Skip to main content Accessibility help
×
  • Cited by 8
Publisher:
Cambridge University Press
Online publication date:
March 2017
Print publication year:
2017
Online ISBN:
9781316716854
Series:
Lecture Notes in Logic (10)

Book description

Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the tenth publication in the Lecture Notes in Logic series, Per Lindström presents some of the main topics and results in general metamathematics. In addition to standard results of Gödel et al. on incompleteness, (non-)finite axiomatizability, and interpretability, this book contains a thorough treatment of partial conservativity and degrees of interpretability. It comes complete with exercises, and will be useful as a textbook for graduate students with a background in logic, as well as a valuable resource for researchers.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Only works mentioned in the text (Notes) have been included among the references; for a more comprehensive bibliography, see Hájek, and Pudlák, (1993).
Beklemishev, L. D. (1995). Iterated local reflection versus iterated consistency, Annals of Pure and Applied Logic 75, 25–48.
Beklemishev, L. D. (199?). Notes on local reflection principles, to appear.
Bennet, C. (1986). On some orderings of extensions of arithmetic, Thesis, Dept. of Philosophy, Univ. of Göteborg.
Bennet, C. (1986a) Lindenbaum algebras and partial conservativity, Proc. Amer. Math. Soc. 97, 323–327.
Berarducci, A. (1990). The interpretability logic of Peano arithmetic, J. Symb. Logic 55, 1059–1089.
Boolos, G. (1979). The Unprovability of Consistency, Cambridge University Press, Cambridge, USA.
Boolos, G. (1993). The Logic of. Provability, Cambridge University Press, Cambridge, USA.
Carnap, R. (1934). Logische Syntax der Sprache, Springer.
Craig, W. (1953). On axiomatizability within a system, J. Symb. Logic 18, 30–32.
Davis, M. (ed.) (1965). The Undecidable, Raven Press.
Ehrenfeucht, A. and Feferman, S. (1960). Representability of recursively enumerable sets in formal theories, Arch. Math. Logic 5, 37–41.
Feferman, S. (1960). Arithmetization of metamathematics in a general setting, Fund. Math. 49, 35–92.
Feferman, S. (1962). Transfinite recursive progressions of axiomatic theories, J. Symb. Logic 27, 259–316.
Feferman, S., Kreisel, G., Orey, S. (1960). 1–consistency and faithful interpretations, Arch. Math. Logic 6, 52–63.
Friedman, H. (1975). One hundred and two problems in mathematical logic, J. Symb. Logic 40, 113–129.
Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, Monatsh. Math. Physik. 38,173–198 (English translation in Davis (1965)).
Gödel, K. (1934). On undecidable propositions of formal mathematical systems (mimeographed lecture notes by S. C. Kleene and J. B. Rosser), Princeton (reprinted in Davis (1965)).
Gödel, K. (1936). Über die Länge von Beweisen, Ergebnisse eines math. Koll, 7, 23–24 (English translation in Davis (1965)).
Goryachev, S. N. (1986). On the interpretability of some extensions of arithmetic, Mat. Zametki 40, 561–572; English transl. in Math. Notes 40.
Guaspari, D. (1979). Partially conservative extensions of arithmetic, Trans. Amer. Math. Soc. 254, 47–68.
Hájek, P. (1971). On interpretability in set theories, Comment. Math. Univ. Carol. 12, 73–79.
Hájek, P. (1979). On partially conservative extensions of arithmetic, in: Logic Colloquium 78 (eds. Boffa, et al.), North-Holland, Amsterdam, 225–234.
Hájek, P. (1984). On a new notion of partial conservativity, in: Computation and Proof Theory, Springer Lecture Notes in Math. 1104, 217–232.
Hájek, P., Montagna, R, Pudlák, P. (1992). Abbreviating proofs using metamathematical rules, in: Proof Theory and Computational Complexity (eds. Clote, P. and Krajíček, J.), Oxford University Press, 197–221.
Hájek, P. and Pudlák, P. (1993). Metamathematics of First–Order Arithmetic, Perspectives in Mathematical Logic, Springer–Verlag.
Hájková, M. (1971). The lattice of bi-numerations of arithmetic I, II, Comment. Math. Univ. Carol. 12, 81–104, 281–306.
Hájková, M. and Hájek, P. (1972). On interpretability in theories containing arithmetic, Fund. Math. 76, 131–137.
Hubert, D. and Bernays, P. (1934, 1939). Grundlagen der Mathematik I, II, Springer–Verlag, Berlin.
Jensen, D. and Ehrenfeucht, A. (1976). Some problems in elementary arithmetics, Fund. Math. 92, 223–245.
Jeroslow, R. G. (1971a). Consistency statements in formal theories, Fund. Math. 72, 17–40.
Jeroslow, R. G. (1971b). Non-effectiveness in S. Orey's compactness theorem, Zeitschr. Math. Log. Grundl. Math. 17, 285–289.
de Jongh, D. and Montagna, F. (1989). Much shorter proofs, Zeitschr. Math. Log. Grundl. Math. 35, 247–260.
Kaye, R. (1991). Models of Peano arithmetic, Oxford Logic Guides 15, Clarendon Press, Oxford.
Kent, C. F. (1973). The relation of A to Prov'A’ in the Lindenbaum sentence algebra, J.Symb. Logic 38, 295–298.
Kleene, S. (1952a). Introduction to metamathematics, van Nostrand.
Kleene, S. (1952b). Finite axiomatizability of theories in the predicate calculus using additional predicate symbols, Memoirs Amer. Math. Soc. 10, 27–66.
Kreisel, G. (1957). Independent recursive axiomatization, J. Symb. Logic 22, 109 (abstract).
Kreisel, G. (1962). On weak completeness of intuitionistic predicate logic, J. Symb. Logic 27, 139–158.
Kreisel, G. and Lévy, A. (1968). Reflection principles and their use for establishing the complexity of axiomatic systems, Zeitschr. für math. Logik 14, 97–142.
Kreisel, G. and Wang, H. (1955). Some applications of formalized consistency proofs, Fund. Math. 42, 101–110.
Kripke, S. (1963). “Flexible” predicates in formal number theory, Proc. Amer. Math. Soc. 13, 647–650.
Levy, A. (1965). A hierarchy of formulas in set theory, Memoirs Amer. Math. Soc. 57.
Lindström, P. (1979). Some results on interpretability, in: Proceedings of the 5th Scandinavian Logic Symposium 1979, Aalborg University Press, Aalborg, 329–361.
Lindström, P. (1984a). On partially conservative sentences and interpretability, Proc. Amer. Math. Soc. 91, 436–443.
Lindström, P. (1984b). On certain lattices of degrees of interpretability, Notre Dame J. Formal Logic 25, 127–140.
Lindström, P. (1984c). On faithful interpretability, in: Computation and Proof Theory, Springer Lecture Notes in Math. 1104, 279–288.
Lindström, P. (1988). Partially generic formulas in arithmetic, Notre Dame J. Formal Logic 29, 185–192.
Lindström, P. (1993). On Σ1 and П1 sentences and degrees of interpretability, Annals of Pure and Applied Logic 61, 175–193.
Lindström, P. (199?). Provability logic, to appear in Theoria.
Löb, M. (1955). Solution of a problem of Leon Henkin, J. Symb. Logic 20, 115–118.
Mendelson, E. (1987). Introduction to Mathematical Logic (3rd ed.), van Nostrand.
Misercque, D. (1982). The non homogeniety of the E-tree–answer to a problem raised by D. Jensen and A. Ehrenfeucht, Proc. Amer. Math. Soc. 84, 573–575.
Misercque, D. (1983). Answer to a problem by D. Guaspari, in: Open days in Model Theory and Set Theory (eds. Guzicki, W et al.), Poland, 181–183.
Montagna, F. (1982). Relatively precomplete numerations and arithmetic, J. Phil. Logic 11, 419–430.
Montagna, F. (1992). Polynomially and superexponentially shorter proofs in fragments of arithmetic, J. Symb. Logic 57, 844–863.
Montagna, F. and Sorbi, A. (1985). Universal recursion theoretic properties of r.e. preordered structures, J. Symb. Logic 50, 397–406.
Montague, R. (1957). Two theorems on relative interpretability, Summer institute for Symbolic Logic, Cornell, 263–264.
Montague, R. (1961). Semantical closure and non–finite axiomatizability I, in: Infinitistic Methods, Warsaw, 45–69.
Montague, R. (1962). Theories incomparable with respect to relative interpretability, J. Sym. Logic 27, 195–211.
Montague, R. (1963). Syntactical treatments of modality, with corollaries on reflection principles and finite axiomatizability, in: Proceedings of a Colloquium on Modal and Many-Valued Logics, Acta Philosophica Fennica, Helsinki, 153–167.
Montague, R. and Tarski, A. (1957). Independent recursive axiomatizability, Summer institute for Symbolic Logic, Cornell, 270.
Mostowski, A. (1952a). On models of axiomatic systems, Fund. Math. 39, 133–158.
Mostowski, A. (1952b). Sentences undecidable in formalized arithmetic, North–Holland.
Mostowski, A. (1961). A generalization of the incompleteness theorem, Fund. Math. 49, 205–232.
Orey, S. (1961). Relative interpretations, Zeitschr. für math. Logik 7, 146–153.
di Paola, R. (1975). A theorem on shortening the length of proof in formal systems of arithmetic, J. Symb. Logic 40, 398–400.
Parikh, R. (1971). Existence and feasibility in arithmetic, J. Symb. Logic 36, 494–508.
Pour-El, M. (1968). Independent axiomatization and its relation to the hypersimple set, Zeitschr. für math. Logik 14, 449–456.
Pour–El, M. and Kripke, S. (1967). Deduction preserving recursive isomorphisms between theories, Fund. Math. 61, 141–163.
Putnam, H. and Smullyan, R. (1960). Exact separation of recursively enumerable sets within theories, Proc. Amer. Math. Soc. 11, 574–577.
Quinsey, J. (1980). Some problems in logic, Thesis, Oxford University.
Quinsey, J. (1981). Sets of Σk–conservative sentences are Π0 2 complete, J. Symb. Logic 46, 442 (abstract).
Rabin, M. (1961). Non-standard models and independence of the induction axiom, in: Essays on the Foundations of Mathematics, Jerusalem, 287–299.
Rosser, B. (1936). Extensions of some theorems of Gödel and Church, J. Symb. Logic 1, 87–91 (reprinted in Davis (1965)).
Ryll-Nardzewski, C. (1952). The role of the axiom of induction in elementary arithmetic, Fund. Math. 39, 239–263.
Sambin, G. (1976). An effective fixed point theorem in intuitionistic diagonalizable algebras, Studia Logica 35, 345–361.
Scott, D. (1962). Algebras of sets binumerable in complete extensions of arithmetic, in: Recursive Function Theory (ed. Dekker, J.), Providence, 117–121.
Shavrukov, V. (1988). The logic of relative interpretability over Peano arithmetic, Steklov Mathematical Institute, Moscow. (Russian)
Shavrukov, V. (1993). Subalgebras of diagonalizable algebras of theories containing arithmetic, Dissertationes Mathematicae CCCXXIII, Warsaw.
Shepherdson, J. (1960). Representability of recursively enumerable sets in formal theories, Arch. Math. Logic 5, 119–127.
Simmons, H. (1988). Large discrete parts of the E-tree, J. Symb. Logic 53, 980–984.
Smoryński, C. (1980). Calculating self-referential statements, Fund. Math. 109, 189–210.
Smoryński, C. (1981a). Calculating self-referential statements: Guaspari sentences of the first kind, J. Symb. Logic 46, 329–344.
Smoryński, C. (1981b). Fifty years of self-reference in arithmetic, Notre Dame J. Formal Logic 22, 357–374.
Smoryński, C. (1985). Self-Reference and Modal Logic, Springer–Verlag.
Soare, R. (1987). Recursively enumerable sets and degrees, Perspectives in Mathematical Logic, Springer–Verlag.
Solovay, R. (1985). Infinite fixed-point algebras, Proceedings of Symposia in Pure Mathematics 42, Providence, 473–486.
Strannegård, C. (1997). Arithmetical realizations of modal formulas, Thesis, Dept. of Philosophy, University of Göteborg.
Švejdar, V. (1978). Degrees of interpretability, Comment. Math. Univ. Carol. 19, 789–813.
Tarski, A. (1933). Der Wahrheitsbegriff in den formalisierten Sprachen, Studia Philosophica 1, 261–405.
Tarski, A., Mostowski, A. and Robinson, R. (1953). Undecidable Theories, North–Holland, Amsterdam.
Verbrugge, L. C. (1992). Feasible interpretability, in: Arithmetic, Proof Theory and Computational Complexity (eds. Clote, P. and Krajίcek, J.), Oxford Univ. Press, 387–428.
Verbrugge, L. C. (1994). The complexity of feasible interpretability, in: Feasible Mathematics II (eds. Clote, P. and Remmel, J.), Birkhäuser, Boston, 429–447.
Wang, H. (1951). Arithmetical models of formal systems, Methodos 3, 217–232.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.