ionosphere as observed by radio occultation methods, J. Geophys. Res., 95, 1482914839.Google Scholar
Zhang, M. H. G., Luhmann, J. G., and Kliore, A. J. (1990b) An observational study of the nightside ionospheres of Mars and Venus with radio occultation methods, J. Geophys. Res., 95, 1709517102.Google Scholar
Zurek, R. W., Tolson, R. H., Baird, D., Johnson, M. Z., and Bougher, S. W. (2015) Application of MAVEN Accelerometer and attitude control data to Mars atmospheric characterization, Space Sci. Rev., 195, 303317, doi:10.1007/s11214- 014-0095-x.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×