Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T00:22:44.342Z Has data issue: false hasContentIssue false

Part II - Ant-Seed Interactions and Man-Induced Disturbance

Published online by Cambridge University Press:  01 September 2017

Paulo S. Oliveira
Affiliation:
Universidade Estadual de Campinas, Brazil
Suzanne Koptur
Affiliation:
Florida International University
Get access
Type
Chapter
Information
Ant-Plant Interactions
Impacts of Humans on Terrestrial Ecosystems
, pp. 91 - 156
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Andrew, N. R., Hart, R. A., Jung, M.-P., Hemmings, Z. and Terblanche, J. S. (2013). Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change. Journal of Insect Physiology, 59, 870880.Google Scholar
Arnan, X., Rodrigo, A. and Retana, J. (2007). Uncoupling the effects of shade and food resources of vegetation on Mediterranean ants: an experimental approach at the community level. Ecography, 30, 161172.Google Scholar
Bale, M. T., Zettler, J. A., Robinson, B. A., Spira, T. P. and Allen, C. R. (2003). Yellow jackets may be an underestimated component of an ant-seed mutualism. Southeastern Naturalist, 2, 609614.CrossRefGoogle Scholar
Banschbach, V. S., Yeamans, R., Brunelle, A., Gulka, A. and Holmes, M. (2012). Edge effects on community and social structure of northern temperate deciduous forest ants. Psyche, 2012, 548260.Google Scholar
Beattie, A. J. (1978). Plant-animal interactions affecting gene flow in Viola. In The Pollination of Flowers by Insects, ed. Richards, A. J. London: Academic Press, pp. 151164.Google Scholar
Beattie, A. J. and Culver, D. C. (1981). The guild of myrmecochores in the herbaceous flora of West Virginia forests. Ecology, 62, 107115.Google Scholar
Beattie, A. J. and Hughes, L. (2002). Ant-plant interactions. In Plant-Animal Interactions: An Evolutionary Approach, ed. Herrera, C. M. and Pellmyr, O. Oxford: Blackwell Science, pp. 211235.Google Scholar
Bednar, D. M. (2010). Pachycondyla (=Brachyponera) chinensis Predation on Reticuletermes virginicus and Competition with Aphaenogaster rudis. Master of Science Thesis, North Carolina State University, USA.Google Scholar
Bednar, D. M. and Silverman, J. (2011). Use of termites, Reticulitermes virginicus, as a springboard in the invasive success of a predatory ant, Pachycondyla (=Brachyponera) chinensis. Insectes Sociaux, 58, 459467.Google Scholar
Bertelsmeier, C., Guenard, B. and Courchamp, F. (2013). Climate change may boost the invasion of the Asian needle ant. PLoS ONE, 8, e75438.Google Scholar
Bertelsmeier, C., Luque, G. M., Hoffmann, B. D. and Courchamp, F. (2015). Worldwide ant invasions under climate change. Biodiversity Conservation, 24, 117128.Google Scholar
Bond, W. and Slingsby, P. (1984). Ant-plant mutalism: the Argentine ant (Iridomyrmex Humilis) and myrmecochorous Proteaceae. Ecology, 65, 10311037.Google Scholar
Bono, J. M. and Heithaus, E. R. (2002). Population consequences of changes in ant-seed mutualism in Sanguinaria canadensis. Insectes Sociaux, 49, 320325.Google Scholar
Boyd, R. (2001). Ecological benefits of myrmecochory for the endangered chaparral shrub Fremontodendron decumbens (Sterculiaceae). American Journal of Botany, 88, 234241.Google Scholar
Brew, C. R., O’Dowd, D. J. and Rae, I. D. (1989). Seed dispersal by ants: behaviour-releasing compounds in elaiosomes. Oecologia, 80, 490497.Google Scholar
Bronstein, J. L., Alarcon, R. and Geber, M. (2006). The evolution of plant-insect mutualisms. New Phytologist, 172, 412428.Google Scholar
Brook, B. W., Sodhi, N. S. and Bradshaw, C. J. A. (2008). Synergies among extinction drivers under global change. Trends in Ecology & Evolution, 23, 453460.Google Scholar
Brown, D. G., Johnson, K. M., Loveland, T. R. and Theobald, D. M. (2005). Rural land-use trends in the conterminous United States. Ecological Applications, 15, 18511863.Google Scholar
Brunet, J. and von Oheimb, G. (1998). Migration of vascular plants to secondary woodlands in southern Sweden. Journal of Ecology, 86, 429438.Google Scholar
Bulow-Olsen, A. (1984). Diplochory in Viola: a possible relation between seed dispersal and soil seed bank. American Midland Naturalist, 112, 251260.Google Scholar
Cain, M. L., Damman, H. and Muir, A. (1998). Seed dispersal and the Holocene migration of woodland herbs. Ecological Monographs, 68, 325347.Google Scholar
Canner, J. E., Dunn, R. R., Giladi, I. and Gross, K. (2012). Redispersal of seeds by a keystone ant augments the spread of common wildflowers. Acta Oecologica, 40, 3139.CrossRefGoogle Scholar
Carney, S. E., Byerley, M. B. and Holway, D. A. (2003). Invasive Argentine ants (Linepithema humile) do not replace native ants as seed dispersers of Dendromecon rigida (Papaveraceae) in California, USA. Oecologia, 135, 576582.Google Scholar
Caut, S., Jowers, M. J., Cerda, X. and Boulay, R. (2013). Questioning the mutual benefits of myrmecochory: a stable isotope-based experimental approach. Ecological Entomology, 38, 390399.Google Scholar
Chen, Y., Hansen, L. D. and Brown, J. J. (2002). Nesting sites of the carpenter ant, Camponotus vicinus (Mayr) (Hymenoptera: Formicidae) in northern Idaho. Environmental Entomology, 31, 10371042.Google Scholar
Christian, C. E. (2001). Consequences of biological invasions reveal importance of mutualism for plant communities. Nature, 413, 576582.Google Scholar
Clark, R. E. and King, J. R. (2012). The ant, Aphaenogaster picea, benefits from plant elaiosomes when insect prey is scarce. Environmental Entomology, 41, 14051408.Google Scholar
Dahlgren, J. P., von Zeipel, H. and Ehrlen, J. (2007). Variation in vegetative and flowering phenology in a forest herb caused by environmental heterogeneity. American Journal of Botany, 94, 15701576.Google Scholar
De Marco, B. and Cognato, A. I. (2016). A multiple gene phylogeny reveals polyphyly among eastern North American Aphaenogaster species (Hymenoptera: Formicidae). Zoologica Scripta, DOI: 10.1111/zsc.12168.Google Scholar
Diamond, S. E., Nichols, L. M., McCoy, N., Hirsch, C., Pelini, S. L., Sanders, N. J., Ellison, A. M., Gotelli, N. J. and Dunn, R. R. (2012). A physiological trait-based approach to predicting the responses of species to experimental climate warming. Ecology, 93, 23052312.Google Scholar
Didham, R. K., Tylianakis, J. M., Gemmell, N. J., Rand, T. A. and Ewers, R. M. (2007). Interactive effects of habitat modification and species invasion on native species decline. Trends in Ecology & Evolution, 22, 489496.Google Scholar
Drummond, M. A. and Loveland, T. R. (2010). Land-use pressure and a transition to forest-cover loss in the eastern United States. Bioscience, 60, 286298.Google Scholar
Duffy, D. C. and Meier, A. J. (1992). Do Appalachian herbaceous understories ever recover from clearcutting? Conservation Biology, 6, 196201.Google Scholar
Eguchi, K. (2004). A survey on seed predation by omnivorous ants in the warm-temperate zone of Japan (Insecta, Hymnoptera, Formicidae). New Entomologist, 53, 718.Google Scholar
Fellers, J. H. (1989). Daily and seasonal activity in woodland ants. Oecologia, 78, 6976.Google Scholar
Fischer, R. C., Richter, A., Hadacek, F. and Mayer, V. (2008). Chemical differences between seeds and elaiosomes indicate an adaptation to nutritional needs of ants. Oecologia, 155, 539547.CrossRefGoogle ScholarPubMed
Flinn, K. M. and Vellend, M. (2005). Recovery of forest plant communities in post-agricultural landscapes. Frontiers in Ecology and the Environment, 3, 243250.Google Scholar
Ford, W. M., Odom, R. H., Hale, P. E. and Chapman, B. R. (2000). Stand-age, stand characteristics, and landform effects on understory herbaceous communities in southern Appalachian cove-hardwoods. Biological Conservation, 93, 237246.Google Scholar
Gammans, N., Bullock, J. J. and Schonrogge, K. (2005). Ant benefits in a seed dispersal mutualism. Oecologia, 146, 4349.Google Scholar
Garnas, J. (2004). European fire ants on Mount Desert Island, Maine: population structure, mechanisms of competition and community impacts of Myrmica rubra L. (Hymenoptera: Formicidae). Ecology and Environmental Sciences. Orono, Maine: University of Maine.Google Scholar
Giladi, I. (2006). Choosing benefits or partners: a review of the evidence for the evolution of myrmecochory. Oikos, 112, 481492.CrossRefGoogle Scholar
Gilliam, F. S. (2002). Effects of harvesting on herbaceous layer diversity of a central Appalachian hardwood forest in West Virginia, USA. Forest Ecology and Management, 155, 3343.Google Scholar
Gilliam, F. S. (2007). The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience, 57, 845858.Google Scholar
Gomez, C. and Espadaler, X. (2013). An update of the world survey of myrmecochorous dispersal distances. Ecography, 36, 11931201.Google Scholar
Gomez, C. and Oliveras, J. (2003). Can the Argentine ant (Linepithema humile Mayr) replace native ants in myrmecochory? Acta Oecologia, 24, 4753.CrossRefGoogle Scholar
Gorb, E. and Gorb, S. (2000). Effects of seed aggregation on the removal rates of elaiosome-bearing Chelidonium majus and Viola odorata seeds carried by Formica polyctena ants. Ecological Research, 15, 187192.Google Scholar
Gorb, E. and Gorb, S. (2003). Seed Dispersal by Ants in a Deciduous Forest Ecosystem. Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
Gove, A. D., Majer, J. D. and Dunn, R. R. (2007). A keystone ant species promotes seed dispersal in “diffuse” mutualism. Oecologia, 153, 687697.Google Scholar
Groden, E., Drummond, F. A., Garnas, J. and Franceour, A. (2005). Distribution of an invasive ant, Myrmica rubra (Hymenoptera: Formicidae), in Maine. Journal of Economic Entomology, 98, 17741784.Google Scholar
Guenard, B. and Dunn, R. R. (2010). A new (old), invasive ant in the hardwood forests of eastern North America and its potentially widespread impacts. PLoS ONE, 5, e11614.Google Scholar
Handel, S. N. (1976). Ecology of Carex pedunculata (Cyperaceae), a new North American myrmecochore. American Journal of Botany, 63, 10711079.Google Scholar
Handel, S. N. and Beattie, A. J. (1990). Seed dispersal by ants. Scientific American, 263, 7683.Google Scholar
Handel, S. N., Fisch, S. B. and Schatz, G. E. (1981). Ants disperse a majority of herbs in a mesic forest community in New-York state. Bulletin of the Torrey Botanical Club, 108, 430437.Google Scholar
Harrelson, S. M. and Matlack, G. R. (2006). Influence of stand age and physical environment on the herb composition of second-growth forest, Strouds Run, Ohio, USA. Journal of Biogeography, 33, 11391149.Google Scholar
Heithaus, E. R. and Humes, M. (2003). Variation in communities of seed-dispersing ants in habitats with different disturbance in Knox County, Ohio. Ohio Journal of Science, 103, 8997.Google Scholar
Hellmann, J. J., Byers, J. E., Bierwagen, B. G. and Dukes, J. S. (2008). Five potential consequences of climate change for invasive species. Conservation Biology, 22, 534543.Google Scholar
Hölldobler, B. and Wilson, E. O. (1990). The Ants. Cambridge, MA: Belknap.CrossRefGoogle Scholar
Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D. and Case, T. J. (2002). The causes and consequences of ant invasions. Annual Review of Ecology and Systematics, 33, 181233.Google Scholar
Jackson, B. C., Pitillo, J. D., Allen, H. L., Wentworth, T. R., Bullock, B. P. and Loftis, D. L. (2009). Species diversity and composition in old growth and second growth rich coves of the Southern Appalachian Mountains. Castanea, 74, 2738.Google Scholar
Jacquemyn, H. and Brys, R. (2008). Effects of stand age on the demography of a temperate forest herb in post-agricultural forests. Ecology, 89, 34803489.Google Scholar
Jules, E. S. and Rathcke, B. J. (1999). Mechanisms of reduced Trillium recruitment along edges of old-growth forest. Conservation Biology, 13, 784793.Google Scholar
Kalisz, S., Hanzawa, F. M., Tonsor, S. J., Thiede, D. A. and Voigt, S. (1999). Ant-mediated seed dispersal alters pattern of relatedness in a population of Trillium grandiflorum. Ecology, 80, 26202634.Google Scholar
Keller, L. and Passera, L. (1989). Size and fat-content of gynes in relation to the mode of colony founding in ants (Hymenoptera; Formicidae). Oecologia, 80, 236240.Google Scholar
King, J. R. and Tschinkel, W. R. (2008). Experimental evidance that human impacts drive fire ant invasions and ecological change. Proceedings of the National Academy of Sciences, 105, 2033920343.Google Scholar
King, J. R. and Tschinkel, W. R. (2013). Experimental evidence for weak effects of fire ants in a naturally invaded pine-savanna ecosystem. Ecological Entomology, 38, 6875.Google Scholar
King, J. R. and Tschinkel, W. R. (2016). Experimental evidence that dispersal drives ant community assembly in human-altered ecosystems. Ecology, 97, 236249.Google Scholar
King, J. R., Tschinkel, W. R. and Ross, K. G. (2009). A case study of human exacerbation of the invasive species problem: transport and establishment of polygyne fire ants in Tallahassee, Florida, USA. Biological Invasions, 11, 373377.CrossRefGoogle Scholar
King, J. R., WarrenII, R. J. and Bradford, M. A. (2013). Social insects dominate eastern US temperate hardwood forest macroinvertebrate communities in warmer regions. PLoS ONE, 8, e75843.CrossRefGoogle ScholarPubMed
Kjellsson, G. (1991). Seed fate in an ant-dispersed sedge, Carex pilulifera L.: recruitment and seedling survival in tests of models for spatial dispersion. Oecologia, 88, 435443.Google Scholar
Kuriachan, I. and Vinson, S. B. (2000). A queen’s worker attractiveness influences her movement in polygynous colonies of the red imported fire ant (Hymenoptera: Formicidae) in response to adverse temperature Environmental Entomology, 29, 943949.Google Scholar
Lengyel, S., Gove, A. D., Latimer, A. M., Majer, J. D. and Dunn, R. B. (2009). Ants sow the seeds of global diversification in flowering plants. PLoS ONE, 4, e5480.Google Scholar
Lessard, J. P., Sackett, T. E., Reynolds, W. N., Fowler, D. A. and Sanders, N. J. (2010). Determinants of the detrital arthropod community structure: effects of temperature and resources along an environmental gradient. Oikos, 120, 333343.Google Scholar
Lubertazzi, D. (2012). The biology and natural history of Aphaenogaster rudis. Psyche, 2012, 752815.Google Scholar
Mantyka-Pringle, C. S., Martin, T. G. and Rhodes, J. R. (2012). Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Global Change Biology, 18, 12391252.Google Scholar
Marshall, D. L., Beattie, A. J. and Bollenbacher, W. E. (1979). Evidence for diglycerides as attractants in an ant-seed interaction. Journal of Chemical Ecology, 5, 335344.Google Scholar
Marussich, W. A. (2006). Testing myrmecochory from the ant’s perspective: the effects of Datura wrightii and D. discolor on queen survival and brood production in Pogonomyrmex californicus. Insectes Sociaux, 53, 403411.Google Scholar
Matlack, G. R. (1993). Microenvironment variation within and among forest edge sites in the Eastern United-States. Biological Conservation, 66, 185194.Google Scholar
Matlack, G. R. (1994a). Plant-species migration in a mixed-history forest landscape in Eastern North-America. Ecology, 75, 14911502.Google Scholar
Matlack, G.R. (1994b). Vegetation dynamics of the forest edges-trends in space and successional time. Journal of Ecology, 82, 113123.Google Scholar
McGlynn, T. P. (1999). Non-native ants are smaller than related native ants. American Naturalist, 6, 690699.Google Scholar
McLachlan, S. M. and Bazely, D. R. (2001). Recovery patterns of understory herbs and their use as indicators of deciduous forest regeneration. Conservation Biology, 15, 98110.Google Scholar
Meier, A. J., Bratton, S. P. and Duffy, D. C. (1995). Possible ecological mechanisms for loss of vernal-herb diversity in logged eastern deciduous forests. Ecological Applications, 5, 935946.Google Scholar
Mitchell, C. E., Turner, M. G. and Pearson, S. M. (2002). Effects of historical land use and forest patch size on myrmecochores and ant communities. Ecological Applications, 12, 13641377.CrossRefGoogle Scholar
Morales, M. A. and Heithaus, E. R. (1998). Food from seed-dispersal mutualism shifts sex ratios in colonies of the ant Aphaenogaster rudis. Ecology, 79, 734739.Google Scholar
Myers, J. A., Vellend, M., Gardescu, S. and Marks, P. L. (2004). Seed dispersal by white-tailed deer: implications for long-distance dispersal, invasion and migration of plants in eastern North America. Oecologia, 139, 3544.Google Scholar
Nelder, M. P., Paysen, E. S., Zungoli, P. A. and Benson, E. P. (2006). Emergence of the introduced ant Pachycondyla chinensis (Formicidae: Ponerinae) as a public health threat in the southeastern United States. Journal of Medical Entomology, 43, 10941098.Google Scholar
Ness, J. H. (2004). Forest edges and fire ants alter the seed shadow of an ant-dispersed plant. Oecologia, 138, 228454.Google Scholar
Ness, J. H. and Bronstein, J. L. (2004). The effects of invasive ants on the prospective ant mutualists. Biological Invasions, 6, 445461.Google Scholar
Ness, J. H. and Morin, D. F. (2008). Forest edges and landscape history shape interactions between plants, seed-dispersing ants and seed predators. Biological Conservation, 141, 838847.Google Scholar
Ness, J. H., Morin, D. F. and Giladi, I. (2009). Uncommon specialization in a mutualism between a temperate herbaceous plant guild and an ant: Are Aphaenogaster ants keystone mutualists? Oikos, 12, 17931804.Google Scholar
Ohnishi, Y., Suzuki, N., Katayama, N. and Teranishi, S. (2008). Seasonally different modes of seed dispersal in the prostrate annual, Chamaesyce maculata (L.) Small (Euphorbiaceae), with multiple overlapping generations. Ecological Research, 23, 299305.Google Scholar
Pelini, S. L., Boudreau, M., McCoy, N., Ellison, A. M., Gotelli, N. J., Sanders, N. J. and Dunn, R. R. (2011). Effects of short-term warming on low and high latitude forest ant communities. Ecosphere, 2, 112.Google Scholar
Pelini, S. L., Diamond, S. E., MacLean, H. J., Ellison, A. M., Gotelli, N. J., Sanders, N. J. and Dunn, R. R. (2012). Common garden experiments reveal uncommon responses across temperatures, locations, and species of ants. Ecology and Evolution, 2, 30093015.Google Scholar
Peterson, C. J. and Campbell, J. E. (1993). Microsite differences and temporal change in plant communities of treefall pits and mounds in an old-growth forests. Bulletin of the Torrey Botanical Club, 120, 451460.Google Scholar
Pfeiffer, M., Huttenlocher, H. and Ayasse, M. (2010). Myrmecochorous plants use chemical mimicry to cheat seed-dispersing ants. Functional Ecology, 24, 545555.Google Scholar
Porter, S. D. and Tschinkel, W. R. (1993). Fire ant thermal preferences: behavioral control of growth and metabolism. Behavioral Ecology and Sociobiology, 32, 321329.Google Scholar
Prior, K. M., Robinson, J. M., Meadly Dunphy, S. A. and Frederickson, M. E. (2015). Mutualism between co-introduced species facilitates invasion and alters plant community structure. Proceedings of the Royal Society B-Biological Sciences, 282.CrossRefGoogle ScholarPubMed
Pudlo, R. J., Beattie, A. J. and Culver, D. C. (1980). Population consequences of changes in ant-seed mutualism in Sanguinaria canadensis. Oecologia, 146, 3237.Google Scholar
Rathcke, B. and Lacey, E.P. (1985). Phenological patterns of terrestrial plants. Annual Review of Ecology and Systematics, 16, 179214.Google Scholar
Rice, E. S. and Silverman, J. (2013). Propagule pressure and climate contribute to the displacement of Linepithema humile by Pachycondyla chinensis. PLoS ONE, 8, 856281.Google Scholar
Rico-Gray, V. and Oliveira, P. S. (2007). The Ecology and Evolution of Ant-Plant Interactions. Chicago: University of Chicago Press.Google Scholar
Rodriguez-Cabal, M. A., Stuble, K. L., Guenard, B., Dunn, R. R. and Sanders, N. J. (2012). Disruption of ant-seed dispersal mutualisms by the invasive Asian needle ant (Pachycondyla chinensis). Biological Invasions, 14, 557565.CrossRefGoogle Scholar
Rodriguez-Cabal, M. A., Stuble, K. L., Nunez, M. A. and Sanders, N. J. (2009). Quantitative analysis of the effects of the exotic Argentine ant on seed-dispersal mutualisms. Biology Letters, 5, 499502.Google Scholar
Rowles, A. D. and O’Dowd, D. J. (2009). New mutualism for old: indirect disruption and direct facilitation of seed dispersal following Argentine ant invasion. Oecologia, 158, 709716.Google Scholar
Rowles, A. D. and Silverman, J. (2010). Argentine ant invasion associated with loblolly pines in the Southeastern United States: minimal impacts but seasonally sustained. Environmental Entomology, 39, 11411150.Google Scholar
Sanders, N. J., Gotelli, N. J., Heller, N. E. and Gordon, D. M. (2003). Community disassembly by an invasive species. Proceedings of the National Academy of Sciences, 100, 24742477.Google Scholar
Sanders, N. J., Lessard, J. P., Fitzpatrick, M. C. and Dunn, R. R. (2007). Temperature, but not productivity or geometry, predicts elevational diversity gradients in ants across spatial grains. Global Ecology and Biogeography, 16, 640649.Google Scholar
Servigne, P. and Detrain, C. (2008). Ant-seed interactions: combined effects of ant and plant species on seed removal patterns. Insectes Sociaux, 55, 220230.Google Scholar
Singer, M. C. and Parmesan, C. (2010). Phenological asynchrony between herbivorous insects and their hosts: signal of climate change or pre-existing adaptive strategy? Proceedings of the Royal Society B-Biological Sciences, 365, 31613176.Google Scholar
Sorrells, J. S. and WarrenII, R. J. (2011). Ant-dispersed herb colonization lags behind forest re-establishment. Journal of the Torrey Botanical Society, 138, 7784.Google Scholar
Staudt, A., Leidner, A. K., Howard, J., Brauman, K. A., Dukes, J. S., Hansen, L. J., Paukert, C., Sabo, J. and Solorzano, L. A. (2013). The added complications of climate change: understanding and managing biodiversity and ecosystems. Frontiers in Ecology and the Environment, 11, 494501.CrossRefGoogle Scholar
Stuble, K. L., Kirkman, L. K. and Carroll, C. R. (2010). Are red imported fire ants facilitators of native seed dispersal? Biological Invasions, 12, 16611669.Google Scholar
Stuble, K. L., Patterson, C. M., Rodriguez-Cabal, M. A., Ribbons, R. R., Dunn, R. R. and Sanders, N. J. (2014). Ant-mediated seed dispersal in a warmed world. PeerJ, 2, e286.Google Scholar
Stuble, K. L., Pelini, S. L., Diamon, S. E., Fowler, D. A., Dunn, R. R. and Sanders, N. J. (2013). Foraging by forest ants under experimental warming: a test at two sites. Ecology and Evolution, 3, 482491.Google Scholar
Suarez, A. V., Bolger, D. T. and Case, T. J. (1998). Effects of fragmentation and invasion on native ant communities in a coastal Southern California. Ecology, 79, 20412056.Google Scholar
Talbot, M. (1966). Flights of the ant Aphaenogaster treatae. Kansas Entomological Society, 39, 6777.Google Scholar
Theobald, D. M. (2005). Landscape patterns of exurban growth in the USA from 1980 to 2020. Ecology and Society, 10, 32.Google Scholar
Turner, K. M. and Frederickson, M. E. (2013). Signals can trump rewards in attracting seed-dispersing ants. PLoS ONE, 8, e71871.Google Scholar
Urban, M. C., Tewksbury, J. J. and Sheldon, K. S. (2012). On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proceedings of the Royal Society B-Biological Sciences, 279, 20722080.Google Scholar
Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., Fromentin, J. M., Hoegh-Guldberg, O. and Bairlein, F. (2002). Ecological responses to recent climate change. Nature, 416, 389395.Google Scholar
Warren II, R. J., Bahn, V. and Bradford, M. A. (2011a). Temperature cues phenological synchrony in ant-mediated seed dispersal. Global Change Biology, 17, 24442454.Google Scholar
Warren II, R. J. and Bradford, M. A. (2013). Mutualism fails when climate response differs between interacting species. Global Change Biology, 20, 466474.Google Scholar
Warren II, R . J. and Chick, L. (2013). Upward ant distribution shift corresponds with minimum, not maximum, temperature tolerance. Global Change Biology, 19, 20822088.Google Scholar
Warren II, R. J. and Giladi, I. (2014). Ant-mediated seed dispersal: a few ant species (Hymenoptera: Formicidae) benefit many plants. Myrmecological News, 20, 129140.Google Scholar
Warren II, R. J., Giladi, I. and Bradford, M.A. (2010). Ant-mediated seed dispersal does not facilitate niche expansion. Journal of Ecology, 98, 11781185.Google Scholar
Warren II, R. J., Giladi, I. and Bradford, M.A. (2012). Environmental heterogeneity and interspecific interactions influence occupancy be key seed-dispersing ants. Environmental Entomology, 41, 463468.CrossRefGoogle Scholar
Warren II, R.J., Giladi, I. and Bradford, M.A. (2014). Competition as a mechanism structuring mutualisms. Journal of Ecology, 102, 486495.Google Scholar
Warren II, R. J., McAfee, P. and Bahn, V. (2011b). Ecological differentiation among key plant mutualists from a cryptic ant guild. Insectes Sociaux, 58, 505512.Google Scholar
Warren II, R. J., McMillan, A., King, J. R., Chick, L. and Bradford, M. A. (2015a). Forest invader replaces predation but not dispersal services by a keystone species. Biological Invasions, 23, 31533162.CrossRefGoogle Scholar
Warren II, R. J., Pearson, S., Henry, S., Rossouw, K., Love, J.P., Olejniczak, M., Elliott, K. and Bradford, M.A. (2015b). Cryptic indirect effects of exurban edges on a woodland community. Ecosphere, 6, 218.Google Scholar
Whigham, D. E. (2004). Ecology of woodland herbs in temperate deciduous forests. Annual Review of Ecology Evolution and Systematics, 35, 583621.Google Scholar
Wike, L., Martin, F. D., Paller, M. H. and Nelson, E. A. (2010). Impact of forest seral stage on use of ant communities for rapid assessment of terrestrial ecosystem health. Journal of Insect Science, 10, 116.Google Scholar
Wittman, S. E., Sanders, N. J., Ellison, A. M., Jules, E. S., Ratchford, J. S. and Gotelli, N. J. (2010). Species interactions and thermal constraints on ant community structure. Oikos, 119, 551559.Google Scholar
Zelikova, T. J., Dunn, R. R. and Sanders, N. J. (2008). Variation in seed dispersal along an elevational gradient in Great Smoky Mountains National Park. Acta Oecologica, 34, 155162.Google Scholar
Zelikova, T. J., Sanders, D. and Dunn, R. R. (2011). The mixed effects of experimental ant removal on seedling distribution, belowground invertebrates, and soil nutrients. Ecosphere, 2, 114.Google Scholar
Zettler, J. A., Spira, T. P. and Allen, C. R. (2001). Ant-seed mutualisms: can red imported fire ants source the relationship? Biological Conservation, 101, 249253.Google Scholar
Zhou, H., Chen, J. and Chen, F. (2007). Ant-mediated seed dispersal contributes to the local spatial pattern and genetic structure of Globba lancangensis (Zingiberaceae). Journal of Heredity, 98, 317324.Google Scholar

References

Ab’Sáber, A. N. (1999). Dossiê Nordeste seco. Estudos Avançados, 13, 159.Google Scholar
Ahrends, A., Burgess, N. D., Milledge, S. A. H., Bulling, M. T., Fisher, B., Smart, J. C. R., Clarke, G. P., Mhoro, B. E. and Lewis, S. L. (2010). Predictable waves of sequential forest degradation and biodiversity loss spreading from an African city. Proceedings of the National Academy of Sciences of the United States of America, 107, 1455614561.Google Scholar
Andersen, A. N. (1988). Dispersal distance as a benefit of myrmecochory. Oecologia, 75, 507511.Google Scholar
Andersen, A. N. and Morrison, S. (1998). Myrmecochory in Australia’s seasonal tropics: effects of disturbance on distance dispersal. Australian Journal of Ecology, 23, 483491.Google Scholar
Anderson-Teixeira, K. J., Miller, A. D., Mohan, J. E., Hudiburg, T. W., Duval, B. D. and DeLucia, E. H. (2013). Altered dynamics of forest recovery under a changing climate. Global Change Biology, 19, 20012021.Google Scholar
Andrade-Lima, D. (1989). Plantas da Caatinga. Rio de Janeiro: Academia Brasileira de Ciências.Google Scholar
Aranda-Rickert, A. and Fracchia, S. (2012). Are subordinate ants the best seed dispersers? Linking dominance hierarchies and seed dispersal ability in myrmecochory interaction. Arthropod-Plant Interactions, 6, 297306.Google Scholar
Arcoverde, G. B. (2012). Efeitos de perturbações antrópicas na proteção de sementes e estabelecimento de plântulas em ninhos de Dinoponera quadriceps Santschi (Hymenoptera: Formicidae) no semi-árido nordestino. Master thesis, Universidade Federal de Pernambuco, Recife.Google Scholar
Barroso, G. M., Morim, M. P., Peixoto, A. L. and Ichaso, C. L. F. (1999). Frutos e sementes: morfologia aplicada à sistemática de dicotiledôneas. Viçosa: Universidade Federal de Viçosa.Google Scholar
Beattie, A. J. (1985). The evolutionary ecology of ant-plant mutualisms. Cambridge: Cambridge University Press.Google Scholar
Beattie, A. J. and Culver, D. C. (1981). The guild of myrmecochores in the herbaceous flora of West Virginia forests. Ecology, 62, 107115.Google Scholar
Berg, R. Y. (1975). Myrmecochorous plants in Australia and their dispersal by ants. Australian Journal of Botany, 62, 714722.Google Scholar
Bond, W. and Slingsby, P. (1983). Seed dispersal by ants in Cape shrublands and its evolutionary implications. South Africa Journal of Science, 79, 231233.Google Scholar
Boyd, R. S. (2001). Ecological benefits of myrmecochory for the endangered chaparral shrub Fremontodendron decumbens (Sterculiaceae). American Journal of Botany, 88, 234241.Google Scholar
Christianini, A. V, Mayhé-Nunes, A. J. and Oliveira, P. S. (2007). The role of ants in the removal of non-myrmecochorous diaspores and seed germination in a Neotropical savanna. Journal of Tropical Ecology, 23, 343351.Google Scholar
Davidar, P., Sahoo, S., Mammen, P. C. et al. (2010). Assessing the extent and causes of forest degradation in India: where do we stand? Biological Conservation, 143, 29372944.Google Scholar
Farwig, N. and Berens, D. G. (2012). Imagine a world without seed dispersers: a review of threats, consequences and future directions. Basic and Applied Ecology, 13, 109115.Google Scholar
García-Valdés, R., Svenning, J. C., Zavala, M. A., Purves, D. W. and Araújo, M. B. (2015). Evaluating the combined effects of climate and land-use change on tree species distributions. Journal of Applied Ecology, 52, 902912.Google Scholar
Gariglio, M. A., Sampaio, E. V. S. B., Cestaro, L. A. and Kageyama, P. Y. (2010). Uso sustentável e conservação dos recursos florestais da caatinga. Brasília: Serviço Florestal Brasileiro.Google Scholar
Garrido, J. L., Rey, P. J., Cerdá, X. and Herrera, C. M. (2002). Geographical variation in diaspore traits of an ant-dispersed plant (Helleborus foetidus): are ant community composition and diaspore traits correlated? Journal of Ecology, 90, 446455.Google Scholar
Gibb, H., Sanders, N. J., Dunn, R. R. et al. (2015). Climate mediates the effects of disturbance on ant assemblage structure. Proceedings of the Royal Society of London B: Biological Sciences, 282, 20150418.Google Scholar
Gorb, E. and Gorb, S. (2003). Seed dispersal by ants in a deciduous forest ecosystem. Mechanisms, strategies, adaptation. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Gove, A. D., Majer, J. D. and Dunn, R. R. (2007). A keystone ant species promotes seed dispersal in a “diffuse” mutualism. Oecologia, 153, 687697.Google Scholar
Griz, L. M. S. and Machado, I. C. (2001). Fruiting phenology and seed dispersal syndromes in Caatinga, a tropical dry Forest in the Northeast of Brazil. Journal of Tropical Ecology, 17, 303321.Google Scholar
Hanzawa, F. M., Beattie, A. J. and Culver, D. C. (1988). Directed dispersal: demographic analysis of an ant-seed mutualism. American Naturalist, 131, 113.Google Scholar
Heithaus, E. R. (1981). Seed predation by rodents on three ant-dispersed plants. Ecology, 62, 136145.Google Scholar
Higashi, S., Tsuyuzaki, S. and Ohara, I. F. (1989). Adaptive advantages of ant-dispersed seeds in the myrmecochorous plant Trillium tschonoskii (Liliaceae). Oikos, 54, 389394.Google Scholar
Hoffmann, B. D. and Andersen, A. N. (2003) Responses of ants to disturbance in Australia with particular reference to functional groups. Austral Ecology, 28, 444464.Google Scholar
Hughes, L. and Westoby, M. (1992). Fate of seeds adapted for dispersal by ants in Australian sclerophyll vegetation. Ecology, 73, 12851299.Google Scholar
Instituto Brasileiro de Geografia e Estatística, 1985 (1985). Atlas Nacional do Brasil: Região Nordeste. Rio de Janeiro: IBGE.Google Scholar
Jentsch, A., Kreyling, J., Boettcher-Treschkow, J. and Beierkuhnlein, C. (2009). Beyond gradual warming: extreme weather events alter flower phenology of European grassland and heath species. Global Change Biology, 15, 837849.Google Scholar
Laurance, W. F. and Peres, C.A. (2006). Emerging threats to tropical forests. Chicago: University of Chicago Press.Google Scholar
Leal, I. R., Filgueiras, B. K. C., Gomes, J. P. and Andersen, A. N. (2012). Effects of habitat fragmentation on ant richness and functional composition in Atlantic Forest of northeastern Brazil. Biodiversity and Conservation, 21, 16871701.Google Scholar
Leal, I. R., Leal, L. C. and Andersen, A. N. (2015). The benefits of myrmecochory: a matter of stature. Biotropica, 47, 281285.Google Scholar
Leal, I. R. and Oliveira, P. S. (1998). Interactions between fungus-growing ants (Attini), fruits and seeds in cerrado vegetation in Southeast Brazil. Biotropica, 30, 170178.Google Scholar
Leal, I. R., Silva, J. M. C., Tabarelli, M. and Lacher, T. E. (2005). Changing the course of biodiversity conservation in the Caatinga of Northeastern Brazil. Conservation Biology, 19, 701706.Google Scholar
Leal, I. R., Wirth, R. and Tabarelli, M. (2007). Seed dispersal by ants in the semi-arid Caatinga of North-east Brazil. Annals of Botany, 99, 885894.Google Scholar
Leal, L. C., Andersen, A. N. and Leal, I. R. (2014b). Anthropogenic disturbance reduces seed dispersal services for myrmecochorous plants in the Brazilian Caatinga. Oecologia, 174, 173181.Google Scholar
Leal, L. C., Lima-Neto, M. C., Oliveira, A. F. M., Andersen, A. N. and Leal, I. R. (2014a). Myrmecochores can target high-quality disperser ants: variation in elaiosome traits and ant preferences for myrmecochorous Euphorbiaceae in Brazilian Caatinga. Oecologia, 174, 493500.Google Scholar
Lengyel, S., Gove, A. D., Latimer, A. M., Majer, J. D. and Dunn, R. R. (2009). Ants sow the seeds of global diversification in flowering plants. PLoS ONE, 4(5), e5480.Google Scholar
Levey, D. J. and Byrne, M. M. (1993). Complex ant-plant interactions: rain forest ants as secondary dispersers and post-dispersal seed predators. Ecology, 74, 18021812.Google Scholar
Lôbo, D., Tabarelli, M. and Leal, I. R. (2011). Realocation of Croton sonderianus (Euphorbiaceae) seeds by Pheidole fallax Mayr (Formicidae): a case of post-dispersal seed protection by ants. Neotropical Entomology, 40, 440444.Google Scholar
Lorenzi, H. (1998). Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Nova Odessa: Editora Plantarum.Google Scholar
Magrin, G. O., Marengo, J. A., Boulanger, J. P. et al. (2014). Central and South America. In Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change, eds. Barros, V. R., Field, C.B., Dokken, D. J., Mastrandrea, M. D., Mach, K. J., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R. and White, L. L.. Cambridge: Cambridge University Press, pp. 14991566.Google Scholar
Manzaneda, A. J. and Rey, P. J. (2008). Geographic variation in seed removal of a myrmecochorous herb: influence of variation in functional guild and species composition of disperser assemblage through spatial and temporal scale. Ecography, 31, 583591.Google Scholar
Manzaneda, A. J. and Rey, P. J. (2012). Geographical and interspecific variation and the nutrient-enrichment hypothesis as an adaptive advantage of myrmecochory. Ecography, 35, 322332.Google Scholar
Marini, L., Bruun, H. H., Heikkinen, R. K., Helm, A., Honnay, O., Krauss, J., Kuhn, I., Lindborg, R., Partel, M. and Bommarco, R. (2012). Traits related to species persistence and dispersal explain changes in plant communities subjected to habitat loss. Diversity and Distributions, 18, 890908.Google Scholar
Martorell, C. and Peters, E. M. (2005). The measurement of chronic disturbance and its effects on the threatened cactus Mammilaria pectinifera. Biological Conservation, 124, 199207.Google Scholar
Medeiros, S. S., Cavalcante, A. M. B., Perez Marin, A. M., Tinôco, L. B. M., Salcedo, I. H. and Pinto, T. F. (2012). Sinopse do censo demográfico para o semiárido brasileiro. Campina Grande: Instituto Nacional de Seminário.Google Scholar
Ministério do Meio Ambiente (2011). Monitoramento do desmatamento nos biomas brasileiros por satélite: monitoramento do bioma Caatinga de 2008 a 2009. Brasília: Ministério do Meio Ambiente.Google Scholar
Moro, M. F., Lughadha, E. N., Filer, D. L., Araújo, F. S. and Martins, F. R. (2014). A catalogue of the vascular plants of the Caatinga Phytogeographical Domain: A synthesis of floristic and phytosociological surveys. Phytotaxa, 160, 130.Google Scholar
Ness, J. H., Bronstein, J., Andersen, A. N. and Holland, J. N. (2004). Ant body size predicts dispersal distance of ant-adapted seeds: implications of small-ant invasions. Ecology, 85, 12441250.Google Scholar
Ness, J. H., Morin, F. and Giladi, I. (2009). Uncommon specialization in mutualism between a temperate herbaceous plant guild and the ant: are Aphaenogaster ants keystone mutualistics? Oikos, 118, 17931804.CrossRefGoogle Scholar
Oliveira, F. M. P., Ribeiro-Neto, J. D., Andersen, A. N. and Leal, I. R. (2017). Chronic anthropogenic disturbance as a secondary driver of ant community structure: interactions with soil type in Brazilian Caatinga. Environmental Conservation, 44, 115–123.Google Scholar
Passos, L. and Oliveira, P. S. (2002). Ants affect the distribution and performance of Clusia criuva seedlings, a primarily bird-dispersed rainforest tree. Journal of Ecology, 90, 517528.Google Scholar
Passos, L. and Oliveira, P. S. (2003). Interactions between ants, fruits and seeds in a restinga forest in south-eastern Brazil. Journal of Tropical Ecology, 19, 261270.Google Scholar
Passos, L. and Oliveira, P. S. (2004). Interaction between ants and fruits of Guapira opposite (Nyctaginaceae) in a Brazilian sandy plain rainforest: ant effects on seeds and seedlings. Oecologia, 139, 376382.Google Scholar
Pizo, M. A. and Oliveira, P. S. (2000). The use of fruits and seeds by ants in the Atlantic forest of southeast Brazil. Biotropica, 32, 851861.Google Scholar
Ponce-Reyes, R., Nicholson, E., Baxter, P.W.J., Fuller, R.A. and Possingham, H. (2013). Extinction risk in cloud forest fragments under climate change and habitat loss. Diversity and Distributions, 19, 518529.Google Scholar
Ribeiro, E. M. S., Arroyo-Rodríguez, V., Santos, B. A., Tabarelli, M. and Leal, I. R. (2015). Chronic anthropogenic disturbance drives the biological impoverishment of the Brazilian Caatinga vegetation. Journal of Applied Ecology, 52, 611620.Google Scholar
Ribeiro, E. M. S., Arroyo-Rodríguez, V., Santos, B. A., Tabarelli, M. & Leal, I. R. (2016). Phylogenetic impoverishment of plant communities following chronic human disturbances in the Brazilian Caatinga. Ecology, 97, 15831592.Google Scholar
Ribeiro-Neto, J. D., Arnan, X., Tabarelli, M. and Leal, I. R. (2016). Chronic anthropogenic disturbance causes homogenization of plant and ant communities in the Brazilian Caatinga. Biodiversity and Conservation, 25, 943956.Google Scholar
Sampaio, E. V. S. B. (1995). Overview of the Brazilian Caatinga. In Seasonal dry tropical forests, eds. Bullock, S. H., Mooney, H. A. and Medina, E.. Cambridge: Cambridge University Press, pp. 3563.Google Scholar
Schär, C., Vidale, P. L., Lüthi, D., Frei, C., Häberli, C., Liniger, M. A. and Appenzeller, C. (2004). The role of increasing temperature variability in European summer heatwaves. Nature, 427, 332336.CrossRefGoogle ScholarPubMed
Schulz, K., Voigt, K., Beusch, C., Almeida-Cortez, J. S., Kowarik, I., Walz, A. and Cierjacks, A. (2016). Grazing deteriorates the soil carbon stocks of Caatinga forest ecosystems in Brazil. Forest Ecology and Management, 367, 6270.Google Scholar
Singh, S. P. (1998). Chronic disturbance, a principal cause of environmental degradation in developing countries. Environmental Conservation, 25, 12.Google Scholar
Smith, B. H., Forman, P. D. and Boyd, A. E. (1989). Spatial patterns of seed dispersal and predation of 2 myrmecochorous forest herbs. Ecology, 70, 16491656.Google Scholar
Stuble, K. L., Patterson, C. M., Rodriguez-Cabal, M. A., Ribbons, R. R., Dunn, R. R. and Sanders, N. J. (2014). Ant-mediated seed dispersal in a warmed world. Peer J., 2, e286.Google Scholar
Sunderland, T., Apgaua, D., Baldauf, C. et al. (2015). Global dry forests: a prologue. International Forestry Review, 17, 19.Google Scholar
Tabarelli, M., Vicente, A. and Barbosa, D. C. A. (2003) Variation of seed dispersal spectrum of woody plants across a rainfall gradient in northeastern Brazil. Journal of Arid Environments, 53, 197210.Google Scholar
Travis, J. M. J. (2003). Climate change and habitat destruction: a deadly anthropogenic cocktail. Proceedings of the Royal Society of London B: Biological Sciences, 270, 467473.Google Scholar
van der Pijl, L. (1982). Principles of dispersal in higher plants. Berlin: Springer Verlag.CrossRefGoogle Scholar
van Roosmalen, M. G. M. (1985). Fruits of the Guianan flora. Utrecht: Institute of Systematic Botany.Google Scholar
WarrenII, R. J., Bahn, V. and Bradford, M. A. (2011). Temperature cues phenological synchrony in ant-mediated seed dispersal. Global Change Biology, 17, 24442454.Google Scholar
Westoby, M., French, K., Hugdes, L., Rice, B. and Rodgerson, L. (1991). Why do more plant species use ants for dispersal on infertile compared with fertile soils? Australian Journal of Ecology, 16, 445455.Google Scholar

References

Almeida, F. S, Mayhé-Nunes, A. J. & Queiroz, J. M. (2013). The importance of Poneromorph ants for seed dispersal in altered environments. Sociobiology, 60, 229–35.Google Scholar
Beattie, A. J. (1985). The Evolutionary Ecology of Ant-Plant Mutualisms. Cambridge: Cambridge University Press.Google Scholar
Bieber, A. G. D., Silva, P. S. D., Sendoya, S. F. & Oliveira, P. S. (2014). Assessing the impact of deforestation of the Atlantic rainforest on ant-fruit interactions: a field experiment using synthetic fruits. PLoS ONE, 9, e90369.Google Scholar
Böhning-Gaese, K., Gaese, B. H. & Rabemanantsoa, S. B. (1999). Importance of primary and secondary seed dispersal in the Malagasy tree Commiphora guillaumini. Ecology, 80, 821–32.Google Scholar
Bolton, B. (2003). Synopsis and classification of Formicidae. Memoirs of the American Entomological Institute, 71, 1370.Google Scholar
Bottcher, C. & Oliveira, P.S. (2014). Consumption of lipid-rich seed arils improves larval development in a Neotropical primarily carnivorous ant, Odontomachus chelifer (Ponerinae). Journal of Tropical Ecology, 30, 621–4.Google Scholar
Brandão, C. R. F., Silva, R. R. & Feitosa, R. M. (2011). Cerrado ground-dwelling ants (Hymenoptera: Formicidae) as indicators of edge effects. Zoologia (Curitiba), 28, 379–87.Google Scholar
Byrne, M. M. & Levey, D. J. (1993). Removal of seeds from frugivore defecations by ants in a Costa Rican rain forest. Vegetatio, 107/108, 363–74.Google Scholar
Camargo, P. H. S. A., Martins, M. M., Feitosa, R. M. & Christianini, A. V. (2016). Bird and ant synergy increases the seed dispersal effectiveness of an ornithochoric shrub. Oecologia, 181, 507–18.Google Scholar
Christianini, A. V., Mayhé-Nunes, A. J. & Oliveira, P. S. (2007). The role of ants in the removal of non-myrmecochorous diaspores and seed germination in a Neotropical savanna. Journal of Tropical Ecology, 23, 343–51.Google Scholar
Christianini, A. V., Mayhé-Nunes, A. J. (2012). Exploitation of fallen diaspores by ants: are there ant-plant partner choices? Biotropica, 44, 360–7.Google Scholar
Christianini, A. V. & Oliveira, P. S. (2009). The relevance of ants as seed rescuers of a primarily bird-dispersed tree in the Neotropical cerrado savanna. Oecologia, 160, 735–45.Google Scholar
Christianini, A. V. (2010). Birds and ants provide complementary seed dispersal in a Neotropical savanna. Journal of Ecology, 98, 573–82.Google Scholar
Christianini, A. V. (2013). Edge effects decrease ant-derived benefits to seedlings in a Neotropical savanna. Arthropod-Plant Interactions, 7, 191–9.Google Scholar
Christianini, A. V., Oliveira, P. S, Bruna, E. M. & Vasconcelos, H. L. (2014). Fauna in decline: Meek shall inherit. Science, 345, 1129.Google Scholar
Corrêa, M. M., Silva, P. S. D., Wirth, R., Tabarelli, M. & Leal, I. R. (2010). How leaf-cutting ants impact forests: drastic nest effects on light environment and plant assemblages. Oecologia, 162, 103–15.Google Scholar
Dalling, J. W. & Wirth, R. (1998). Dispersal of Miconia argentea seeds by the leaf-cutting ant Atta colombica. Journal of Tropical Ecology, 14, 705–10.Google Scholar
Dausmann, K. H., Glos, J., Linsenmair, K. E. & Ganzhorn, J. U. (2008). Improved recruitment of a lemur-dispersed tree in Malagasy dry forests after the demise of vertebrates in forest fragments. Oecologia, 157, 307–16.Google Scholar
Davidson, D. W. & Epstein, W. W. (1989). Epiphytic associations with ants. In Lüttge, U., ed., Vascular plants as epiphytes. Berlin: Springer, pp. 200–33.Google Scholar
Dias, B. F. S. (1992). Alternativas de Desenvolvimento dos Cerrados: Manejo e Conservação dos Recursos Naturais Renováveis. Brasília: Funatura.Google Scholar
Dirzo, R., Young, H. S., Galetti, et al. (2014). Defaunation in the Anthropocene. Science, 345, 401–6.Google Scholar
Eisenlohr, P. V. & Oliveira-Filho, A. T. (2015). Revisiting patterns of tree species composition and their driving forces in the Atlantic forests of Southeastern Brazil. Biotropica, 47, 689701.Google Scholar
El Bizri, H. R., Morcatty, T. Q., Lima, J. J. S. & Valsecchi, J. (2015). The thrill of the chase: uncovering illegal sport hunting in Brazil through YouTube™ posts. Ecology and Society, 20, 30.Google Scholar
Endo, W., Peres, C. A., Salas, , et al. (2010). Game vertebrate densities in hunted and nonhunted forest sites in Manu National Park, Peru. Biotropica, 42, 251–61.Google Scholar
Estes, J. A., Terborgh, J., Brashares, J. S., et al. (2011). Trophic downgrading on planet Earth. Science, 333, 301–6.Google Scholar
Farji-Brener, A. G. & Ghermandi, L. (2004). Seedling recruitment in a semi-arid Patagonian steppe: facilitative effects of refuse dumps of leaf-cutting ants. Journal of Vegetation Science, 15, 823–30.Google Scholar
Ferreira, A. V., Bruna, E. M. & Vasconcelos, H. L. (2011). Seed predators limit plant recruitment in Neotropical savannas. Oikos, 120, 1013–22.Google Scholar
Fleming, T. H., Breitwisch, R. & Whitesides, G. H. (1987). Patterns of tropical vertebrate frugivore diversity. Annual Review of Ecology and Systematics, 18, 91109.Google Scholar
Fourcassié, V. & Oliveira, P. S. (2002). Foraging ecology of the giant Amazonian ant Dinoponera gigantea (Hymenoptera, Formicidae, Ponerinae): activity schedule, diet, and spatial foraging patterns. Journal of Natural History, 36, 2211–27.Google Scholar
Galetti, M., Guevara, R., Côrtes, M. C., et al. (2013). Functional extinction of birds drives rapid evolutionary changes in seed size. Science, 340, 1086–90.Google Scholar
Galetti, M., Laps, R. & Pizo, M. A. (2000). Frugivory by toucans (Ramphastidae) at two altitudes in the Atlantic forest of Brazil. Biotropica, 32, 842–50.Google Scholar
Galetti, M., Pizo, M. A. & Morellato, L. P. C. (2011). Diversity of functional traits of fleshy fruits in a species-rich Atlantic rain forest. Biota Neotropica, 11, 181–93.Google Scholar
Gallegos, S.C., Hensen, I. & Schleuning, M. (2014). Secondary dispersal by ants promotes forest regeneration after deforestation. Journal of Ecology, 102, 659–66.Google Scholar
Gottsberger, G. & Silberbauer-Gottsberger, I. (1983). Dispersal and distribution in the cerrado vegetation of Brazil. Sonderbänd des Naturwissenschaftlichen Vereins in Hamburg, 7, 315–52.Google Scholar
Guimarães, P. R., & Cogni, R. (2002). Seed cleaning of Cupania vernalis (Sapindaceae) by ants: edge effect in a highland forest in south-east Brazil. Journal of Tropical Ecology 18, 303–7.Google Scholar
Henao-Gallego, N., Escobar-Ramírez, S., Calle, Z., Montoya-Lerma, J. & Armbrecht, I. (2012). An artificial aril designed to induce seed hauling by ants for ecological rehabilitation purposes. Restoration Ecology, 20, 555–60.Google Scholar
Horvitz, C. C. (1981). Analysis of how ant behaviors affect germination in a tropical myrmecochore Calathea-Microcephala (P and E) Koernicke (Marantaceae) – microsite selection and aril removal by Neotropical ants, Odontomachus, Pachycondyla, and Solenopsis (Formicidae). Oecologia, 51, 4752.Google Scholar
Horvitz, C. C. & Beattie, A. J. (1980). Ant dispersal of Calathea (Marantaceae) seeds by carnivorous ponerines (Formicidae) in a tropical rain forest. American Journal of Botany, 67, 321–6.Google Scholar
Horvitz, C. C. & Le Corff, J. (1993). Spatial scale and dispersion pattern of ant- and bird-dispersed herbs in two tropical lowland rain forests. Vegetatio, 107, 351–62.Google Scholar
Howe, H. F. & Smallwood, J. (1982). Ecology of seed dispersal. Annual Review of Ecology and Systematics, 13, 201–28.Google Scholar
Hughes, L. & Westoby, M. (1992). Effect of diaspore characteristics on removal of seeds adapted for dispersal by ants. Ecology, 73, 1300–12.Google Scholar
Hughes, L., Westoby, M. & Jurado, E. (1994). Convergence of elaiosomes and insect prey: evidence from ant foraging behaviour and fatty acid composition. Functional Ecology, 8, 358–65.Google Scholar
Janzen, D. H. (1970). Herbivores and the number of tree species in tropical forests. American Naturalist, 104, 501–29.Google Scholar
Janzen, D. H. (1977). Promising directions of study in tropical animal-plant interactions. Annals of the Missouri Botanical Garden, 64, 706–36.Google Scholar
Jordano, P. (2000). Fruits and frugivory. In Fenner, M., ed., Seeds: The Ecology of Regeneration in Plant Communities. Wallingford: CAB International, pp. 125–65.Google Scholar
Kaspari, M. (1993). Removal of seeds from Neotropical frugivore droppings: ant responses to seed number. Oecologia, 95, 81–8.Google Scholar
Klink, C. A. & Machado, R. B. (2005). Conservation of the Brazilian Cerrado. Conservation Biology, 19, 707–13.Google Scholar
Laman, T. G. (1996). Ficus seed shadows in a Bornean rain forest. Oecologia, 107, 347–55.Google Scholar
Laurance, W. F., Camargo, J. L. C., Luizão, R. C. C. et al. (2010). The fate of Amazonian forest fragments: a 32-year investigation. Biological Conservation, 144, 5667.Google Scholar
Laurance, W. F., Lovejoy, T. E., Vasconcelos, H. L. et al. (2002). Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conservation Biology, 16, 605–18.Google Scholar
Leal, I. R., Filgueiras, B. K. C., Gomes, J. P., Iannuzzi, L. & Andersen, A. N. (2012). Effects of habitat fragmentation on ant richness and functional composition in Brazilian Atlantic forest. Biodiversity and Conservation, 21, 1687–701.Google Scholar
Leal, I. R. & Oliveira, P. S. (1998). Interactions between fungus-growing ants (Attini), fruits and seeds in cerrado vegetation in Southeast Brazil. Biotropica, 30, 170–8.Google Scholar
Leal, I. R., Wirth, R. & Tabarelli, M. (2007). Seed dispersal by ants in the semi-arid Caatinga of north-east Brazil. Annals of Botany, 99, 885–94.Google Scholar
Levey, D. J. & Byrne, M. M. (1993). Complex ant–plant interactions: rain forest ants as secondary dispersers and post-dispersal seed predators. Ecology, 74, 1802–12.Google Scholar
Levey, D. J., Moermond, T. C. & Denslow, J. S. (1994). Frugivory: An overview. In McDade, L. A., Bawa, K. S., Hespenheide, H. A. & Hartshorn, G. S., eds., La Selva: Ecology and Natural History of a Neotropical Rain Forest. Chicago: University of Chicago Press, pp. 282–94.Google Scholar
Lima, M. H. C., Oliveira, E. G. & Silveira, F. A. O. (2013). Interactions between ants and non-myrmecochorous fruits in Miconia (Melastomataceae) in a Neotropical savanna. Biotropica, 45, 217–23.Google Scholar
Longino, J. T, Coddington, J. & Colwell, R. K. (2002). The ant fauna of a tropical rain forest: estimating species richness three different ways. Ecology, 83, 689702.Google Scholar
McConkey, K.R., Prasad, S., Corlett, R.T. et al. (2012). Seed dispersal in changing landscapes. Biological Conservation, 146, 113.Google Scholar
Mendonça, A. H., Russo, C., Melo, A. C. G. & Durigan, G. (2015). Edge effects in savanna fragments: a case study in the cerrado. Plant Ecology & Diversity, 8, 493503.Google Scholar
Meyer, S. T., Leal, I. R., Tabarelli, M. & Wirth, R. (2011). Ecosystem engineering by leaf-cutting ants: nests of Atta cephalotes drastically alter forest structure and microclimate. Ecological Entomology, 36, 1424.Google Scholar
Mokany, K., Prasad, S. & Westcott, D. A. (2015). Impacts of climate change and management responses in tropical forests depend on complex frugivore-mediated seed dispersal. Global Ecology and Biogeography, 24, 685–94.Google Scholar
Morellato, L. P. C. (1992). Nutrient cycling in two south-east Brazilian forests. I Litterfall and litter standing crop. Journal of Tropical Ecology, 8, 205–15.Google Scholar
Morellato, L. P. C., Alberton, B., Alvarado, S. T. et al. (2016). Linking plant phenology to conservation biology. Biological Conservation, 195, 6072.Google Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–8.Google Scholar
Oliveira, P. S., Galetti, M., Pedroni, F. & Morellato, L. P. C. (1995). Seed cleaning by Mycocepurus goeldii ants (Attini) facilitates germination in Hymenaea courbaril (Caesalpiniaceae). Biotropica, 27, 518–22.Google Scholar
Oliveira, P. S. & Marquis, R. J. (eds.) (2002). The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna. New York: Columbia University Press.Google Scholar
Oliveira-Filho, A. T. & Ratter, J. A. (2002). Vegetation physiognomies and woody flora of the Cerrado biome. In Oliveira, P. S. & Marquis, R. J., eds., The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna. New York: Columbia University Press, pp. 91120.Google Scholar
Passos, L. & Oliveira, P. S. (2002). Ants affect the distribution and performance of Clusia criuva seedlings, a primarily bird-dispersed rainforest tree. Journal of Ecology, 90, 517–28.Google Scholar
Passos, L. (2003). Interactions between ants, fruits and seeds in a restinga forest in south-eastern Brazil. Journal of Tropical Ecology, 19, 261–70.Google Scholar
Passos, L. (2004). Interaction between ants and fruits of Guapira opposita (Nyctaginaceae) in a Brazilian sandy plain rainforest: ant effects on seeds and seedlings. Oecologia, 139, 376–82.Google Scholar
Pinto, N. & Keitt, T. H. (2008). Scale-dependent responses to forest cover displayed by frugivore bats. Oikos, 117, 1725–31.Google Scholar
Pizo, M. A. (1997). Seed dispersal and predation in two populations of Cabralea canjerana (Meliaceae) in the Atlantic forest of southeastern Brazil. Journal of Tropical Ecology, 13, 559–78.Google Scholar
Pizo, M. A. (2008). The use of seeds by a twig-dwelling ant on the floor of a tropical rain forest. Biotropica, 40, 119–21.Google Scholar
Pizo, M. A. & Oliveira, P. S. (1998). Interaction between ants and seeds of a nonmyrmecochorous Neotropical tree, Cabralea canjerana (Meliaceae), in the Atlantic forest of southeast Brazil. American Journal of Botany, 85, 669–74.Google Scholar
Pizo, M. A. & Oliveira, P. S. (1999). Removal of seeds from vertebrate faeces by ants: effects of seed species and deposition site. Canadian Journal of Zoology, 77, 15951602.Google Scholar
Pizo, M. A. & Oliveira, P. S. (2000). The use of fruits and seeds by ants in the Atlantic forest of southeast Brazil. Biotropica, 32, 851–61.Google Scholar
Pizo, M. A. & Oliveira, P. S. (2001). Size and lipid content of nonmyrmecochorous diaspores: effects on the interaction with litter-foraging ants in the Atlantic rain forest of Brazil. Plant Ecology, 157, 3752.Google Scholar
Pizo, M. A., Passos, L. & Oliveira, P. S. (2005). Ants as seed dispersers of fleshy diaspores in Brazilian Atlantic forests. In Forget, P.-M., Lambert, J. E., Hulme, P. E. and Vander Wall, S. B., eds., Seed Fate: Predation and Secondary Dispersal. Wallingford: CABI Publishing, pp. 315–29.Google Scholar
Redford, K. H. (1992). The empty forest. BioScience, 42, 412–22.Google Scholar
Ribeiro, M. C., Metzger, J. P., Martensen, A. C., Ponzoni, F. J. & Hirota, M. M. (2009). The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation, 142, 1141–53.Google Scholar
Rico-Gray, V. & Oliveira, P. S. (2007). The Ecology and Evolution of Ant-Plant Interactions. Chicago: University of Chicago Press.Google Scholar
Roberts, J. T. & Heithaus, R. (1986). Ants rearrange the vertebrate-generated seed shadow of a Neotropical fig tree. Ecology, 67, 1046–51.Google Scholar
Santos-Heredia, C., Andresen, E. & Stevenson, P. (2011). Secondary seed dispersal by dung beetles in an Amazonian forest fragment of Colombia: influence of dung type and edge effect. Integrative Zoology, 6, 399408.Google Scholar
Schaefer, H. M. & Ruxton, G. D. (2011). Plant-Animal Communication. Oxford: Oxford University Press.Google Scholar
Terborgh, J., Nuñez-Iturri, G., Pitman, N. C. A. et al. (2008). Tree recruitment in an empty forest. Ecology, 89, 1757–68.Google Scholar
Travis, J. M. J., Delgado, M., Bocedi, G. et al. (2013). Dispersal and species response to climate change. Oikos, 122, 1532–40.Google Scholar
van der Pijl, L. (1969). Principles of Seed Dispersal in Higher Plants. Berlin: Springer-Verlag.Google Scholar
Vander Wall, S. B. & Longland, W. S. (2005). Diplochory and the evolution of seed dispersal. In Forget, P.-M., Lambert, J. E., Hulme, P. E. and Vander Wall, S. B., eds., Seed Fate: Predation and Secondary Dispersal. Wallingford: CABI Publishing, pp. 297314.Google Scholar
Vasconcelos, H. L., Pacheco, R., Silva, R. C. et al. (2009). Dynamics of the leaf-litter arthropod fauna following fire in a Neotropical woodland savanna. PLoS ONE, 4, e7762.Google Scholar
Vasconcelos, H. L., Vieira Neto, E. M. H., Mundim, F. M. R. & Bruna, E. M. (2006). Roads alter the colonization dynamics of a keystone herbivore in Neotropical savannas. Biotropica, 38, 661–5.Google Scholar
Wilson, E. O. (1987). The little things that run the world. Conservation Biology, 1, 344–6.Google Scholar
Wirth, R., Herz, H., Ryel, R., Beyschlag, W. & Hölldobler, B. (2003). Herbivory of Leaf-Cutting Ants – A Case Study on Atta Colombica in the Tropical Rainforest of Panama. Berlin: Springer.Google Scholar
Wright, S. J. (2003). The myriad consequences of hunting for vertebrates and plants in tropical forests. Perspectives in Plant Ecology, Evolution and Systematics, 6, 7386.Google Scholar
Zwiener, V. P., Bihn, J. H. & Marques, M. C. M. (2012). Ant-diaspore interactions during secondary succession in the Atlantic forest of Brazil. Revista de Biologia Tropical, 60, 933–42.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×