Skip to main content Accessibility help
  • Print publication year: 2014
  • Online publication date: December 2013

4 - Studying stars through frequency inversions



Helioseismology, the study of the Sun using solar oscillations, has provided us with the means to probe the solar interior. Since the discovery of the oscillations in 1962 (Leighton et al., 1962) and their interpretation as global oscillation modes by Ulrich (1970) and Leibacher and Stein (1971), helioseismology has been used extensively to study the interior of the Sun, mainly through inversions of solar frequencies. With space missions such as CoRoT (Baglin et al., 2006) and Kepler (Borucki et al., 2010) now observing oscillations of other stars, inversions of stellar frequencies may soon be feasible. There are two ways by which we could use seismic data to make inferences about the stars. The first way involves trying to find models whose frequencies match the observed frequencies, usually referred to as “forward modeling.” This is essentially what is done in most fields of astronomy. The end result of the process is a model that is the best match to the observations. The second way is to invert the data. Inversions use the data directly to make inferences about the star. In the case of inversions, we can make a distinction between the structure of the star and the structure of the best-fit model. These days inversions are used to study the solar interior, while forward modeling is used to study other stars.

It is not possible to do an inverse analysis unless we can do the forward analysis.

Antia, H. M. and Basu, S. 1994. Nonasymptotic helioseismic inversion for solar structure. A&AS, 107(Nov.), 421–44.
Antia, H. M. and Basu, S. 2011. Are recent solar heavy element abundances consistent with helioseismology?Journal of Physics Conference Series, 271 (Jan.), 012034.
Antia, H.M., Basu, S., and Chitre, S. M. 1998. Solar internal rotation rate and the latitudinal variation of the tachocline. MNRAS, 298(Aug.), 543–56.
Asplund, M., Grevesse, N., and Sauvai, A. J. 2005. The solar chemical composition. Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis, 336(Sep.), 25.
Backus, G. E. and Gilbert, J. F. 1968. The resolving power of gross earth data. Geophysical Journal, 16, 169–205.
Backus, G. E. and Gilbert, J. F. 1970. Uniqueness in the inversion of inaccurate gross Earth data. Royal Society of London Philosophical Transactions Series A, 266(Mar.), 123–92.
Baglin, A., Auvergne, M., Barge, P., Deleuil, M., Catala, C., Michel, E., Weiss, W., and the COROT team 2006. Scientific objectives for a Minisat: CoRoT. ESA Special Publication, 1306(Nov.), 33.
Bahcall, J.N., Basu, S., Pinsonneault, M., and Serenelli, A. M. 2005. Helioseismological implications of recent solar abundance determinations. ApJ, 618(Jan.), 1049–56.
Bahcall, J.N., Serenelli, A.M., and Basu, S. 2006. 10,000 standard solar models: a monte carlo simulation. ApJS, 165(Jul.), 400–31.
Basu, S. 1998. Effects of errors in the solar radius on helioseismic inferences. MNRAS, 298(Aug.), 719–28.
Basu, S. 2003. Stellar Inversions. Ap&SS, 284, 153–64.
Basu, S. and Antia, H. M. 1997. Seismic measurement of the depth of the solar convection zone. MNRAS, 287(May.), 189–98.
Basu, S. and Antia, H. M. 2008. Helioseismology and solar abundances. Phys. Rep., 457(Mar.), 217–83.
Basu, S. and Christensen-Dalsgaard, J. 1997. Equation of state and helioseismic inversions. A&A, 322 (Jun.), L5–L8.
Basu, S. and Thompson, M. J. 1996. On constructing seismic models of the Sun. A&A, 305(Jan.), 631.
Basu, S., Dappen, W., and Nayfonov, A. 1999. Helioseismic analysis of the hydrogen partition function in the solar interior. ApJ, 518(Jun.), 985–93.
Basu, S., Pinsonneault, M.H., and Bahcall, J. N. 2000. How much do helioseismological inferences depend on the assumed reference model?ApJ, 529(Feb.), 1084–1100.
Basu, S., Christensen-Dalsgaard, J., Monteiro, M. J. P. F. G., and Thompson, M. J. 2001. Seismology of solar-type stars. SOHO 10/GONG 2000 Workshop: Helio- and Asteroseismology at the Dawn of the Millennium, 464(Jan.), 407–10.
Basu, S., Christensen-Dalsgaard, J., and Thompson, M. J. 2002. SOLA inversions for the core structure of solar-type stars. Stellar Structure and Habitable Planet Finding, 485(Jan.), 249–52.
Basu, S., Chaplin, W.J., Elsworth, Y., New, R., and Serenelli, A. M. 2009. Fresh Insights on the Structure of the Solar Core. ApJ, 699(Jul.), 1403–17.
Bertello, L., Varadi, F., Ulrich, R.K., Henney, C.J., Kosovichev, A.G., Garcia, R.A., and Turck-Chieze, S. 2000. Identification of solar acoustic modes of low angular degree and low radial order. ApJ, 537(Jul.), L143–L146.
Borucki, W.J., and 70 colleagues. 2010. Kepler planet-detection mission: introduction and first results. Science, 327(Feb.), 977.
Canuto, V. M. and Mazzitelli, I. 1991. Stellar turbulent convection: a new model and applications. ApJ, 370(Mar.), 295–311.
Chandrasekhar, S. 1964. A general variational principle governing the radial and the non-radial oscillations of gaseous masses. ApJ, 139(Feb.), 664.
Christensen-Dalsgaard, J. 2002. Helioseismology. Reviews ofModern Physics, 74(Nov.), 1073–1129.
Christensen-Dalsgaard, J. 2003. Lecture notes on stellar oscillations.
Christensen-Dalsgaard, J. and Berthomieu, G. 1991. Theory of solar oscillations. Solar interior and atmosphere (A92-36201 14-92). Tucson, AZ, University of Arizona Press. Research supported by SNFO and CNRS. 401–78.
Christensen-Dalsgaard, J. and Daeppen, W. 1992. Solar oscillations and the equation of state. A&A Rev., 4, 267–361.
Christensen-Dalsgaard, J., Gough, D.O., and Thompson, M. J. 1991. The depth of the solar convection zone. ApJ, 378(Sep.), 413–37.
Christensen-Dalsgaard, J., Proffitt, C.R., and Thompson, M. J. 1993. Effects of diffusion on solar models and their oscillation frequencies. ApJ, 403(Feb.), L75–8.
Christensen-Dalsgaard, J., and 32 colleagues 1996. The current state of solar modeling. Science, 272(May), 1286–92.
Cox, J. P. 1980. Theory of stellar pulsation. Research supported by the National Science Foundation. Princeton, NJ. Princeton University Press.
Craig, I. J. D. and Brown, J. C. 1986. Inverse problems in astronomy: A guide to inversion strategies for remotely sensed data. Research supported by SERC. Bristol, England and Boston, MA. Adam Hilger, Ltd.
Daeppen, W., Anderson, L., and Mihalas, D. 1987. Statistical mechanics of partially ionized stellar plasma: the Planck-Larkin partition function, polarization shifts, and simulations of optical spectra. ApJ, 319(Aug.), 195–206.
Daeppen, W., Mihalas, D., Hummer, D.G., and Mihalas, B. W. 1988. The equation of state for stellar envelopes. III - Thermodynamic quantities. ApJ, 332(Sep.), 261–70.
de Boor, C. 2001. A practical guide to Splines. New York: Springer Verlag.
Demarque, P., Guenther, D.B., Li, L.H., Mazumdar, A., and Straka, C. W. 2008. YREC: the Yale rotating stellar evolution code. Non-rotating version, seismology applications. Ap&SS, 316(Aug.), 31–41.
Dziembowski, W.A., Pamyatnykh, A.A., and Sienkiewicz, R. 1990. Solar model from helioseis-mology and the neutrino flux problem. MNRAS, 244(Jun.), 542–50.
Eggleton, P.P., Faulkner, J., and Flannery, B. P. 1973. An approximate equation of state for stellar material. A&A, 23(Mar.), 325.
Elliott, J. R. 1996. Equation of state in the solar convection zone and the implications of helioseismology. MNRAS, 280(May), 1244–56.
Elliott, J. R. and Kosovichev, A. G. 1998. The adiabatic exponent in the solar core. ApJ, 500(Jun.), L199.
Gong, Z., Dappen, W., and Zejda, L. 2001. MHD equation of state with relativistic electrons. ApJ, 546(Jan.), 1178–82.
Gough, D. O. 1984. On the rotation of the sun. Royal Society of London Philosophical Transactions Series A, 313(Nov.), 27–38.
Gough, D. O. 1985. Inverting helioseismic data. Sol. Phys., 100(Oct.), 65–99.
Gough, D. O. 1990. Comments on helioseismic inference. Progress of Seismology of the Sun and Stars, 367, 283.
Gough, D. O. 1993. Linear adiabatic stellar pulsation. Astrophysical Fluid Dynamics – Les Houches 1987, 399–560.
Gough, D. O. and Kosovichev, A. G. 1993. Initial asteroseismic inversions. IAU Colloq. 137: Inside the Stars, 40(Jan.), 541.
Gough, D. O. and Thompson, M. J. 1991. The inversion problem. Solar interior and atmosphere (A92-36201 14-92). Tucson, AZ. University of Arizona Press, 519–61.
Grevesse, N. and Sauval, A. J. 1998. Standard Solar Composition. Space Sci. Rev., 85(May), 161–74.
Hansen, P. C. 1992. Numerical tools for analysis and solution of Fredholm integral equations of the first kind. Inverse Problems, 8(Dec.), 849–72.
Howe, R. and Thompson, M. J. 1996. On the use of the error correlation function in helioseismic inversions. MNRAS, 281(Aug.), 1385.
Hummer, D. G. and Mihalas, D. 1988. The equation of state for stellar envelopes. I. An occupation probability formalism for the truncation of internal partition functions. ApJ, 331 (Aug.), 794–814.
Lefebvre, S., Kosovichev, A.G., and Rozelot, J. P. 2007. Helioseismic test of nonhomologous solar radius changes with the 11 year activity cycle. ApJ, 658(Apr.), L135–L138.
Leighton, R.B., Noyes, R.W., and Simon, G. W. 1962. Velocity fields in the solar atmosphere. I. Preliminary report. ApJ, 135(Mar.), 474.
Leibacher, J. W. and Stein, R. F. 1971. A new description of the solar five-minute oscillation. Astrophys. Lett., 7, 191–2.
Mihalas, D., Dappen, W., and Hummer, D. G. 1988. The equation of state for stellar envelopes. II. Algorithm and selected results. ApJ, 331(Aug.), 815–25.
Miller, I., Freund, J. E. 1965. Probability and statistics for engineers. Prentice-Hall Mathematics Series, Englewoods Cliffs.
Pijpers, F. P. and Thompson, M. J. 1992. Faster formulations of the optimally localized averages method for helioseismic inversions. A&A, 262(Sep.), L33–L36.
Pijpers, F. P. and Thompson, M. J. 1994. The SOLA method for helioseismic inversion. A&A, 281 (Jan.), 231–40.
Rabello-Soares, M.C., Basu, S., and Christensen-Dalsgaard, J. 1999. On the choice ofparameters in solar-structure inversion. MNRAS, 309(Oct.), 35–47.
Robinson, F.J., Demarque, P., Li, L.H., Sofia, S., Kim, Y.-C., Chan, K.L., and Guenther, D. B. 2003. Three-dimensional convection simulations of the outer layers of the Sun using realistic physics. MNRAS, 340(Apr.), 923–36.
Rogers, F. J. and Nayfonov, A. 2002. Updated and Expanded OPAL Equation-of-State Tables: Implications for Helioseismology. ApJ, 576(Sep.), 1064–74.
Rogers, F.J., Swenson, F.J., and Iglesias, C. A. 1996. OPAL Equation-of-State Tables for Astrophysical Applications. ApJ, 456(Jan.), 902.
Roxburgh, I. and Vorontsov, S. 2003. Diagnostics of the Internal Structure of Stars using the Differential Response Technique. Ap&SS, 284, 187–91.
Roxburgh, I. W., Audard, N., Basu, S., Christensen-Dalsgaard, J., and Vorontsov, S. V. 1998. Proc. IAU Symp. 181: Sounding Solar and Stellar Interiors, (poster vol.). eds. J., Provost, F.-X., Schmider, 245.
Schou, J., Kosovichev, A.G., Goode, P.R., and Dziembowski, W. A. 1997. Determination of the Sun's seismic radius from the SOHO Michelson Doppler Imager. ApJ, 489(Nov.), L197.
Schou, J., Christensen-Dalsgaard, J., Howe, R., Larsen, R.M., Thompson, M.J., and Toomre, J. 1998. Slow poles and shearing flows from heliospheric observations with mdi and gong spanning a year. Structure and Dynamics of the Interior of the Sun and Sun-like Stars, 418, 845.
Sekii, T. 1997. Internal solar rotation. Proc IA U Symp. 181, Sounding Solar and Stellar Interiors. Pages 189–202 of: J., Provost and F.-X., Schmider (ed.). Dordrecht, Holland: Kluwer.
Serenelli, A.M., Basu, S., Ferguson, J.W., and Asplund, M. 2009. New solar composition: the problem with solar models revisited. ApJ, 705(Nov.), L123–L127.
Thompson, M. J. 1993. Seismic investigation of the Sun's internal structure and rotation. GONG 1992. Seismic Investigation of the Sun and Stars. ASPCS, 42(Jan.), 141.
Ulrich, R. K. 1970. The five-minute oscillations on the solar surface. ApJ, 162(Dec.), 993.
Unno, W., Osaki, Y., Ando, H., Saio, H., and Shibahashi, H. 1989. Nonradial oscillations of stars, 2nd ed. Tokyo, Japan: University of Tokyo Press.