Skip to main content Accessibility help
×
Home
Aperiodic Order
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 84
  • Volume 1: A Mathematical Invitation
  • Michael Baake, Universität Bielefeld, Germany, Uwe Grimm, The Open University, Milton Keynes
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

Quasicrystals are non-periodic solids that were discovered in 1982 by Dan Shechtman, Nobel Prize Laureate in Chemistry 2011. The underlying mathematics, known as the theory of aperiodic order, is the subject of this comprehensive multi-volume series. This first volume provides a graduate-level introduction to the many facets of this relatively new area of mathematics. Special attention is given to methods from algebra, discrete geometry and harmonic analysis, while the main focus is on topics motivated by physics and crystallography. In particular, the authors provide a systematic exposition of the mathematical theory of kinematic diffraction. Numerous illustrations and worked-out examples help the reader to bridge the gap between theory and application. The authors also point to more advanced topics to show how the theory interacts with other areas of pure and applied mathematics.

Reviews

'Mathematicians add hypotheses to theorems either to bar known monsters or provisionally to enable proof, pending better ideas that lead to more general results … Monsters no more, aperiodic filings have joined mainstream mathematics, and undergraduates drawn here by beautiful graphics will find themselves initiated into algebraic number theory, Lie theory, ergodic theory, dynamical systems, finite-state automata, Fourier analysis, and more.'

D. V. Feldman - University of New Hampshire

'Aperiodic Order is a comprehensive introduction to this relatively new and multidisciplinary field. Sparked by Dan Shechtman’s discovery of quasicrystals in 1982, which earned him the 2011 Nobel Prize in Chemistry, the field incorporates crystallography, discrete geometry, dynamical systems, harmonic analysis, mathematical diffraction theory, and more. Because the field spans such disparate fields, advances by one group often go unnoticed by the other. An important goal of this book is to remedy this by unifying and contextualizing results and providing a common language for researchers. … Readers who want to follow up on any details can certainly find a reference in the nearly 30 pages of bibliographic entries. Full of examples, construction techniques, and an array of analytic tools, this book is an outstanding resource for those hoping to enter the field, yet also contains plenty of useful information for seasoned experts.'

Natalie Priebe Frank Source: Mathematical Association of America

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.