Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T10:58:33.789Z Has data issue: false hasContentIssue false

3 - Apoptosis and cancer

Published online by Cambridge University Press:  03 March 2010

Erinn L. Soucie
Affiliation:
Department of Medical Biophysics, University of Toronto, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Canada
Gerard Evan
Affiliation:
Cancer Research Institute, University of California San Francisco, San Francisco, USA
Linda Z. Penn
Affiliation:
Department of Medical Biophysics, University of Toronto, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Canada
Martin Holcik
Affiliation:
University of Ottawa
Eric C. LaCasse
Affiliation:
University of Ottawa
Alex E. MacKenzie
Affiliation:
University of Ottawa
Robert G. Korneluk
Affiliation:
University of Ottawa
Get access

Summary

Introduction

The body of knowledge concerning apoptosis and the molecular mechanisms involved in this cellular process continues to expand at an unprecedented rate. This knowledge has impacted not only on our understanding of cancer development, but also on diagnosis and treatment approaches for malignant diseases. This chapter summarizes some of the ways in which tumor cells have successfully corrupted cell survival and death machinery in order to evade the penalty of apoptosis. This is followed by a discussion of novel therapeutics that have begun to emerge and which are designed to address directly these mechanistic changes that can confound current treatment regimens. The advent of current technologies such as laser capture micro-dissection of tumor tissues and microarray expression profiling have also allowed for accurate diagnosis of cancer genotypes. With these and other technologies, the potential now exists to develop new treatment regimens that can directly target individual tumor susceptibilities and, further, to predict the likelihood of response of a particular tumor to specific treatments. Together, advances in the field of apoptosis research have resulted in a revolution in the design of novel anti-cancer therapeutics for cancer treatment. In future, diagnosis of the nature of the anti-apoptotic lesions within a given tumor cell could be directly translated into a rational treatment strategy to eradicate cancers.

Defining cancer in apoptotic terms

The word “cancer” has evolved to become an umbrella term which encompasses the many incarnations of the disease.

Type
Chapter
Information
Apoptosis in Health and Disease
Clinical and Therapeutic Aspects
, pp. 75 - 95
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adida, C., Crotty, P. L., McGrath, J., Berrebi, D., Diebold, J., and Altieri, D. C. (1998). Developmentally regulated expression of the novel cancer anti-apoptosis gene survivin in human and mouse differentiation. Am. J. Pathol., 152, 43–9Google ScholarPubMed
Altieri, D. C. (2003). Validating survivin as a cancer therapeutic target. Nat. Rev. Cancer, 3, 46–54CrossRefGoogle ScholarPubMed
Blohm, D. H. and Guiseppi-Elie, A. (2001). New developments in microarray technology. Curr. Opin. Biotechnol., 12, 41–7CrossRefGoogle ScholarPubMed
Bottger, A., Bottger, V., Sparks, A., Liu, W. L., Howard, S. F., and Lane, D. P. (1997). Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo. Curr. Biol., 7, 860–9CrossRefGoogle ScholarPubMed
Boxer, L. M. and Dang, C. V. (2001). Translocations involving c-myc and c-myc function. Oncogene, 20, 5595–610CrossRefGoogle ScholarPubMed
Butler, L. M., Agus, D. B., Scher, H. I.et al. (2000). Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res., 60, 5165–70Google ScholarPubMed
Chen, J., Wu, W., Tahir, S. K.et al. (2000). Down-regulation of survivin by antisense oligonucleotides increases apoptosis, inhibits cytokinesis and anchorage-independent growth. Neoplasia, 2, 235–41CrossRefGoogle ScholarPubMed
Cheng, E. H., Wei, M. C., Weiler, S.et al. (2001). BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol. Cell, 8, 705–11CrossRefGoogle ScholarPubMed
Chittenden, T. (2002). BH3 domains: intracellular death-ligands critical for initiating apoptosis. Cancer Cell, 2, 165–6CrossRefGoogle ScholarPubMed
Cho, H., Mu, J., Kim, J. K.et al. (2001). Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science, 292, 1728–31CrossRefGoogle Scholar
Collins, M. K., Perkins, G. R., Rodriguez-Tarduchy, G., Nieto, M. A., and Lopez-Rivas, A. (1994). Growth factors as survival factors: regulation of apoptosis. Bioessays, 16, 133–8CrossRefGoogle ScholarPubMed
Coultas, L. and Strasser, A. (2003). The role of the Bcl-2 protein family in cancer. Semin. Cancer Biol., 13, 115–23CrossRefGoogle Scholar
Darnell, J. E. Jr. (2002). Transcription factors as targets for cancer therapy. Nat. Rev. Cancer, 2, 740–9CrossRefGoogle ScholarPubMed
Datta, S. R., Brunet, A., and Greenberg, M. E. (1999). Cellular survival: a play in three Akts. Genes Dev., 13, 2905–27CrossRefGoogle ScholarPubMed
Dou, Q. P. and Li, B. (1999). Proteasome inhibitors as potential novel anticancer agents. Drug Resist. Update, 2, 215–23CrossRefGoogle ScholarPubMed
Drevs, J., Medinger, M., Schmidt-Gersbach, C., Weber, R., and Unger, C. (2003). Receptor tyrosine kinases: the main targets for new anticancer therapy. Curr. Drug Targets, 4, 113–21CrossRefGoogle ScholarPubMed
Eischen, C. M., Rehg, J. E., Korsmeyer, S. J., and Cleveland, J. L. (2002). Loss of Bax alters tumor spectrum and tumor numbers in ARF-deficient mice. Cancer Res., 62, 2184–91Google ScholarPubMed
Elenbaas, B., Spirio, L., Koerner, F.et al. (2001). Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev., 15, 50–65CrossRefGoogle ScholarPubMed
Elliott, K., Ge, K., Du, W., and Prendergast, G. C. (2000). The c-Myc-interacting adaptor protein Bin1 activates a caspase-independent cell death program. Oncogene, 19, 4669–84CrossRefGoogle ScholarPubMed
Evan, G. I. and Vousden, K. H. (2001). Proliferation, cell cycle and apoptosis in cancer. Nature, 411, 342–8CrossRefGoogle Scholar
Fisher, M. J., Virmani, A. K., Wu, L.et al. (2001). Nucleotide substitution in the ectodomain of trail receptor DR4 is associated with lung cancer and head and neck cancer. Clin. Cancer Res., 7, 1688–97Google ScholarPubMed
Foster, B. A., Coffey, H. A., Morin, M. J., and Rastinejad, F. (1999). Pharmacological rescue of mutant p53 conformation and function. Science, 286, 2507–10CrossRefGoogle ScholarPubMed
Gelmetti, V., Zhang, J., Fanelli, M., Minucci, S., Pelicci, P. G., and Lazar, M. A. (1998). Aberrant recruitment of the nuclear receptor corepressor–histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol. Cell Biol., 18, 7185–91CrossRefGoogle ScholarPubMed
Gilmore, T., Gapuzan, M. E., Kalaitzidis, D., and Starczynowski, D. (2002). Rel/NF-kappa B/I kappa B signal transduction in the generation and treatment of human cancer. Cancer Lett., 181, 1–9CrossRefGoogle ScholarPubMed
Glaser, K. B., Staver, M. J., Waring, J. F., Stender, J., Ulrich, R. G., and Davidsen, S. K. (2003). Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors: defining a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines. Mol. Cancer Ther., 2, 151–63Google ScholarPubMed
Gross, A., McDonnell, J. M., and Korsmeyer, S. J. (1999). BCL-2 family members and the mitochondria in apoptosis. Genes Dev., 13, 1899–911CrossRefGoogle ScholarPubMed
Guidez, F., Petrie, K., Ford, A. M.et al. (2000). Recruitment of the nuclear receptor corepressor N-CoR by the TEL moiety of the childhood leukemia-associated TEL-AML1 oncoprotein. Blood, 96, 2557–61Google ScholarPubMed
Gutierrez-Puente, Y., Zapata-Benavides, P., Tari, A. M., and Lopez-Berestein, G. (2002). Bcl-2-related antisense therapy. Semin. Oncol., 29, 71–6Google ScholarPubMed
Hanahan, D. and Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–70CrossRefGoogle ScholarPubMed
Harada, K., Toyooka, S., Shivapurkar, N.et al. (2002). Deregulation of caspase 8 and 10 expression in pediatric tumors and cell lines. Cancer Res., 62, 5897–901Google ScholarPubMed
Hill, M. M. and Hemmings, B. A. (2002). Inhibition of protein kinase B/Akt. Implications for cancer therapy. Pharmacol. Ther., 93, 243–51CrossRefGoogle ScholarPubMed
Holmes-McNary, M. and Baldwin, A. S. Jr. (2000). Chemopreventive properties of trans-resveratrol are associated with inhibition of activation of the IkappaB kinase. Cancer Res., 60, 3477–83Google ScholarPubMed
Hopkins-Donaldson, S., Bodmer, J. L., Bourloud, K. B., Brognara, C. B., Tschopp, J., and Gross, N. (2000). Loss of caspase-8 expression in highly malignant human neuroblastoma cells correlates with resistance to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Cancer Res., 60, 4315–19Google ScholarPubMed
Hu, S., Vincenz, C., Buller, M., and Dixit, V. M. (1997). A novel family of viral death effector domain-containing molecules that inhibit both CD-95- and tumor necrosis factor receptor-1-induced apoptosis. J. Biol. Chem., 272, 9621–4CrossRefGoogle ScholarPubMed
Irmler, M., Thome, M., Hahne, M.et al. (1997). Inhibition of death receptor signals by cellular FLIP. Nature, 388, 190–5CrossRefGoogle ScholarPubMed
Ishizaki, Y., Cheng, L., Mudge, A. W., and Raff, M. C. (1995). Programmed cell death by default in embryonic cells, fibroblasts, and cancer cells. Mol. Biol. Cell, 6, 1443–58CrossRefGoogle ScholarPubMed
Karin, M., Cao, Y., Greten, F. R., and Li, Z. W. (2002). NF-kappaB in cancer: from innocent bystander to major culprit. Nat. Rev. Cancer, 2, 301–10CrossRefGoogle ScholarPubMed
Kasof, G. M. and Gomes, B. C. (2001). Livin, a novel inhibitor of apoptosis protein family member. J. Biol. Chem., 276, 3238–46CrossRefGoogle ScholarPubMed
Khan, M. M., Nomura, T., Kim, H.et al. (2001). Role of PML and PML-RARalpha in Mad-mediated transcriptional repression. Mol. Cell, 7, 1233–43CrossRefGoogle ScholarPubMed
Khwaja, A., Rodriguez-Viciana, P., Wennstrom, S., Warne, P. H., and Downward, J. (1997). Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J., 16, 2783–93CrossRefGoogle ScholarPubMed
Knudson, C. M., Johnson, G. M., Lin, Y., and Korsmeyer, S. J. (2001). Bax accelerates tumorigenesis in p53-deficient mice. Cancer Res., 61, 659–65Google ScholarPubMed
Krajewska, M., Moss, S. F., Krajewski, S., Song, K., Holt, P. R., and Reed, J. C. (1996). Elevated expression of Bcl-X and reduced Bak in primary colorectal adenocarcinomas. Cancer Res., 56, 2422–7Google Scholar
Lakhani, S. R. and Ashworth, A. (2001). Microarray and histopathological analysis of tumors: the future and the past?Nat. Rev. Cancer, 1, 151–7CrossRefGoogle ScholarPubMed
Lee, S. H., Shin, M. S., Kim, H. S.et al. (2001). Somatic mutations of TRAIL-receptor 1 and TRAIL-receptor 2 genes in non-Hodgkin's lymphoma. Oncogene, 20, 399–403CrossRefGoogle ScholarPubMed
Letai, A., Bassik, M. C., Walensky, L. D., Sorcinelli, M. D., Weiler, S., and Korsmeyer, S. J. (2002). Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell, 2, 183–92CrossRefGoogle ScholarPubMed
Lewis, J., Devin, A., Miller, A.et al. (2000). Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-kappaB activation. J. Biol. Chem., 275, 10519–26CrossRefGoogle Scholar
Lorenzo, H. K., Susin, S. A., Penninger, J., and Kroemer, G. (1999). Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death. Cell Death Differ., 6, 516–24CrossRefGoogle ScholarPubMed
Mariadason, J. M., Corner, G. A., and Augenlicht, L. H. (2000). Genetic reprogramming in pathways of colonic cell maturation induced by short chain fatty acids: comparison with trichostatin A, sulindac, and curcumin and implications for chemoprevention of colon cancer. Cancer Res., 60, 4561–72Google ScholarPubMed
Meijerink, J. P., Mensink, E. J., Wang, K.et al. (1998). Hematopoietic malignancies demonstrate loss-of-function mutations of BAX. Blood, 91, 2991–7Google ScholarPubMed
Mueller, C. M. and Scott, D. W. (2000). Distinct molecular mechanisms of Fas resistance in murine B lymphoma cells. J. Immunol., 165, 1854–62CrossRefGoogle ScholarPubMed
Muschen, M., Warskulat, U., and Beckmann, M. W. (2000). Defining CD95 as a tumor suppressor gene. J. Mol. Med., 78, 312–25CrossRefGoogle ScholarPubMed
Nimmanapalli, R. and Bhalla, K. (2002). Novel targeted therapies for Bcr-Abl-positive acute leukemias: beyond STI571. Oncogene, 21, 8584–90CrossRefGoogle ScholarPubMed
Olson, M. and Kornbluth, S. (2001). Mitochondria in apoptosis and human disease. Curr. Mol. Med., 1, 91–122CrossRefGoogle ScholarPubMed
Ozoren, N., Fisher, M. J., Kim, K.et al. (2000). Homozygous deletion of the death receptor DR4 gene in a nasopharyngeal cancer cell line is associated with TRAIL resistance. Int. J. Oncol., 16, 917–25Google Scholar
Pandey, P., Saleh, A., Nakazawa, A.et al. (2000). Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J., 19, 4310–22CrossRefGoogle ScholarPubMed
Pelengaris, S., Rudolph, B., and Littlewood, T. (2000). Action of Myc in vivo – proliferation and apoptosis. Curr. Opin. Genet. Dev., 10, 100–5CrossRefGoogle ScholarPubMed
Perez, D. and White, E. (2003). E1A sensitizes cells to tumor necrosis factor alpha by downregulating c-FLIP S. J. Virol., 77, 2651–62CrossRefGoogle ScholarPubMed
Prendergast, G. C. (1999). Mechanisms of apoptosis by c-Myc. Oncogene, 18, 2967–87CrossRefGoogle ScholarPubMed
Pruschy, M., Rocha, S., Zaugg, K.et al. (2001). Key targets for the execution of radiation-induced tumor cell apoptosis: the role of p53 and caspases. Int. J. Radiat. Oncol. Biol. Phys., 49, 561–7CrossRefGoogle ScholarPubMed
Puthalakath, H. and Strasser, A. (2002). Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ., 9, 505–12CrossRefGoogle ScholarPubMed
Rampino, N., Yamamoto, H., Ionov, Y.et al. (1997). Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science, 275, 967–9CrossRefGoogle ScholarPubMed
Ravagnan, L., Roumier, T., and Kroemer, G. (2002). Mitochondria, the killer organelles and their weapons. J. Cell Physiol., 192, 131–7CrossRefGoogle ScholarPubMed
Richmond, A. (2002). Nf-kappa B, chemokine gene transcription and tumor growth. Nat. Rev. Immunol., 2, 664–74CrossRefGoogle Scholar
Richon, V. M., Emiliani, S., Verdin, E.et al. (1998). A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc. Natl. Acad. Sci. USA, 95, 3003–7CrossRefGoogle ScholarPubMed
Rossi, A., Kapahi, P., Natoli, G.et al. (2000). Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IkappaB kinase. Nature, 403, 103–8CrossRefGoogle ScholarPubMed
Rudner, J., Jendrossek, V., and Belka, C. (2002). New insights in the role of Bcl-2: Bcl-2 and the endoplasmic reticulum. Apoptosis, 7, 441–7CrossRefGoogle ScholarPubMed
Sato, S., Fujita, N., and Tsuruo, T. (2000). Modulation of Akt kinase activity by binding to Hsp90. Proc. Natl. Acad. Sci. USA, 97, 10832–7CrossRefGoogle ScholarPubMed
Seitz, S., Wassmuth, P., Fischer, J.et al. (2002). Mutation analysis and mRNA expression of trail-receptors in human breast cancer. Int. J. Cancer, 102, 117–28CrossRefGoogle ScholarPubMed
Shi, Y. (2002). Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell, 9, 459–70CrossRefGoogle ScholarPubMed
Shibata, M. A., Liu, M. L., Knudson, M. C.et al. (1999). Haploid loss of bax leads to accelerated mammary tumor development in C3(1)/SV40-TAg transgenic mice: reduction in protective apoptotic response at the preneoplastic stage. EMBO J., 18, 2692–701CrossRefGoogle ScholarPubMed
Shin, M. S., Kim, H. S., Lee, S. H.et al. (2001). Mutations of tumor necrosis factor-related apoptosis-inducing ligand receptor 1 (TRAIL-R1) and receptor 2 (TRAIL-R2) genes in metastatic breast cancers. Cancer Res., 61, 4942–6Google Scholar
Simon, R., Radmacher, M. D., Dobbin, K., and McShane, L. M. (2003). Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J. Natl. Cancer Inst., 95, 14–18CrossRefGoogle ScholarPubMed
Skorski, T. (2002). Oncogenic tyrosine kinases and the DNA-damage response. Nat. Rev. Cancer, 2, 351–60CrossRefGoogle ScholarPubMed
Skorski, T., Bellacosa, A., Nieborowska-Skorska, M.et al. (1997). Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J., 16, 6151–61CrossRefGoogle ScholarPubMed
Smyth, M. J., Takeda, K., Hayakawa, Y., Peschon, J. J., Brink, M. R., and Yagita, H. (2003). Nature's TRAIL – on a path to cancer immunotherapy. Immunity, 18, 1–6CrossRefGoogle ScholarPubMed
Soengas, M. S., Capodieci, P., Polsky, D.et al. (2001). Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature, 409, 207–11CrossRefGoogle ScholarPubMed
Sporn, M. B., Suh, N., and Mangelsdorf, D. J. (2001). Prospects for prevention and treatment of cancer with selective PPARgamma modulators (SPARMs). Trends Mol. Med., 7, 395–400CrossRefGoogle Scholar
Teitz, T., Lahti, J. M., and Kidd, V. J. (2001). Aggressive childhood neuroblastomas do not express caspase-8: an important component of programmed cell death. J. Mol. Med., 79, 428–36CrossRefGoogle Scholar
Teitz, T., Wei, T., Valentine, M. B.et al. (2000). Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat. Med., 6, 529–35CrossRefGoogle ScholarPubMed
Tepper, C. G. and Seldin, M. F. (1999). Modulation of caspase-8 and FLICE-inhibitory protein expression as a potential mechanism of Epstein–Barr virus tumorigenesis in Burkitt's lymphoma. Blood, 94, 1727–37Google ScholarPubMed
Thome, M., Schneider, P., Hofmann, K.et al. (1997). Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature, 386, 517–21CrossRefGoogle ScholarPubMed
Timmer, T., Vries, E. G., and Jong, S. (2002). Fas receptor-mediated apoptosis: a clinical application?J. Pathol., 196, 125–34CrossRefGoogle ScholarPubMed
West, K. A., Sianna Castillo, S., and Dennis, P. A. (2002). Activation of the PI3K/Akt pathway and chemotherapeutic resistance. Drug Resist. Update, 5, 234–48CrossRefGoogle ScholarPubMed
Wong, W. W., Dimitroulakos, J., Minden, M. D., and Penn, L. Z. (2002). HMG-CoA reductase inhibitors and the malignant cell: the statin family of drugs as triggers of tumor-specific apoptosis. Leukemia, 16, 508–19CrossRefGoogle ScholarPubMed
Yamasaki, L. (1999). Balancing proliferation and apoptosis in vivo: the Goldilocks theory of E2F/DP action. Biochim. Biophys. Acta, 1423, M9–15Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Apoptosis and cancer
    • By Erinn L. Soucie, Department of Medical Biophysics, University of Toronto, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Canada, Gerard Evan, Cancer Research Institute, University of California San Francisco, San Francisco, USA, Linda Z. Penn, Department of Medical Biophysics, University of Toronto, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Canada
  • Edited by Martin Holcik, University of Ottawa, Eric C. LaCasse, University of Ottawa, Alex E. MacKenzie, University of Ottawa, Robert G. Korneluk, University of Ottawa
  • Book: Apoptosis in Health and Disease
  • Online publication: 03 March 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511663543.004
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Apoptosis and cancer
    • By Erinn L. Soucie, Department of Medical Biophysics, University of Toronto, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Canada, Gerard Evan, Cancer Research Institute, University of California San Francisco, San Francisco, USA, Linda Z. Penn, Department of Medical Biophysics, University of Toronto, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Canada
  • Edited by Martin Holcik, University of Ottawa, Eric C. LaCasse, University of Ottawa, Alex E. MacKenzie, University of Ottawa, Robert G. Korneluk, University of Ottawa
  • Book: Apoptosis in Health and Disease
  • Online publication: 03 March 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511663543.004
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Apoptosis and cancer
    • By Erinn L. Soucie, Department of Medical Biophysics, University of Toronto, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Canada, Gerard Evan, Cancer Research Institute, University of California San Francisco, San Francisco, USA, Linda Z. Penn, Department of Medical Biophysics, University of Toronto, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Canada
  • Edited by Martin Holcik, University of Ottawa, Eric C. LaCasse, University of Ottawa, Alex E. MacKenzie, University of Ottawa, Robert G. Korneluk, University of Ottawa
  • Book: Apoptosis in Health and Disease
  • Online publication: 03 March 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511663543.004
Available formats
×