Skip to main content Accessibility help
  • Print publication year: 2011
  • Online publication date: June 2012

7 - Camouflage behaviour and body orientation on backgrounds containing directional patterns


The best-known interrelated mechanisms through which coloration can act to reduce predator detection rates of potential prey are background matching and disruptive coloration (Thayer 1909; Cott 1940; Kingsland 1978; Ruxton et al. 2004; Wilkinson & Sherratt 2008; Stevens & Merilaita 2009). With background matching, objects are difficult to detect simply due to their similarity to their background. Conversely, the striking/high-contrast markings involved in disruptive coloration create ‘the appearance of false edges and boundaries and hinders the detection or recognition of an object's outline and shape’ (Stevens & Merilaita 2009). Coloration is but one means through which animals achieve crypsis; others include behaviour and morphology, including body size and shape. Here we focus on behaviour and its interaction with coloration in relation to crypsis.

Allen, J. J., Mäthger, L. M., Barbosa, A. et al. 2009. Cuttlefish dynamic camouflage: responses to substrate choice and integration of multiple visual cues. Proceedings of the Royal Society, Series B, 277, 1031–1039.
Atkinson, C. J. L., Bergmann, M. & Kaiser, M. J. 2004. Habitat selection in whiting. Journal of Fish Biology, 64, 788–793.
Bond, A. B. & Kamil, A. C. 2002. Visual predators select for crypticity and polymorphism in virtual prey. Nature, 415, 609–613.
Bond, A. B. & Kamil, A. C. 2006. Spatial heterogeneity, predator cognition, and the evolution of color polymorphism in virtual prey. Proceedings of the National Academy of Sciences of the USA, 103, 3214–3219.
Callahan, A. 2007. Quantifying crypsis: analyzing the resting site selection of moths in their natural habitats. Unpublished BSc thesis, Department of Biology, Carleton University, Ottawa.
Chiao, C. C., Kelman, E. J. & Hanlon, R. T. 2005. Disruptive body patterning of cuttlefish (Sepia officinalis) requires visual information regarding edges and contrast of objects in natural substrate backgrounds. Biological Bulletin, 208, 7–11.
Christensen, B. & Persson, L. 1993. Species-specific antipredatory behaviors: effects on prey choice in different habitats. Behavioral Ecology and Sociobiology, 32, 1–9.
Cott, H. 1940. Adaptive Coloration in Animals. London: Methuen.
Cuthill, I. C., Bennett, A. T. D., Partridge, J. C. & Maier, E. J. 1999. Plumage reflectance and the objective assessment of avian sexual dichromatism. American Naturalist, 153, 183–200.
Cuthill, I. C., Partridge, J. C., Bennett, A. T. D. et al. 2000. Ultraviolet vision in birds. Advances in the Study of Behavour, 29, 159–214.
Dimitrova, M. & Merilaita, S. 2010. Prey concealment: visual background complexity and prey contrast distribution. Behavioral Ecology, 21, 176–181.
Dusenbury, D. B. 1992. Sensory Ecology: How Organisms Acquire and Respond to Information. New York: W. H. Freeman.
Endler, J. A. 1984. Progressive background in moths, and a quantitative measure of crypsis. Biological Journal of the Linnean Society, 22, 187–231.
Endler, J. A. & Mielke, P. W. 2005. Comparing entire colour patterns as birds see them. Biological Journal of the Linnean Society, 86, 405–431.
Fraser, S., Callahan, A., Klassen, D. & Sherratt, T. N. 2007. Empirical tests of the role of disruptive coloration in reducing detectability. Proceedings of the Royal Society, Series B, 274, 1325–1331.
Ghim, M. M. & Hodos, W. 2006. Spatial contrast sensitivity of birds. Journal of Comparative Physiology A, 192, 523–534.
Gordon, I. E. 1968. Interactions between items in visual search. Journal of Experimental Psychology, 76, 248–355.
Hart, N. S. & Hunt, D. M. 2007. Avian visual pigments: characteristics, spectral tuning, and evolution. American Naturalist, 169, S7–S26.
Hebets, E. A., Elias, D. O., Mason, A. C., Miller, G. L. & Stratton, G. E. 2008. Substrate-dependent signalling success in the wolf spider, Schizocosa retrorsa. Animal Behaviour, 75, 605–615.
Kettlewell, H. B. D. 1958. A survey of the frequencies of Biston betularia and its melanic forms in Britain. Heredity, 12, 51–72.
Kettlewell, H. B. D. 1973. The Evolution of Melanism: The Study of a Recurring Necessity, with Special Reference to Industrial Melanism in the Lepidoptera. Oxford, UK: Oxford University Press.
Kingsland, S. 1978. Abbott Thayer and the protective coloration debate. Journal of the History of Biology, 11, 223–244.
Merilaita, S. 1998. Crypsis through disruptive coloration in an isopod. Proceedings of the Royal Society, Series B, 265, 1059–1064.
Merilaita, S. 2003. Visual background complexity facilitates the evolution of camouflage. Evolution, 57, 1248–1254.
Merilaita, S. & Lind, J. 2005. Background-matching and disruptive coloration, and the evolution of cryptic coloration. Proceedings of the Royal Society, Series B, 272, 665–670.
Moles, A. & Norcross, B. L. 1995. Sediment preference in juvenile Pacific flatfishes. Netherlands Journal of Sea Research, 34, 177–182.
Morse, D. H. 2006. Fine-scale substrate use by a small sit-and-wait predator. Behavioral Ecology, 17, 405–409.
Moss, R., Jackson, R. R. & Pollard, S. D. 2006. Hiding in the grass: background matching conceals moths (Lepidoptera: Crambidae) from detection by spider eyes (Araneae: Salticidae). New Zealand Journal of Zoology, 33, 207–214.
Osorio, D. & Srinivasan, M. V. 1991. Camouflage by edge enhancement in animal coloration patterns and its implications for visual mechanisms. Proceedings of the Royal Society, Series B, 244, 81–85.
Osorio, D. & Vorobyev, M. 2005. Photoreceptor spectral sensitivities in terrestrial animals: adaptations for luminance and colour vision. Proceedings of the Royal Society, Series B, 272, 1745–1752.
Pietrewicz, A. T. & Kamil, A. C. 1977. Visual detection of cryptic prey by Blue Jays (Cyanocitta cristata). Science, 195, 580–582.
Ray, S. 2002. Applied Photographic Optics: Lenses and Optical Systems for Photography. Burlington, MA: Focal Press.
Rensink, R. A., Oregan, J. K. & Clark, J. J. 1997. To see or not to see: the need for attention to perceive changes in scenes. Psychological Science, 8, 368–373.
Ruxton, G. D., Sherratt, T. N. & Speed, M. 2004. Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals and Mimicry. Oxford, UK: Oxford University Press.
Ryer, C. H., Lemke, J. L., Boersma, K. & Levas, S. 2008. Adaptive coloration, behavior and predation vulnerability in three juvenile north Pacific flatfishes. Journal of Experimental Marine Biology and Ecology, 359, 62–66.
Sargent, T. D. 1966. Background selection of geometrid and noctuid moths. Science, 154, 1674–1675.
Sargent, T. D. 1968. Cryptic moths: effects on background selections of painting circumocular scales. Science, 159, 100–101.
Sargent, T. D. 1969a. Background selections of pale and melanic forms of cryptic moth Phigalia titea (Cramer). Nature, 222, 585–586.
Sargent, T. D. 1969b. Behavioral adaptations of cryptic Moths. II. Experimental studies on bark-like species. Journal of the New York Entomological Society, 77, 75–79.
Sargent, T. D. 1969c. Behavioral adaptations of cryptic moths.V. Preliminary studies on an anthophilous species, Schinia florida (Noctuidae). Journal of the New York Entomological Society, 77, 123–128.
Sargent, T. D. 1969d. Behavioural adaptations of cryptic moths. III. Resting attitudes of two bark-like species, Melanolophia canadaria and Catocala ultronia. Animal Behaviour, 17, 670–672.
Siebeck, U. E., Parker, A., Sprenger, D., Mäthger, L. M. & Wallis, G. 2010. A species of reef fish that uses ultraviolet patterns for covert face recognition. Current Biology, 20, 407–410.
Smilek, D., Eastwood, J. D., Reynolds, M. G. & Kingstone, A. 2008. Metacognition and change detection: do lab and life really converge? Consciousness and Cognition, 17, 1056–1061.
Stevens, M. 2010. Sensory ecology, evolution, and behavior. Current Zoology56, 1–3.
Stevens, M. & Cuthill, I. C. 2006. Disruptive coloration, crypsis and edge detection in early visual processing. Proceedings of the Royal Society, Series B, 273, 2141–2147.
Stevens, M. & Merilaita, S. 2009. Defining disruptive coloration and distinguishing its functions. Philosophical Transactions of the Royal Society, Series B., 364, 481–488.
Stevens, M., Párraga, C. A., Cuthill, I. C., Partridge, J. C. & Troscianko, T. S. 2007. Using digital photography to study animal coloration. Biological Journal of the Linnean Society, 90, 211–237.
Stoddard, M. C. & Stevens, M. 2010. Pattern mimicry of host eggs by the common cuckoo, as seen through a bird's eye. Proceedings of the Royal Society, Series B, 277, 1387–1393.
Thayer, G. H. 1909. Concealing Coloration in the Animal Kingdom. New York: Macmillan.
Tikkanen, P., Huhta, A. & Muotka, T. 2000. Determinants of substrate selection in lotic mayfly larvae: is cryptic coloration important? Archiv für Hydrobiologie, 148, 45–57.
Webster, R. J., Callahan, A., Godin, J. G. J. & Sherratt, T. N. 2009. Behaviourally mediated crypsis in two nocturnal moths with contrasting appearance. Philosophical Transactions of the Royal Society, Series B, 364, 503–510.
Wilkinson, D. M. & Sherratt, T. N. 2008. The art of concealment. The Biologist, 55, 10–15.
Zar, J. H. 1999. Biostatistical Analysis, 4th edn. New York: Prentice Hall.