Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T21:20:52.062Z Has data issue: false hasContentIssue false

3 - History of Mars Atmosphere Observations

Published online by Cambridge University Press:  05 July 2017

Robert M. Haberle
Affiliation:
NASA Ames Research Center
R. Todd Clancy
Affiliation:
Space Science Institute, Boulder, Colorado
François Forget
Affiliation:
Laboratoire de Météorologie Dynamique, Paris
Michael D. Smith
Affiliation:
NASA-Goddard Space Flight Center
Richard W. Zurek
Affiliation:
NASA-Jet Propulsion Laboratory, California
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aharonson, O., Zuber, M. T., Smith, D. E., et al. (2004). Depth, distribution, and density of CO2 deposition on Mars. J. Geophys. Res., 109, E05004, doi:10.1029/2003JE002223.CrossRefGoogle Scholar
Arvidson, R. E., Bonitz, R., Robinson, M., et al. (2009). Results from the Mars Phoenix Lander robotic arm experiment, J. Geophys. Res., 114, E00E02, doi:10.1029/2009JE003408.Google Scholar
Arvidson, R. E., Ashley, J. W., Bell, J. F. III, et al. (2011). Opportunity Mars Rover mission: overview and selected results from Purgatory ripple to traverses to Endeavour Crater. J. Geophys. Res., 116, E00F15, doi:10.1029/2010JE003746.Google Scholar
Atreya, S. K., Trainer, M. G., Franz, H. B., et al. (2013). Primordial argon isotope fractionation in the atmosphere of Mars, measured by the SAM instrument on Curiosity and implications for atmospheric loss. Geophys. Res. Letters, 40, 56055609.Google Scholar
Avduyevskiy, V. S., Akim, E. L., Aleshin, V. I., et al. (1975). Martian atmosphere in the landing site of the descent module of Mar-6. NASA transl. into English from Kosm. Issled. (USSR), 13, 1, January–February, 2132.Google Scholar
Baird, D. T., Tolson, R., Bougher, S., and Steers, B. (2007). Zonal wind calculations from Mars Global Surveyor accelerometer and rate data. J. Spacecraft and Rockets, 44, 11801187, doi: 10.2514/1.28588.Google Scholar
Barker, E. S. (1972). Detection of molecular oxygen in the Martian atmosphere. Nature, 238, 447448.Google Scholar
Barker, E. S., Schorn, R. A., Woszczyk, A., Tull, R. G. and Little, S. J. (1970). Mars: detection of atmospheric water vapor during the southern hemisphere spring and summer season. Science, 170, 13081310.Google Scholar
Barth, C. A., and Dick, M. L. (1974). Ozone and the polar hood of Mars. Icarus 22, 205.Google Scholar
Barth, C. A., Hord, C. W., Stewart, A. I., et al. (1973). Mariner 9 Ultraviolet Spectrometer experiment: seasonal variation of ozone on Mars. Science 179, 795796.Google Scholar
Bell, J. F., III, Squyres, S. W., Herkenhoff, K. E., et al. (2003). The Mars Exploration Rover Athena panoramic camera (Pancam) investigation. J. Geophys. Res. 108, 8063, doi:10.1029/2003JE002070.Google Scholar
Bell, J.F., III, and MARCI/CTX et al. (2009). Mars Reconnaissance Orbiter Mars Color Imager (MARCI): instrument description, calibration, and performance. J. Geophys. Res., 114, E08S92, doi:10.1029/2008JE003315.Google Scholar
Belton, M. J. S., and Hunten, D. M. (1968). A search for O2 on Mars and Venus: a possible detection of oxygen in the atmosphere of Mars. Astrophys. J., 153, 963974.Google Scholar
Benson, J. L., James, P. B., Cantor, B. A., Remigo, R. (2006). Interannual variability of water ice clouds over major Martian volcanoes observed by MOC. Icarus 184, 363371.Google Scholar
Benson, J., Kass, D., Kleinböhl, A. (2011). Mars’ north polar hood as observed by the Mars Climate Sounder. J. Geophys. Res. 111, E03008, doi:10.1029/2010JE003693.Google Scholar
Bertaux, J.-L., and Montmessin, F. (2001). Isotopic fractionation through water vapor condensation: the deuteropause, a cold trap for deuterium in the atmosphere of Mars. J. Geophys. Res., 106, 3287932884.Google Scholar
Bertaux, J.-L., Fonteyn, D., Korablev, O., et al. (2000). The study of the Martian atmosphere from top to bottom with SPICAM light on Mars Express. Planet. Space Sci. 48, 13031320.Google Scholar
Bertaux, J.-L., Fonteyn, D., Korablev, O., et al. (2005a). Global structure and composition of the Martian atmosphere with SPICAM on Mars Express. Adv. Space Res. 35, 3136Google Scholar
Bertaux, J.-L., Leblanc, F., Witasse, O., et al. (2005b). Discovery of an aurora on Mars, Nature 435, 790794.Google Scholar
Bertaux, J.-L., Leblanc, F., Perrier, S., et al. (2005c). Nightglow in the upper atmosphere of Mars and implications for atmospheric transport, Science, 307, 566569.Google Scholar
Bertaux, J.-L., Korablev, O., Perrier, S., et al. (2006). SPICAM on Mars Express: observing modes and overview of UV spectrometer data and scientific results. J. Geophys. Res., 111, E10S90, doi:10.1029/2006JE002690.Google Scholar
Bertaux, J.-L., Gondet, B., Bibring, J., Montmessin, F., Lefevre, F. (2010). First detection of O2 recombination nightglow emission at 1.27 µm in the atmosphere of Mars with OMEGA on Mars Express. Bulletin of AAS, 42, 10340.Google Scholar
Bibring, J.-P., Soufflot, A., Berthé, M., et al. (2004). OMEGA: Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité, in Mars Express: The Scientific Payload, edited by Wilson, A., Eur. Space Agency Spec. Publ., ESA-1240, 3749.Google Scholar
Bibring, J.-P., Langevin, Y., Gendrin, A., et al. (2005). Mars surface diversity as revealed by theOMEGA/Mars Express observations. Science, 307, 15761581, doi:10.1126/science.1108806.Google Scholar
Bjoraker, G. L., Mumma, M. J., and Larson, H. P. (1989). Isotopic abundance ratios for hydrogen and oxygen in the Martian atmosphere. Bull. Amer. Astron. Soc., 21, 991.Google Scholar
Blamont, J. E. (1991). Colloquium on Phobos-Mars mission, Paris, France, Oct. 23–27, 1989. Proceedings. Planetary and Space Science, 39.Google Scholar
Bogard, D. D., and Johnson, P. (1983). Martian gases in an Antarctic meteorite? Science, 221, 651654.Google Scholar
Boynton, W. V., Ming, D. W., Kounaves, S. P., et al. (2009). Evidence for calcium carbonate at the Mars Phoenix landing site. Science, 325, 61.CrossRefGoogle ScholarPubMed
Briggs, G. A., Baum, W. A., and Barnes, J. (1978). Viking Orbiter imaging observations of dust in the Martian atmosphere. J. Geophys. Res. 84, 27952820.Google Scholar
Cantor, B. A. (2006). MOC observations of the 2001 Mars planet-encircling dust storm. Icarus, 186, 6096.CrossRefGoogle Scholar
Cantor, B. A., James, P. B., and Caplinger, M. (2001). Martian dust storms: 1999 MOC observations. J. Geophys. Res., 106, 2365323689.CrossRefGoogle Scholar
Cantor, B. A., Kanak, K. M., and Edgett, K. S. (2006). Mars Orbiter Camera observations of Martian dust devils and their tracks (September 1997 to January 2006) and evaluation of theoretical vortex models. J. Geophys. Res., 111, E12002, doi:10.1029/2006JE002700.Google Scholar
Cantor, B. A., Malin, M. C., Wolff, M. J., et al. (2008). Observations of the Martian atmosphere by MRO-MARCI, an overview of one Mars year. Mars Atmosphere: Modeling and ObservationsWorkshop, Abstract 9075, Williamsburg, VA.Google Scholar
Carleton, N. P., and Traub, W. A. (1972). Detection of molecular oxygen on Mars, Science, 177, 988991.Google Scholar
Carr, M. H., Baum, W. A., Briggs, G. A., et al. (1972). Imagine experiment: the Viking Mars Orbiter. Icarus 16, 1733.Google Scholar
Catling, D. C., Claire, M. W., Zahnle, K. J., et al. (2010). Atmospheric origins of perchlorate on Mars and in the Atacama, J. Geophys. Res., 115, E00E11, doi:10.1029/2009JE003425.CrossRefGoogle Scholar
Chassefière, E., Blamont, J. E., Krasnopolsky, V. A., et al. (1992). Vertical structure and size distributions of Martian aerosols from solar occultation measurements. Icarus, 97, 4669.Google Scholar
Cheng, B.-M., Chew, E. P, Liu, C.-P., et al. (1999). Photo-induced fractionation of water isotopomers in the Martian atmosphere, Geophys. Res. Lett., 26, 36573660.Google Scholar
Christensen, P. R. (1998). Variations in Martian surface composition and cloud occurrence determined from thermal infrared spectroscopy: analysis of Viking and Mariner 9 data. J. Geophys. Res., 103, 17331746.Google Scholar
Christensen, P. R., and Zurek, R. W. (1984). Martian north polar hazes and surface ice: results from the Viking survey/completion mission. J. Geophys. Res., 89, 45874596.Google Scholar
Christensen, P. R., Anderson, D. L., Chase, S. C., et al. (1992). Thermal Emission Spectrometer experiment: the Mars Observer Mission, J. Geophys. Res., 97, 77197734.Google Scholar
Christensen, P. R., Bandfield, J. L., Hamilton, V. E., et al. (2001). The Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results. J. Geophys. Res., 106, 2382323871.Google Scholar
Christensen, P. R., Mehall, G. L., Silverman, S. H., et al. (2003). The Miniature Thermal Emission Spectrometer for the Mars Exploration Rovers. J. Geophys. Res., 108, 8064, doi:8010.1029/2003JE002117.Google Scholar
Christensen, P. R., Jakosky, B. M., Kieffer, H. H., et al. (2004). The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission. Space Science Reviews, 110, 85130.Google Scholar
Clancy, R. T., Grossman, A. W., and Muhleman, D. O. (1992). Mapping Mars water vapor with the Very Large Array. Icarus, 100, 4859.Google Scholar
Clancy, R. T., Grossman, A. W., Wolff, M. J., et al. (1996). Water vapor saturation at low altitudes around Mars aphelion: a key to Mars climate? Icarus, 122, 3662.Google Scholar
Clancy, R. T., and Nair, H. (1996). Annual (perihelion–aphelion) cycles in the photochemical behavior of the global Mars atmosphere. J. Geophys. Res., 101, 1278512790.CrossRefGoogle Scholar
Clancy, R. T., Wolff, M. J., and James, P. B. (1999). Minimal aerosol loading and global increases in atmospheric ozone during the 1996–1997 Martian northern spring season. Icarus, 138, 4963.Google Scholar
Clancy, R.T., Wolff, M. J., and Christensen, P. R. (2003). Mars aerosol studies with the MGS TES emission phase function observations: optical depths, particle sizes, and ice cloud types versus latitude and solar longitude. J. Geophys. Res., 108, E95098, doi:10.1029/2003JE002058.Google Scholar
Clancy, R. T., Sandor, B. J., and Moriarty-Schieven, G. H. (2004). A measurement of the 362 GHz absorption line of Mars atmospheric HO2. Icarus, 168, 116–12.Google Scholar
Clancy, R. T., Wolff, M. J., Whitney, B. A., Cantor, B. A., and Smith, M. D. (2007). Mars equatorial mesospheric clouds: global occurrence and physical properties from Mars Global Surveyor Thermal Emission Spectrometer and Mars Orbiter Camera limb observations. J. Geophys. Res., 112, E04004, doi:10.1029/2006JE002805.Google Scholar
Clancy, R. T., Sandor, B. J., Wolff, M. J. et al. (2010). CRISM limb observations of O2 singlet delta nightglow in the polar winter atmosphere of Mars Bull. Amer. Astron Soc., 42, 1041.Google Scholar
Clancy, R. T., Wolff, M. J., Cantor, B. A., Malin, M. C., and Michaels, T. I. (2009). Valles Marineris cloud trails, J. Geophys. Res., 114, E11002, doi:10.1029/2008JE003323.Google Scholar
Clancy, R. T., Sandor, B. J., Wolff, M. J., et al. (2012). Extensive MRO CRISM observations of 1.27 µm O2 airglow in Mars polar night and their comparison to MRO MCS temperature profiles and LMD GCM simulations. J. Geophys. Res., 117, doi:10.1029/2011JE004018.Google Scholar
Clancy, R. T., Sandor, B. J., García-Muñoz, A., et al. (2013). First detection of Mars atmospheric hydroxyl: CRISM near-IR measurement versus LMD GCM simulation of OH Meinel band emission in the Mars polar winter atmosphere. Icarus, 226, 272281.Google Scholar
Clancy, R. T., Smith, M. D., Wolff, M. J., et al. (2014). CRISM limb observations of Mars mesospheric ice clouds: two new results, Eighth International Conference on Mars, July 14–18, Pasadena, CA., LPI Contribution No. 1791, 1006.Google Scholar
Clancy, R. T., Wolff, M. J., Lefèvre, F., et al. (2015). Daily global mapping of Mars ozone column abundances with MARCI UV band imaging. Icarus, in review.Google Scholar
Clayton, R. N., and Mayeda, T. K. (1983). Oxygen isotopes in eucrites, shergottites, nakhlites, and chassignites. Earth Planet. Sci. Lett., 62, 1–6, 1983.CrossRefGoogle Scholar
Clayton, R. N., and Mayeda, T. K. (1988). Isotopic composition of carbonate in EETA 79001 and its relation to parent body volatiles. Geochem. Cosmochim. Acta, 52, 925927.CrossRefGoogle Scholar
Colaprete, A., and Toon, O. B. (2002). Carbon dioxide snowstorms during the polar night on Mars. J. Geophys. Res., 107, E75051, doi:10.1029/2001JE001758.Google Scholar
Connes, J., Connes, P., and Maillard, J.-P., (1969). Atlas des spectres dans le proche infrarouge de Vénus, Mars, Jupiter et Saturne, Editions du Centre Nationale de la Recherche Scientifique, 471 p.Google Scholar
Conrath, B., Curran, R., Hanel, R., et al. (1973). Atmospheric and surface properties of Mars obtained by infrared spectroscopy on Mariner 9, J. Geophys. Res., 78, 42674278.Google Scholar
Crowley, G., and Tolson, R. H. (2007). Mars thermospheric winds from Mars Global Surveyor and Mars Odyssey accelerometers. Journal of Spacecraft and Rockets 44, 11881194.Google Scholar
Cull, S., Arvidson, R. E., Morris, R. V., et al. (2010). The seasonal ice cycle at the Mars Phoenix landing site: II. Post-landing CRISM and ground observations. J. Geophys. Res., 115, E00E19. doi:10.1029/ 2009JE003410Google Scholar
Curran, R. J., Conrath, B. J., Hanel, R. A., Kunde, V. G., and Pearl, J. C. (1973). Mars: Mariner 9 spectroscopic evidence for H2O ice clouds. Science, 182, 381383.CrossRefGoogle ScholarPubMed
Dickinson, C., Whiteway, J. A., Komguem, L., Moores, J. E., and Lemmon, M. T. (2010). Lidar measurements of clouds in the planetary boundary layer on Mars. Geophys. Res. Lett., 37, L18203. doi:10.1029/2010GL044317.CrossRefGoogle Scholar
Drube, L., Leer, K., Goetz, W., et al. (2010). Magnetic and optical properties of airborne dust and settling rates of dust at the Phoenix landing site. J. Geophys. Res., in press. doi:10.1029/ 2009JE003419Google Scholar
Ellehoj, M. D., Gunnlaugsson, H. P., Bean, K. M., et al. (2010). Convective vortices and dust devils at the Phoenix Mars mission landing site. J. Geophys. Res., 115, E00E16. doi:10.1029/2009JE003413.Google Scholar
Encrenaz, T., Bézard, B., Greathouse, T. K., et al. (2004). Hydrogen peroxide on Mars: evidence for spatial and seasonal variations. Icarus, 170, 424429.Google Scholar
Encrenaz, T., Bézard, B., Owen, T., et al. (2005). Infrared imaging spectroscopy of Mars: H2O mapping and determination of CO2 isotopic ratios, Icarus, 179, 4354.Google Scholar
Encrenaz, T., Fouchet, T., Melchiorri, R., et al. (2006). Seasonal variations of the Martian CO over Hellas as observed by OMEGA/Mars Express. Astron. Astrophys., 459, 265270.Google Scholar
Encrenaz, T., Greathouse, T. K., Richter, M. J. et al. (2008). Simultaneous mapping of H2O and H2O2 on Mars from infrared high-resolution imaging spectroscopy. Icarus, 195, 547556.Google Scholar
Encrenaz, T., Greathouse, T. K., Lefèvre, F., and Atreya, S. K. (2012). Hydrogen peroxide on Mars: observations, interpretation and future plans, Plan. Space Sci., 68, 317.Google Scholar
Espenak, F., Mumma, M. J., Kostiuk, T., and Zipoy, D. (1991). Ground-based infrared measurements of the global distribution of ozone in the atmosphere of Mars. Icarus, 92, 252262.Google Scholar
Farmer, C. B. and Doms, P. E. (1979), Global and seasonal variation of water vapor on Mars and the implications for permafrost, J. Geophys. Res., 84, 28812888.Google Scholar
Farmer, C. B., Davies, D. W., Holland, A. L., LaPorte, D. D., and Doms, P. E. (1977). Mars: water vapor observations from the Viking Orbiters, J. Geophys. Res., 82, 42254248.Google Scholar
Farquhar, J., Sang-Tae, K., and Masterson, A. (2007). Implications from sulfur isotopes of the Nakhla meteorite for the origin of sulfate on Mars. Earth and Planetary Science Letters, 264, 18.Google Scholar
Fast, K., Kostiuk, T., Espenak, F., et al. (2006). Ozone abundance on Mars from infrared heterodyne spectra: I. Acquisition, retrieval, and anticorrelation with water vapor, Icarus, 181, 419431.Google Scholar
Fedorova, A., Korablev, O., Bertaux, J.-L., et al. (2006a). Mars water vapor abundance from SPICAM IR spectrometer: seasonal and geographic distributions. J. Geophys. Res. 111, E09S08, doi:10.1029/2006JE002605.Google Scholar
Fedorova, A., Korablev, O., Perrier, S., et al. (2006b). Observation of O2 1.27 µm dayglow by SPICAM IR: seasonal distribution for the first Martian year of Mars Express. J. Geophys. Res., 111 E09S07, doi:10.1029/2006JE002694.Google Scholar
Fedorova, A. A., Korablev, O., Bertaux, J.-L. et al. (2009). Solar infrared occultation observations by SPICAM experiment on Mars-Express: simultaneous measurements of the vertical distributions of H2O, CO2 and aerosol. Icarus, 200, 96117.Google Scholar
Fedorova, A. A., Montmessin, F., Rodin, A. V., et al. (2014). Evidence for a bimodal size distribution for the suspended particles on Mars Icarus, 231, 239260.Google Scholar
Feldman, W. C., Prettyman, T. H., Boynton, W. V., et al. (2003). CO2 frost cap thickness on Mars during northern winter and spring. J. Geophys. Res., 108, E9, 5103, doi:10.1029/2003JE002101.Google Scholar
Feldman, W. C., Prettyman, T. H., Maurice, S., et al. (2004). Global distribution of near-surface hydrogen on Mars, J. Geophys. Res., 109, E09006, doi:10.1029/2003JE002160.Google Scholar
Ferri, F., Smith, P. H., Lemmon, M. T., and Rennó, N. (2003). Dust devils as observed by Mars Pathfinder. J. Geophys. Res. 108, E12.7–1, doi:10.1029/2000JE001421.Google Scholar
Forget, F., Spiga, A., Dolla, B., et al. (2007). Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 1. Retrieval method, J. Geophys. Res., 112, E08S15, doi:10.1029/2006JE002871.Google Scholar
Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N., and Giuranna, M. (2004). Detection of methane in the atmosphere of Mars. Science, 306, 17581761.Google Scholar
Formisano, V., Angrilli, F., Arnold, G., et al. (2005). The planetary Fourier spectrometer (PFS) onboard the European Mars Express mission. Planetary and Space Science, 53, 10 963974.Google Scholar
Fouchet, T., Lellouch, E., Ignatiev, N. I., et al. (2007). Martian water vapor: Mars Express PFS/LW observations. Icarus, 190, 1 3249.Google Scholar
Franz, H. B., Trainer, M. G., Wong, M. H., et al. (2015). Reevaluated Martian atmospheric mixing ratios from the mass spectrometer on the Curiosity Rover. Plan. Space Sci., 109–110, 154158.CrossRefGoogle Scholar
Goetz, W., Bertelsen, P., Binau, C. S., et al. (2005). Indication of drier periods on Mars from the chemistry and mineralogy of atmospheric dust. Nature, 436, 7047 6265, doi:10.1038/nature03807.Google Scholar
Gómez-Elvira, J., Armiens, J. C., Castañer, L., et al. (2012). REMS: the environmental sensor suite for the Mars Science Laboratory Rover. Space Sci. Rev., 170, 583640, doi:10.1007/s11214-012-9921-1.Google Scholar
Gooding, J. L., Wentworth, S. J., and Zolensky, M. E. (1988). Calcium carbonate and sulfate of possible extraterrestrial origin in the EETA 79001 meteorite. Geochim. Cosmochim. Acta, 52, 909915.Google Scholar
Greeley, R., Whelley, P. L., Arvidson, R. E., et al. (2006). Active dust devils in Gusev Crater, Mars: observations from the Mars Exploration Rover, Spirit. J. Geophys. Res., 111, E12S09, doi:10.1029/2006JE002743.Google Scholar
Greeley, R., Waller, D., Cabrol, N. et al. (2010). Gusev Crater, Mars: observations of three dust devil seasons. J. Geophys. Res. 115, E00F02. doi:10.1029/2010JE003608Google Scholar
Haberle, R.M., and Kahre, M. A. (2010). Detecting secular climate change on Mars. Mars 5, 6875, 2010; doi:10.1555/mars.2010.0003.Google Scholar
Haberle, R. M., Joshi, M. M., Murphy, J. R., et al. (1999). General circulation model simulations of the Mars Pathfinder atmospheric structure investigation/meteorology data. J. Geophys. Res., 104, 89578974.Google Scholar
Haberle, R. M., Gómez-Elvira, J., de la Torre Juárez, M., et al. (2014a). Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission, J. Geophys. Res., 119, 440453.Google Scholar
Haberle, R. M., Gómez-Elvira, J., de la Torre Juarez, M., et al. (2014b). Secular climate change on Mars: an update using one Mars year of MSL pressure data. AGU Fall Meeting 2014, abstract no. P31B-3947.Google Scholar
Hansen, C. J., Thomas, N., Portyankina, G., et al. (2010). HiRISE observations of gas sublimation-driven activity in Mars’ southern polar regions: I. Erosion of the surface. Icarus, 205, 263295.Google Scholar
Hartogh, P., Jarchow, C., Lellouch, E., et al. (2010). Herschel/HIFI observations of Mars: first detection of O2 at submillimetre wavelengths and upper limits on HCl and H2O2. Astrophys. and Astron., 521, L49, doi:10.1051/0004-6361/201015160.Google Scholar
Hayne, P. O., Paige, D. A., Schofield, J. T., et al. (2012). Carbon dioxide snow clouds on Mars: south polar winter observations by the Mars Climate Sounder. J. Geophys. Res., 17, E08014, doi:10.1029/2011JE004040.Google Scholar
Hayne, P. O., Paige, D. A., Heavens, N. G., et al. (2014). The role of snowfall in forming the seasonal ice caps of Mars: models and constraints from the Mars Climate Sounder. Icarus, 231, 122130.Google Scholar
Heavens, N. G., Richardson, M. I., Kleinböhl, A., et al. (2011a). Vertical distribution of dust in the Martian atmosphere during northern spring and summer: high-altitude tropical dust maximum at northern summer solstice. J. Geophys. Res., 116, E01007, doi:10.1029/2010JE003692.Google Scholar
Heavens, N. G., Richardson, M. I, Kleinböhl, A., et al. (2011b). The vertical distribution of dust in the Martian atmosphere during northern spring and summer: observations by the Mars Climate Sounder and analysis of zonal average vertical dust profiles. J. Geophys. Res., 116, E04003, doi:10.1029/2010JE003691.Google Scholar
Hecht, M. H., Kounaves, S. P., Quinn, R. C., et al. (2009). Detection of perchlorate and the soluble chemistry of the Martian soil at the Phoenix Lander site. Science, 325, 64, doi:10.1126/science, 1172466.Google Scholar
Hess, S. L., Ryan, J. A., Tillman, J. E., Henry, R. M., and Leovy, C. B. (1980). The annual cycle of pressure on Mars measured by Viking Landers 1 and 2. Geophys. Res. Lett., 7, 3 197200. doi:10.1029/GL007i003p00197.Google Scholar
Hinson, D. P., and Wilson, R. J. (2004). Temperature inversions, thermal tides, and water ice clouds in the Martian tropics. J. Geophys. Res., 109, E01002. doi:10.1029/2003JE002129.Google Scholar
Hinson, D. P., Simpson, R. A., Twicken, J. D., Tyler, C. L., Flasar, F. M. (1999). Initial results from radio occultation measurements with Mars Global Surveyor. J. Geophys. Res., 104, 2699727012Google Scholar
Hinson, D. P., Simpson, R. A., Twicken, J. D., Tyler, C. L., Flasar, F. M. (2000). Erratum: Initial results from radio occultation measurements with Mars Global Surveyor. J. Geophys. Res., 105, 17171718.Google Scholar
Hinson, D. P., Smith, M. D., and Conrath, B. J. (2004). Comparison of atmospheric temperatures obtained through infrared sounding and radio occultation by Mars Global Surveyor. J. Geophys. Res., 103, E12002, doi: 10.1029/2004JE002344.Google Scholar
Hinson, D. P., Pätzold, M., Tellmann, S., Häusler, B., and Tyler, G. L. (2008). The depth of the convective boundary layer on Mars, Icarus, 198, 5766.Google Scholar
Holstein-Rathlou, C., Gunnlauggson, H. P., Merrison, J. P., et al. (2010). Winds at the Phoenix Landing Site. J. Geophys. Res., 115, E00E18, doi:10.1029/2009JE003411.Google Scholar
Hunt, G. E., Pickersgill, A. O., James, P. B., and Johnson, G. (1980). Some diurnal properties of clouds over the Martian Volcanoes. Nature, 286, 362364.Google Scholar
Hunt, G. E., Pickersgill, A. O., James, P. B., and Evans, N. (1981). Daily and seasonal Viking observations of Martian bore wave systems. Nature, 293, 630633.Google Scholar
Inada, A., Richardson, M. I., McConnochie, T. H., et al. (2007). High-resolution atmospheric observations by the Mars Odyssey Thermal Emission Imaging System. Icarus, 192, 378395.Google Scholar
Inada, A., Garcia-Comas, M., Altieri, F., et al. (2008). Dust haze in Valles Marineris observed by HRSC and OMEGA on board Mars Express. J. Geophys. Res., 113, E02004, doi:10.1029/2007JE002893.Google Scholar
Jakosky, B. M. (1991). Mars volatile evolution: evidence from stable isotopes. Icarus, 94, 1431.Google Scholar
Jakosky, B. M., and Farmer, C. B. (1982). The seasonal and global behavior of water vapor in the Martian atmosphere: complete global results of the Viking atmospheric water detector experiment. J. Geophys. Res., 87, 29993019.Google Scholar
Jakosky, B. M., and Jones, H. (1997). The history of Martian volatiles. Reviews of Geophysics, 35, 116.Google Scholar
Jakosky, B. M., Lin, R. P., Grebowsky, J. M., et al. (2015). The Mars Atmosphere and Volatile Evolution (MAVEN) Mission. Space Science Reviews, doi:10.1007/s11214-015-0139-x.Google Scholar
James, P. B., Bell, J. F. III, Clancy, R. T., et al. (1996). Hubble Space Telescope synoptic imaging of Mars: 1995 opposition observations. J. Geophys. Res., 101, 1888318891.Google Scholar
James, P. B., Thomas, P. C., Malin, M. C. (2010). Variability of the south polar cap of Mars in Mars Years 28 and 29. Icarus, 208, 8286.Google Scholar
Johnson, J. R., Grundy, W. M., and Lemmon, M. T. (2003). Dust deposition at the Mars Pathfinder landing site: observations and modeling of near-infrared spectra. Icarus, 163, 330346, doi:10.1016/S0019-1035(03)00084-8.Google Scholar
Kahn, R. (1984). The spatial and seasonal distribution of Martian clouds and some meteorological implications. J. Geophys. Res., 89, 66716688.Google Scholar
Kahn, R., and Gierasch, P. (1982). Long cloud observations on Mars and implications for boundary layer characteristics over slopes. J. Geophys. Res., 87, 867880.Google Scholar
Kakar, R. K., Waters, J. W., and Wilson, W. J. (1977). Mars: microwave detection of carbon monoxide. Science, 196, 10901091.Google Scholar
Kaplan, L. D., Münch, G., and Spinrad, H. (1964). An analysis of the spectrum of Mars. Astrophys. J., 139, 115.Google Scholar
Kaplan, L. D., Connes, J., and Connes, P. (1969). Carbon monoxide in the Mars atmosphere. Astrophys. J., 157, L187-L192.Google Scholar
Keating, G. M., Bougher, S. W., Zurek, R. W., et al. (1998). The structure of the upper atmosphere of Mars: in situ accelerometer measurements from Mars Global Surveyor. Science, 279, 16721676.CrossRefGoogle ScholarPubMed
Kieffer, H. H. (1979). Mars south polar spring and summer temperatures – a residual CO2 frost. J. Geophys. Res., 84, 82638288.CrossRefGoogle Scholar
Kieffer, H. H., Chase, S. C., Martin, T. Z., Miner, E. D., and Palluconi, F. D. (1976). Martian north pole summer temperatures: dirty water ice. Science, 194, 13411344.Google Scholar
Kieffer, H. H., Martin, T. Z., Peterfreund, A. R., et al. (1977). Thermal and albedo mapping of Mars during the Viking primary mission. J. Geophys. Res., 82, 42494292.Google Scholar
Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S. (1992). Mars. University of Arizona Press, Tucson.Google Scholar
Kleinböhl, A., Schofield, J. T., Kass, D. M., et al. (2009), Mars Climate Sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity. Journal of Geophysical Research, 114, E10 E10006.Google Scholar
Kliore, A., Cain, D. L., Levy, G. S., et al. (1965). Experiment: results of the First direct measurement of Mars’s atmosphere and ionosphere, Science, 149, 12431248.Google Scholar
Krasnopolsky, V. A. (2006). A sensitive search for SO2 in the Martian atmosphere: implications for seepage and origin of methane. Icarus, 178, 487492.Google Scholar
Krasnopolsky, V. A. (2007). Long-term spectroscopic observations of Mars using IRTF/CSHELL: mapping of O2 dayglow, CO, and search for CH4. Icarus, 190, 93102.Google Scholar
Krasnopolsky, V. A., and Feldman, P. D. (2001). Detection of molecular hydrogen in the atmosphere of Mars. Science, 294, 19141917.Google Scholar
Krasnopolsky, V. A., Korablev, O. I., Moroz, V. I., et al. (1991). Infrared solar occultation sounding of the Martian atmosphere by the Phobos spacecraft. Icarus, 94, 3244.Google Scholar
Krasnopolsky, V. A., Mumma, M. J., Bjoraker, G. L., and Jennings, D. E. (1996). Oxygen and carbon isotope ratios in Martian carbon dioxide: measurements and implications for atmospheric evolution. Icarus, 124, 553568.Google Scholar
Krasnopolsky, V. A., Mumma, M. J., and Gladstone, G. R. (1998). Detection of atomic deuterium in the upper atmosphere of Mars. Science, 280, 15761580.Google Scholar
Kuiper, G. P. (1952). The Atmospheres of the Earth and Planets, 351365, Univ. of Chicago Press, Chicago.Google Scholar
Kuiper, G. P. (1957). Visual observations of Mars: 1956. Ap. J., 125, 307317.Google Scholar
Landis, G. A. and Jenkins, P. P. (2000). Measurement of the settling rate of atmospheric dust on Mars by the MAE instrument on Mars Pathfinder. J. Geophys. Res., 105, 1, 18551857, doi:10.1029/1999JE001029.Google Scholar
Langevin, Y., Bibring, J.-P., Montmessin, F., et al. (2007). Observations of the south seasonal cap of Mars during recession in 2004–2006 by the OMEGA visible/near-infrared imaging spectrometer on board Mars Express. J. Geophys. Res., 112, E08S12, doi:10.1029/2006JE002841.Google Scholar
Lebonnois, S., Quémerais, E., Montmessin, F., et al. (2006). Vertical distribution of ozone on Mars as measured by SPICAM/Mars Express using stellar occultations. J. Geophys. Res., 111, E09S05, doi:10.1029/2005JE002643.Google Scholar
Lee, C., Lawson, W. G., Richardson, M. I., et al. (2009). Thermal tides in the Martian middle atmosphere as seen by the Mars Climate Sounder. J. Geophys.Res., 114, E03005, doi:10.1029/2008JE003285.Google Scholar
Lefèvre, F., and Forget, F. (2009). Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics. Nature, 460, 720723.Google Scholar
Lefèvre, F., Bertaux, J. L., Clancy, R. T., et al. (2008). Heterogeneous chemistry in the atmosphere of Mars. Nature, 454, 971975.Google Scholar
Leighton, R. B. and Murray, B. C. (1966). Behavior of carbon dioxide and other volatiles on Mars. Science, 153, 136144.Google Scholar
Lemmon, M. T., Wolff, M. J., Smith, M. D., et al. (2004). Atmospheric Imaging Results from the Mars Exploration Rovers: Spirit and Opportunity. Science, 306, 17531756, doi:10.1126/science.1104474.Google Scholar
Lemmon, M. T., Wolff, M. J., Bell, J. F. III, et al. (2015). Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission. Icarus, 251, 96111. doi:10.1016/j.icarus.2014.03.029.Google Scholar
Leovy, C., Briggs, G., Young, A., et al. (1972). The Martian atmosphere: Mariner 9 television experiment progress report. Icarus, 17, 373393.Google Scholar
Lillis, R. J., Engel, J. H., Mitchell, D. L., et al. (2005). Probing upper thermospheric neutral densities at Mars using electron reflectometry. Geophys. Res. Lett., 32, L23204, doi:10.1029/2005GL024337.Google Scholar
Lillis, R. J., Bougher, S. W., Mitchell, D. L., et al. (2008a). Continuous monitoring of nightside upper thermospheric mass densities in the Martian southern hemisphere over 4 Martian years using electron reflectometry. Icarus, 194, 562574.CrossRefGoogle Scholar
Lillis, R. J., Mitchell, D. L., Lin, R. P., and Acuña, M. H. (2008b). Electron reflectometry in the Martian atmosphere. Icarus, 194, 544561.Google Scholar
Lillis, R. J., Bougher, S. W., González-Galindo, F., et al. (2010). Four Martian years of nightside upper thermospheric mass densities derived from electron reflectometry: method extension and comparison with GCM simulations. J. Geophys. Res., 115, E07014, doi:10.1029/2009JE003529.Google Scholar
Lowell, P. (1895). Mars. Longmans and Green, London.Google Scholar
Madsen, M. B., Hviid, S. F., Gunnlaugsson, H. P., et al. (1999). The magnetic properties experiments on Mars Pathfinder, J. Geophys. Res., 104, E4, 87618779, doi:10.1029/1998JE900006.Google Scholar
Madsen, M. B., Goetz, W., Bertelsen, P., et al. (2009). Overview of the magnetic properties experiments on the Mars Exploration Rovers. J. Geophys. Res., 114, E06S90, doi:10.1029/2008JE003098.Google Scholar
Magalhaes, J., Schofield, J. T., and Seiff, A. (1999). Results of the Mars Pathfinder atmospheric structure investigation. J. Geophys. Res., 104, 89438956Google Scholar
Mahaffy, P. R., Webster, C. R., Cabane, M., et al. (2012). The Sample Analysis at Mars investigation and instrument suite. Space Science Reviews, 170, 1–4, 401478Google Scholar
Mahaffy, P. R., Webster, C. R., Atreya, S. K. et al. (2013). Abundance and isotopic composition of gases in the Martian atmosphere from the Curiosity Rover. Science, 341, 263266.Google Scholar
Maki, J., Thiessen, D., Pourangi, A., et al. (2012). The Mars Science Laboratory engineering cameras. Space Sci. Rev., 170, 7793.Google Scholar
Malin, M. C., Danielson, G. E., Ingersoll, A. P., et al. (1992). Mars Observer camera. J. Geophys. Res., 97, 76997718.Google Scholar
Malin, M. C., Caplinger, M. A., Davis, S. D., et al. (2001). Observational evidence for an active surface reservoir of solid carbon dioxide on Mars. Science, 294, 21462148.Google Scholar
Malin, M. C., Bell, J. F. III, Cameron, J., et al. (2005). The Mast Cameras and Mars Descent Imager (MARDI) for the 2009 Mars Science Laboratory, in 36th Annual Lunar and Planetary Science Conf., March 14–18, League City, Texas, Abstract No. 1214.Google Scholar
Malin, M. C., Bell, J. F. III, Cantor, B. A., et al. (2007). Context Camera investigation on board the Mars Reconnaissance Orbiter. Journal of Geophysical Research, 112, E5, E05S04.Google Scholar
Malin, M. C, Calvin, W. M., Cantor, B. A., et al. (2008). Climate, weather, and north polar observations from the Mars Reconnaissance Orbiter Mars color imager. Icarus, 194.Google Scholar
Maltagliati, L., Montmessin, F., Fedorova, A., et al. (2011). Evidence of water vapor in excess of saturation in the atmosphere of Mars. Science, 18681871.Google Scholar
Maltagliati, L., Montmessin, F., Korablev, O., et al. (2013). Annual survey of water vapor vertical distribution and water-aerosol coupling in the Martian atmosphere observed by SPICAM/MEx solar occultations. Icarus, 223, 942962.Google Scholar
Markiewicz, W. J., Sablotny, R. M., Keller, H. U., et al. (1999). Optical properties of the Martian aerosols as derived from Imager for Mars Pathfinder midday sky brightness data. J. Geophys. Res., 104, 90099018.Google Scholar
Martin, L. J. (1976). 1973 dust storm on Mars: maps from hourly photographs. Icarus, 29, 363380.Google Scholar
Martin, L. J., James, P. B., Dollfus, A., et al. (1992). Telescopic observations: visual, photographic, polarimeteric. In Mars, University of Arizona Press, Tucson, AZ, 3470.Google Scholar
Martin, T. Z. (1981). Mean thermal and albedo behavior of the Mars surface and atmosphere over a Martian year, Icarus, 45, 427446.Google Scholar
Maurice, S., Wiens, R. C., Saccoccio, M., et al. (2012). The ChemCam instrument suite on the Mars Science Laboratory (MSL) Rover: science objectives and mast unit description. Space. Sci. Rev., 170, 95166.Google Scholar
Mazarico, E., Zuber, M. T., Lemoine, F. G., and Smith, D. E. (2007a). Martian exospheric density using Mars Odyssey radio tracking data. J. Geophys. Res. 112, E05014, doi:10.1029/2006JE002734.Google Scholar
Mazarico, E., Zuber, M. T., Lemoine, F. G., and Smith, D. E. (2007b). Atmospheric density during the aerobraking of Mars Odyssey from radio tracking data. Journal of Spacecraft and Rockets, 44, 11651171.Google Scholar
Mazarico, E., Zuber, M. T., Lemoine, F. G., and Smith, D. E. (2008). Observation of atmospheric tides in the Martian exosphere using Mars Reconnaissance Orbiter radio tracking data. Geophys. Res. Lett., 35, L09202, doi:10.1029/2008GL033388.Google Scholar
McCleese, D. J., Schofield, J. T., Taylor, F. W., et al. (2007). Mars Climate Sounder: an investigation of thermal and water vapor structure, dust and condensate distributions in the atmosphere, and energy balance of the polar regions. Journal of Geophysical Research-Planets, 112, E5, E05S06.Google Scholar
McCleese, D. J., Schofield, J. T., Taylor, F. W., et al. (2008). Intense polar temperature inversion in the middle atmosphere on Mars. Nature, Geoscience, 1, 11, 745749.Google Scholar
McCleese, D. J., Heavens, N. G., Schofield, J. T., et al. (2010). Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: seasonal variations in zonal mean temperature, dust, and water ice aerosols. J. Geophys. Res., 115, E12016, doi:10.1029/2010JE003677.Google Scholar
McConnochie, T. H., Bell, J. F., Savransky, D., et al. (2010). THEMIS-VIS observations of clouds in the Martian mesosphere: altitudes, wind speeds, and decameter-scale morphology. Icarus, 210. 545565.Google Scholar
McConnochie, T. H., Smith, M. D., Bender, S. C., et al. (2014). The Martian O2 and H2O cycles observed with ChemCam passive sky spectroscopy, American Geophysical Union, Fall Meeting 2014, abstract #P53D-01.Google Scholar
McElroy, M. B., and Donahue, T. M. (1972). Stability of the Martian atmosphere. Science, 177, 986988.Google Scholar
McEwen, A. S., Eliason, E. M., Bergstrom, J. W., et al. (2007). Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE). J. Geophys. Res., 112, E05S02, doi:10.1029/2005JE002605.Google Scholar
Mellon, M. T., Arvidson, R. E., Sizemore, H. G., et al. (2009). Ground ice at the Phoenix landing site: stability state and origin. J. Geophys. Res., 114, E00E07, doi:10.1029/2009JE003417.Google Scholar
Metzger, S. M., Johnson, J. R., Carr, J. R., Parker, T. J., and Lemmon, M. (1999). Dust devil vortices seen by the Mars Pathfinder Camera. Geophys. Res. L. 26, 27812784, doi:10.1029/1999GL008341.CrossRefGoogle Scholar
Mitchell, D. L., Lin, R. P., Mazelle, C., et al. (2001). Probing Mars’ crustal magnetic field and ionosphere with the MGS Electron Reflectometer. J. Geophys. Res., 106, 2341923428.Google Scholar
Möhlmann, D. T. F., Niemand, M., Formisano, V., Savijärvi, H., and Wolkenberg, P. (2009). Fog phenomena on Mars. Plan. Space Sci., 57, 19871992.Google Scholar
Montmessin, F., and Lefèvre, F. (2013). Transport-driven formation of a polar ozone layer on Mars. Nature Geoscience, 6, doi:10.1038/NGEO1957.Google Scholar
Montmessin, F., Fouchet, T., and Forget, F. (2005). Modeling the annual cycle of HDO in the Martian atmosphere. J. Geophys. Res., 110, E03006, doi:10.1029/2004JE002357.Google Scholar
Montmessin, F., Quémerais, E., Bertaux, J. L., et al. (2006). Stellar occultations at UV wavelengths by the SPICAM instrument: retrieval and analysis of Martian haze profiles. J. Geophys. Res., 111, E09S09, doi:10.1029/2005JE002662.Google Scholar
Montmessin, F., Gondet, B., Bibring, J.-P., et al. (2007). Hyperspectral imaging of convective CO2 ice clouds in the equatorial mesosphere of Mars. J. Geophys. Res., 112, E11S90, doi:10.1029/2007JE002944.Google Scholar
Moore, C. A., Moores, J. E., Lemmon, M. T., et al. (2016). A full Martian year of line-of-sight extinction within Gale Crater, Mars as acquired by the MSL Navcam through sol 900. Icarus, 264, 102108, doi:10.1016/j.icarus.2015.09.001.Google Scholar
Moores, J. E., Lemmon, M. T., Smith, P. H., Komguem, L., and Whiteway, J. A. (2010). Atmospheric dynamics at the Phoenix landing site as seen by the Surface Stereo Imager. J. Geophys. Res., 115, E00E08, doi:10.1029/2009JE003409.Google Scholar
Moores, J. E., Komguem, L., Whiteway, J. A., et al. (2011). Observations of Near-Surface Fog at the Phoenix Landing. Geophys. Res. L., 38, L04203, doi:10.1029/2010GL046315.Google Scholar
Moores, J. E., Lemmon, M. T., Rafkin, S. C. R., et al. (2015a). Atmospheric movies acquired at the Mars Science Laboratory landing site: cloud morphology, frequency and significance to the Gale Crater water cycle and Phoenix mission results. Adv. Space Res, 55, 22172238.CrossRefGoogle Scholar
Moores, J. E., Lemmon, M. T., Kahanpää, H., et al. (2015b). Observational evidence of a suppressed planetary boundary layer in northern Gale Crater: Mars as seen by the Navcam instrument onboard the Mars Science Laboratory Rover. Icarus, 249, 129142.Google Scholar
Mumma, M. J., Novak, R. E., Disanti, M. A., et al. (2003). Seasonal mapping of HDO and H2O in the Martian atmosphere. Sixth International Conference on Mars, Pasadena, Abstract 3186.Google Scholar
Mumma, M. J., Villanueva, G. L., Novak, R. E., et al. (2009). Strong release of methane on Mars in northern summer 2003. Science, 323, 10411045.Google Scholar
Murchie, S., Arvidson, R., Bedini, P., et al. (2007). Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). J. Geophys. Res., 112, E05S03, doi:10.1029/2006JE002682.Google Scholar
Murphy, J. R. and Nelli, S. (2002). Mars Pathfinder convective vortices: frequency of occurrence. Geophys. Res. Lett., 29, 23, 2103, doi:10.1029/2002GL015214.Google Scholar
Neukum, G., and Jaumann, R. (2004). HRSC: the High Resolution Stereo Camera of Mars Express. In Mars Express: the Scientific Payload. Ed. Wilson, Andrew, scientific coordination: Agustin Chicarro. ESA SP-1240, Noordwijk, Netherlands: ESA Publications Division, 1735.Google Scholar
Neumann, G. A., Smith, D. E., and Zuber, M. T. (2003). Two Mars years of clouds detected by the Mars Orbiter Laser Altimeter. J. Geophys. Res., 108, E4, 5023, doi:10.1029/2002JE001849.Google Scholar
Nier, A. O., Hanson, W. B., Seitt, A., et al. (1976a). Composition and structure of the Martian atmosphere: preliminary results from Viking 1. Science, 193, 786788.Google Scholar
Nier, A. O., McElroy, M. B., and Yung, Y. L. (1976b). Isotopic composition of the Martian atmosphere. Science, 194, 6870.Google Scholar
Niles, P. B., Boynton, W. V., Hoffman, J. H., et al. (2010). Stable isotope measurements of Martian atmospheric CO2 at the Phoenix Landing Site. Science, 329, 13341337. doi:10.1126/science.1192863.Google Scholar
Novak, R. E., Mumma, M. J., DiSanti, M. A., Russo, N. D., and Magee-Sauer, K. (2002). Mapping of ozone and water in the atmosphere of Mars near the 1997 aphelion. Icarus, 158, 1423.Google Scholar
Novak, R. E., Mumma, M. J., and Villanueva, G. L. (2011). Measurement of the isotopic signatures of water on Mars; implications for studying methane. Planetary and Space Science, 59, 163168.Google Scholar
Noxon, J. F., Traub, W. A., Carlton, N. P., and Connes, P. (1976). Detection of O2 dayglow emission from Mars and the Martian ozone abundance. Astrophys. J., 207, 10251035.Google Scholar
Owen, T., and Biemann, K. (1976). Composition of the atmosphere at the surface of Mars: detection of argon-36 and preliminary analysis. Science, 193, 801803.Google Scholar
Owen, T., Biemann, K., Rushneck, D. R. et al. (1976). The atmosphere of Mars: detection of krypton and xenon. Science, 194, 12931295.Google Scholar
Owen, T., Biemann, K., Rushneck, D. R., et al. (1977). The composition of the atmosphere at the surface of Mars. J. Geophys. Res., 82, 46354639.Google Scholar
Owen, T., Maillard, J. P., de Bergh, C., Lutz, B. L. (1988). Deuterium on Mars – the abundance of HDO and the value of D/H. Science, 240, 17671770.Google Scholar
Paige, D. A., and Wood, S. E. (1992). Modeling the Martian seasonal CO2 cycle 2. Interannual variability. Icarus, 99, 1527.Google Scholar
Parkinson, T. D., and Hunten, D. M. (1972). Spectroscopy and aeronomy of O2 on Mars. J. Atmos. Sci., 29, 13801390.Google Scholar
Pätzold, M., Neubauer, F. M., Carone, L., et al. (2004). MaRS: Mars Express Orbiter radio science. In ESA Special Publication 1240, available online at http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=34885Google Scholar
Pätzold, M., Tellmann, S., Häusler, B., et al. (2005). A sporadic third layer in the ionosphere of Mars. Science, 310, 837839.Google Scholar
Pearl, J. C., Smith, M. D., Conrath, B. J., Bandfield, J. L., and Christensen, P. R. (2001). Observations of water-ice clouds by the Mars Global Surveyor Thermal Emission Spectrometer experiment: the first Martian year. J. Geophys. Res., 1232512338.Google Scholar
Perrier, S., Bertaux, J. L., Lefèvre, F., et al. (2006). Global distribution of total ozone on Mars from SPICAM/MEX UV measurements. J. Geophys. Res., 111, doi:10.1029/2006JE002681.CrossRefGoogle Scholar
Phillips, R. J., Davis, B. J., Tanaka, K. L., et al. (2011). Massive CO2 ice deposits sequestered in the south polar layered deposits of Mars. Science, 332, 838841, doi:10.1126/science.1203091.Google Scholar
Pirraglia, J. A. and Conrath, B. J. (1974). Martian tidal pressure and wind fields obtained from the Mariner 9 Infrared Spectroscopy experiment. J. Atmos. Sci., 31, 318329.Google Scholar
Pollack, J. B., Colburn, D., Kahn, R., et al. (1977). Properties of aerosols in the Marian atmosphere as inferred from Viking Lander imaging data. J. Geophys. Res., 82, 44794496.Google Scholar
Quémerais, E., Bertaux, J.-L., Korablev, O., et al. (2006). Stellar occultations observed by SPICAM on Mars Express. J. Geophys. Res., 111, E09S04, doi:10.1029/2005JE002604.Google Scholar
Savijärvi, H. I., Harri, A.-M., and Kemppinen, O., (2015). Mars Science Laboratory diurnal moisture observations and column simulations. J. Geophys. Res., 120, 10111021.Google Scholar
Schofield, J. T., Barnes, J. R., Crisp, J. R., et al. (1997). The Mars Pathfinder Atmospheric Structure Investigation/Meteorology. Science, 278, 1752.Google Scholar
Scholten, F., Hoffmann, H., Määttänen, A., et al. (2010). Concatenation of HRSC colour and OMEGA data for the determination and 3D-parameterization of high-altitude CO2 clouds in the Martian atmosphere. Plan. Space Sci., 58, 12071214.Google Scholar
Smith, D. E., Zuber, M. T., Frey, H. V., et al. (2001). Mars Orbiter Laser Altimeter: experiment summary after the first year of global mapping of Mars. J. Geophys. Res., 106, 2368923722.Google Scholar
Smith, M. D. (2002). The annual cycle of water vapor on Mars as observed by the Thermal Emission Spectrometer. J. Geophys. Res., 197, 5115, doi:5110.1029/2001JE001522.Google Scholar
Smith, M. D. (2004). Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus, 167, 148165.Google Scholar
Smith, M. D. (2008). Spacecraft observations of the Martian atmosphere. Annual Review of Earth and Planetary Sciences, 36, 191219, doi:0.1146/annurev.earth.36.031207.124334.Google Scholar
Smith, M. D. (2009). THEMIS observations of Mars aerosol optical depth from 2002–2008. Icarus, 202, 444452.Google Scholar
Smith, M. D., Bandfield, J. L., and Christensen, P. R. (2000). Separation of atmospheric and surface spectral features in Mars Global Surveyor Thermal Emission Spectrometer (TES) spectra: models and atmospheric properties. J. Geophys. Res., 105, 95899608.Google Scholar
Smith, M. D., Pearl, J. C., Conrath, B. J., and Christensen, P. R. (2001). Thermal Emission Spectrometer results: Mars atmospheric thermal structure and aerosol distribution. J. Geophys. Res., 106, 2392923945.Google Scholar
Smith, M. D., Bandfield, J. L., Christensen, P. R., and Richardson, M. I. (2003). Thermal Emission Imaging System (THEMIS) infrared observations of atmospheric dust and water ice cloud optical depth. J. Geophys. Res., 108, doi:10.1029/2003JE002115.Google Scholar
Smith, M. D., Wolff, M. J., Lemmon, M. T., et al. (2004). First atmospheric science results from the Mars Exploration Rovers Mini-TES. Science, 306, 17501753, doi:10.1126/science.1104257.Google Scholar
Smith, M. D., Wolff, M. J., Spanovich, N., et al. (2006). One Martian year of atmospheric observations using MER Mini-TES. J. Geophys. Res., 111, doi:10.1029/2006JE002770.Google Scholar
Smith, M. D., Wolff, M. J., Clancy, R. T., and Murchie, S. L. (2009). CRISM observations of water vapor and carbon monoxide. J. Geophys. Res., 114, E00D03, doi:10.1029/2008JE003288.Google Scholar
Smith, M. D., Wolff, M. J., Clancy, R. T., Kleinböhl, A., and Murchie, S. L. (2013). Vertical distribution of dust and water ice aerosols from CRISM limb-geometry observations. J. Geophys. Res, 118, 321–334, doi:10.1002/jgre.20047.Google Scholar
Smith, P. H. and Lemmon, M. T. (1999). Opacity of the Martian atmosphere measured by the Imager for Mars Pathfinder. J. Geophys. Res., 104, 89758985, doi:10.1029/1998JE900017.Google Scholar
Smith, P. H., Tomasko, M. G., Britt, D., et al. (1997). The imager for Mars Pathfinder Experiment. J. Geophys. Res., 102, 40034025.Google Scholar
Smith, P. H., Tamppari, L., Arvidson, R. E., et al. (2008). Introduction to special section on the Phoenix Mission: landing site characterization experiments, mission overviews, and expected science. J. Geophys. Res., 113, E00A18, doi:10.1029/2008JE003083.Google Scholar
Smith, P. H., Tamppari, L. K., Arvidson, R. E., et al. (2009). Water at the Phoenix Landing Site. Science, 325, 5861. doi:10.1126/science.1172339.Google Scholar
Snyder, C. W. (1977). The missions of the Viking Orbiters. J. Geophys. Res., 82, 39713983.Google Scholar
Snyder, C. W., and Moroz, V. I. (1992). Spacecraft exploration of Mars, in Mars, eds. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., Matthews, M. S., University of Arizona Press, Tucson, Arizona, USA, 71119Google Scholar
Spiga, A., Forget, F., Dolla, B., et al. (2007). Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 2. Meteorological maps. J. Geophys. Res., 112, E08S16, doi:10.1029/2006JE002870.Google Scholar
Spinrad, H., Münch, G., and Kaplan, L. D. (1963). The detection of water vapor on Mars. Astrophys. J., 137, 13191321.Google Scholar
Sprague, A. L., Hunten, D. M., Hill, R. E., Rizk, B., and Wells, W. K. (1996). Martian water vapor, 1988–1995. J. Geophys. Res., 101, E10, 2322923241.Google Scholar
Sprague, A. L., Boynton, W. V., Kerry, K. E., et al. (2004). Mars’ south polar Ar enhancement: a tracer for south polar seasonal meridional mixing. Science, 306, 13641367.Google Scholar
Sprague, A. L., Boynton, W. V., Kerry, K. E., et al. (2007). Mars’ atmospheric argon: tracer for understanding Martian atmospheric circulation and dynamics. J. Geophys. Res., 112, E03S02, doi:10.1029/2005JE002597.Google Scholar
Squyres, S. W., Arvidson, R. E., Baumgartner, E. T., et al. (2003). Athena Mars Rover science investigation. J. Geophys. Res., 108, E12, 8062, doi:10.1029/2003JE002121.Google Scholar
Sullivan, R., Greeley, R., Kraft, M., et al. (2000). Results of the imager for Mars Pathfinder windsock experiment. J. Geophys. Res., 105, 2454724562, doi:10.1029/1999JE001234.Google Scholar
Tamppari, L. K., Bass, D., Cantor, B., et al. (2010). Phoenix and MRO coordinated atmospheric measurements. J.Geophys. Res., 115, E00E17, doi:10.1029/2009JE003415.Google Scholar
Taylor, P. A., Kahanpää, H., Weng, W., et al. (2010). On pressure measurement and seasonal pressure variations during the Phoenix mission. J. Geophys. Res., 115, E00E15, doi:10.1029/2009JE003422.Google Scholar
Tellmann, S., Pätzold, M., Häusler, B., Hinson, D. P., and Tyler, G. L. (2013). The structure of Mars lower atmosphere from Mars Express Radio Science (MaRS) occultation measurements. J. Geophys. Res., 118, 306320, doi:10.1002/jgre.20058.Google Scholar
Thomas, P. C., James, P. B., Calvin, W. M., Haberle, R., and Malin, M. C. (2009). Residual south polar cap of Mars: stratigraphy, history, and implications of recent changes. Icarus, 203, 352375.Google Scholar
Tillman, J. E. (1988). Mars global atmospheric oscillations – annually synchronized, transient normal-mode oscillations and the triggering of global dust storms. J. Geophys. Res., 93, 94339451.Google Scholar
Titov, D. V., Markiowicz, W. J., Thomas, N., et al. (1999). Measurements of the atmospheric water vapor on Mars by the Imager for Mars Pathfinder. J. Geophys. Res., 104, 90199026, doi:10.1029/1998JE900046.Google Scholar
Tolson, R. H., Cancro, G. J., Keating, G. M., et al. (1999). Application of accelerometer data to Mars Global Surveyor aerobraking operations. Journal of Spacecraft and Rockets, 36, 323329.Google Scholar
Tolson, R. H., Dwyer, A. M, Escalera, P. E., et al. (2005). Application of accelerometer data to Mars Odyssey aerobraking and atmospheric modeling. Journal of Spacecraft and Rockets, 42, 435443Google Scholar
Tolson, R. H., Bemis, E., Hough, S., et al. (2008). Atmospheric modeling using accelerometer data during Mars Reconnaissance Orbiter aerobraking operations. Journal of Spacecraft and Rockets, 45, 511518.Google Scholar
Tomasko, M. G., Doose, L. R., Lemmon, M. T., Smith, P. H., and Wegryn, E. (1999). Properties of dust in the Martian atmosphere from the Imager for Mars Pathfinder. J. Geophys. Res., 104, 89879007, doi:10.1029/1998JE900016.Google Scholar
Tracadas, P. W., Zuber, M. T., Smith, D. E., and Lemoine, F. G. (2001). Density structure of the upper thermosphere of Mars from measurements of air drag on the Mars Global Surveyor spacecraft. J. Geophys. Res. 106, 2334923358Google Scholar
Tyler, D., Jr., and Barnes, J. R. (2013). Mesoscale modeling of the circulation in the Gale Crater region: an investigation into the complex forcing of convective boundary layer depths. Mars., 8, 5877.Google Scholar
Tyler, G. L., Balmino, G., Hinson, D. P., et al. (2001). Radio science observations with Mars Global Surveyor: orbit insertion through one Mars year in mapping orbit. J. Geophys. Res., 106, 2332723348.Google Scholar
Vincendon, M., Pilorget, C., Gondet, B., Murchie, S., and Bibring, J.-P. (2011). New near-IR observations of mesospheric CO2 and H2O clouds on Mars. J. Geophys. Res., 116, E00J02, doi: 10.1029/2011JE003827.Google Scholar
Wang, H., and Ingersoll, A. P. (2002). Martian clouds observed by Mars Global Surveyor Mars Orbiter Camera. J. Geophys. Res., 107, 5078, doi:10.1029/2001JE001815.Google Scholar
Webster, C. R., Mahaffy, P. R., Atreya, S. K. et al. (2015). Mars methane detection and variability at Gale Crater. Science, 347, 415417.Google Scholar
Whiteway, J., Daly, M., Carswell, A., et al. (2008). Lidar on the Phoenix mission to Mars. J. Geophys. Res., 113, E00A08, doi:10.1029/2007JE003002.Google Scholar
Whiteway, J. A., Komguem, L., Dickinson, C., et al. (2009). Mars water ice clouds and precipitation. Science, 325, 6870. doi:10.1126/science.1172344.Google Scholar
Wilson, R. J., and Richardson, M. I. (2000). The Martian atmosphere during the Viking Mission, I. Infrared measurements of atmospheric temperatures revisited. Icarus, 145, 555579.Google Scholar
Withers, P. (2006). Mars Global Surveyor and Mars Odyssey Accelerometer observations of the Martian upper atmosphere during aerobraking. Geophys. Res. Lett., 33, L02201, doi:10.1029/2005GL024447.Google Scholar
Withers, P. (2009). A review of observed variability in the dayside ionosphere of Mars. Advances in Space Research, 44, 3, 277307.Google Scholar
Withers, P. (2012). Empirical estimates of Martian surface pressure in support of the landing of Mars Science Laboratory. Space Science Reviews, 1, 4, 837–860. doi:10.1007/s11214-012-9876-2.Google Scholar
Withers, P., and Catling, D. C. (2010). Observations of atmospheric tides on Mars at the season and latitude of the Phoenix atmospheric entry. Geophys. Res. Lett., 37, L24204, doi:10.1029/2010GL045382.Google Scholar
Withers, P., and Smith, M. D. (2006). Atmospheric entry profiles from the Mars Exploration Rovers Spirit and Opportunity. Icarus, 185, 133142.Google Scholar
Withers, P., Bougher, S. W., Keating, G. M. (2003). The effects of topographically-controlled thermal tides in the Martian upper atmosphere as seen by the MGS accelerometer. Icarus, 164, 1432.Google Scholar
Withers, P., Fillingim, M. O., Lillis, R. J., et al. (2012). Observations of the nightside ionosphere of Mars by the Mars Express Radio Science Experiment (MaRS). J. Geophys. Res., 117, A12307, doi:10.1029/2012JA018185.Google Scholar
Wolff, M. J., and Clancy, R. T. (2003). Constraints of the size of Martian aerosols from Thermal Emission Spectrometer observations. J. Geophys. Res., 108, E9, 5097, doi:10.1029/2003JE002057.Google Scholar
Wolff, M. J., James, P. B., Bell, J. F. III, Clancy, R. T., and Lee, S.W. (1999). Hubble Space Telescope observations of the Martian aphelion cloud belt prior to the Pathfinder mission: seasonal and interannual variations. J. Geophys. Res., 104, 90279041.Google Scholar
Wolff, M. J., Smith, M. D., Clancy, R. T., et al. (2006). Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES. J. Geophys. Res., 111, E12S17, doi:10.1029/2006JE002786.Google Scholar
Wolff, M. J., Smith, M. D., Clancy, R. T., et al. (2009). Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer. J. Geophys. Res., 114, E00D04, doi:10.1029/2009JE003350.Google Scholar
Wolff, M. J., Clancy, R. T., Goguen, J. D., Malin, M. C., and Cantor, B. A. (2010). Ultraviolet dust aerosol properties as observed by MARCI. Icarus, 208, 143155.Google Scholar
Wolff, M. J., Clancy, R. T., Cantor, B., and Madeleine, J.-B. (2011). Mapping water ice clouds (and ozone) with MRO/MARCI. The Fourth International Workshop on the Mars Atmosphere: Modelling and Observation, Paris, France.Google Scholar
Wong, M. H., Atreya, S. K., Mahaffy, P. N., et al. (2013). Isotopes of nitrogen on Mars: atmospheric measurements by Curiosity’s mass spectrometer. Geophys. Res. Lett., 40, 60336037.Google Scholar
Wright, I. P., Grady, M. M., and Pillinger, C. T. (1990). The evolution of atmospheric CO2 on Mars: the perspective from carbon isotope measurements. J. Geophys. Res., 95, 14, 789–14, 794.Google Scholar
Young, L. D. G. (1971). Interpretation of high resolution spectra of Mars II. Calculations of CO2 abundance, rotational temperature and surface pressure. J. Quant. Spectrosc. Radiat. Transfer, 11, 10751086.Google Scholar
Zahnle, K., Freedman, R. S., and Catling, D. C., (2011). Is there methane on Mars? Icarus, 212, 493503.Google Scholar
Zent, A. P., Hecht, M. H., Cobos, D. R., et al. (2010). Initial results from the thermal and electrical conductivity probe (TECP) on Phoenix. J. Geophys. Res., 115, E00E14, doi:10.1029/2009JE003420.Google Scholar
Zuber, M. T., Smith, D. E., Solomon, S. C., et al. (1992). The Mars Observer Laser Altimeter investigation. J. Geophys. Res., 97, 77817797.Google Scholar
Zurek, R.W. and Leovy, C. B. (1981). Thermal tides in the dusty Martian atmosphere – a verification of theory. Science, 213, 437439.Google Scholar
Zurek, R. W. and Smrekar, S. E. (2007). An overview of the Mars Reconnaissance Orbiter (MRO) science mission. J. Geophys. Res., 112, E05S01, doi:10.1029/2006JE002701.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×