Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T16:46:43.782Z Has data issue: false hasContentIssue false

4 - Acoustic visualization of three-dimensional animal aggregations in the ocean

from Part one - Imaging and measurement

Published online by Cambridge University Press:  01 June 2010

Julia K. Parrish
Affiliation:
University of Washington
William M. Hamner
Affiliation:
University of California, Los Angeles
Get access

Summary

Introduction

Pelagic animals exist in a three-dimensional fluid medium and are continuously subjected to the physical processes of advection and turbulent mixing. Despite the tendencies of turbulence to mix and homogenize scalar properties in the ocean, most distributions of pelagic animals exhibit patchiness over a wide range of spatial and temporal scales (Haury et al. 1978; Powell 1989; Steele 1991; Levin et al. 1993). Since many pelagic animals are active swimmers, it is perhaps not surprising that the power spectra of their spatial distributions deviate, at least on smaller scales, from those of passive scalar properties such as sea surface temperature and chlorophyll fluorescence (Levin 1990). The patchiness of pelagic animal distributions results from the interaction between physical processes at work on the fluid and animal aggregation responses to biotic and abiotic cues in their fluid environment (Omori & Hamner 1982; Mackas et al. 1985; Hamner 1988; Greene et al. 1994). This interaction between physics and biology is both complex and fascinating; its study will demand new methods in oceanography and ethology which are more sophisticated than those brought to bear on the subject in the past.

Three fundamental problems complicate efforts to study patchiness and animal aggregations in the oceanic environment. First, the ocean presents humans with a relatively hostile environment within which to work. Second, the ocean is largely opaque to light and other forms of electromagnetic radiation. Third, the distributions of pelagic animals are highly dynamic, continuously changing in both space and time. All three of these problems make it difficult to observe or sample pelagic animal distributions without confounding spatial and temporal patterns.

Type
Chapter
Information
Animal Groups in Three Dimensions
How Species Aggregate
, pp. 61 - 67
Publisher: Cambridge University Press
Print publication year: 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×