Skip to main content Accessibility help
×
Home
  • Print publication year: 2013
  • Online publication date: April 2011

Chapter 14 - Synaptic transmission

References

1. Sherrington CS. The Integrative Action of the Nervous System. New Haven, CT: Yale University Press, 1906.
2. Golebiewski H, Eckersdorf B, Konopacki J. Electrical coupling underlies theta rhythm in freely moving cats. Eur J Neurosci 2006; 24: 1759–70.
3. Hestrin S, Galarreta M. Electrical synapses define networks of neocortical GABAergic neurons. Trends Neurosci 2005; 28: 304–9.
4. Brodal P. The Central Nervous System: Structure and Function. New York, NY:Oxford University Press, 1992.
5. Whittaker VP, Michaelson IA, Kirkland RJA. The separation of synaptic vesicles from nerve-ending particles (‘synaptosomes’). Biochem J 1964; 90: 293–303.
6. Liu YJ, Edwards RH. The role of vesicular transport proteins in synaptic transmission and neural degeneration. Ann Rev Neurosci 1997; 20: 125–56.
7. Rahamimoff R, Fernandez JM. Pre- and post-fusion regulation of transmitter release. Neuron 1997; 18: 17–27.
8. Dawson TM, Snyder SH. Gases as biological messengers: nitric oxide and carbon monoxide in the brain. J Neurosci 1994; 14: 5147–59.
9. del Castillo J, Engbak L. The nature of the neuromuscular block produced by magnesium. J Physiol 1954; 124: 370–84.
10. Richards CD, Sercombe R. Calcium, magnesium and the electrical activity of guinea-pig olfactory cortex in vitro. J Physiol 1970; 211: 571–84.
11. Katz B. The Release of Neural Transmitter Substances. Liverpool: Liverpool University Press, 1969.
12. del Castillo J, Katz B. Quantal components of the end plate potential. J Physiol 1954; 124: 560–73.
13. Redman S. Quantal analysis of synaptic potentials in neurons of the central nervous system. Physiol Rev 1990; 70: 165–98.
14. Weber T, Zemelman BV, McNew JA, et al. SNAREpins: minimal machinery for membrane fusion. Cell 1998; 92: 759–72.
15. Chen YA, Scales SJ, Scheller RH. Sequential SNARE assembly underlies priming and triggering of exocytosis. Neuron 2001; 30: 161–70.
16. Fernandez-Chacon R, Konigstorfer A, Gerber SH, et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature 2001; 410: 41–9.
17. Takahashi T, Momiyama A. Different types of calcium channels mediate central synaptic transmission. Nature 1993; 366: 156–8.
18. Turner TJ, Dunlap K. Pharmacological characterization of presynaptic calcium channels using subsecond biochemical measurements of synaptosomal neurosecretion. Neuropharmacology 1995; 34: 1469–78.
19. Randall A, Tsien RW. Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons. J Neurosci 1995; 15: 2995–3012.
20. Wheeler DB, Randall A, Tsien RW. Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission. Science 1994; 264: 107–11.
21. Degtiar VE, Scheller RH, Tsien RW. Syntaxin modulation of slow inactivation of N-type calcium channels. J Neurosci 2000; 20: 4355–67.
22. Richards CD, Metcalfe JC, Smith GA, Hesketh TR. Free calcium levels and pH in synaptosomes during transmitter release. Biochim Biophys Acta 1984; 803: 215–20.
23. Zucker RS, Fogelson AL. Relationship between transmitter release and presynaptic calcium influx when calcium enters through discrete channels. Proc Natl Acad Sci U S A 1986; 83: 3032–6.
24. Emptage NJ, Reid C, Fine A. Calcium stores in hippocampal synaptic boutons mediate short-term plasticity, store operated Ca2+ entry and spontaneous release. Neuron 2001; 29: 197–208.
25. Breckenridge LJ, Almers W. Currents through the fusion pore that forms during exocytosis of a secretory vesicle. Nature 1987; 328: 814–17.
26. Chow RH, von Ruden L, Neher E. Delay in vesicle formation revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature 1992; 356: 60–3.
27. Heuser JE, Reese TS. Structural changes after transmitter release at the frog neuromuscular junction. J Cell Biol 1981; 88: 564–80.
28. Richards DA, Guatimosim C, Betz WJ. Two endocytic recycling routes selectively fill two vesicle pools in frog motor nerve terminals. Neuron 2000; 27: 551–9.
29. Pyle JL, Kavalali ET, Choi S, Tsien RW. Visualization of synaptic activity in hippocampal slices with FM1–43 enabled by fluorescent quenching. Neuron 2000; 24: 803–8.
30. Klingauf J, Kavalali ET, Tsien RW. Kinetics and regulation of fast endocytosis at hippocampal synapses. Nature 1998; 394: 581–5.
31. Sankaranarayanan S, Ryan TA. Calcium accelerates endocytosis of vSNAREs at hippocampal synapses. Nat Neurosci 2001; 4: 129–36.
32. He L, Wu LG. The debate on the kiss-and-run fusion at synapses. Trends Neurosci 2007; 30: 447–55.
33. Schikorski T, Stevens CF. Quantitative ultrastructural analysis of hippocampal excitatory synapses. J Neurosci 1997; 17: 5858–67.
34. Pieribone VA, Shupliakov O, Brodin L, et al. Distinct pools of synaptic vesicles in neurotransmitter release. Nature 1995; 375: 493–7.
35. Eaton BA, Haugwitz M, Lau D, Moore HPH. Biogenesis of regulated exocytotic carriers in neuroendocrine cells. J Neurosci 2000; 20: 7334–44.
36. Rupnik M, Kreft M, Sikdar SK, et al. Rapid regulated dense-core vesicle exocytosis requires the CAPS protein. Proc Natl Acad Sci U S A 2000; 97: 5627–32.
37. Cole JC, Villa BR, Wilkinson RS. Disruption of actin impedes transmitter release in snake motor terminals. J Physiol 2000; 525: 579–86.
38. Ryan TA. Inhibitors of myosin light chain kinase block synaptic vesicle pool mobilization during actin potential firing. J Neurosci 1999; 19: 1317–23.
39. Birks R, MacIntosh FC. Acetylcholine metabolism at nerve endings. Br Med Bull 1957; 13: 157–61.
40. Tanelian DL, Kosek P, Mody I, MacIver MB. The role of the GABAA receptor/chloride channel complex in anesthesia. Anesthesiology 1993; 78: 757–76.
41. Eccles JC. The Physiology of Synapses. Berlin: Springer, 1964.
42. Hollman M, Heinemann S. Cloned glutamate receptors. Ann Rev Neurosci 1994; 17: 31–108.
43. Brown DA, Adams P. Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neuron. Nature 1980; 283: 673–6.
44. Horn JP, Dodd J. Mono-synaptic muscarinic activation of K+ conductance underlies the slow inhibitory postsynaptic potential in sympathetic ganglia. Nature 1981; 292: 625–7.
45. North RA. Drug receptors and the inhibition of nerve cells. Br J Pharmacol 1989; 98: 13–28.
46. Winegar BD, MacIver MB. Isoflurane depresses hippocampal CA1 glutamate nerve terminals without inhibiting fiber volleys. BMC Neurosci 2006; 7: 5.
47. MacIver MB, Mikulec AA, Amagasu SM, Monroe FA. Volatile anesthetics depress glutamate transmission via presynaptic actions. Anesthesiology 1996; 85: 823–34.
48. Bliss TV, Lømo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 1973; 232: 331–56.
49. Lisman J, Malenka RC, Nicoll RA, Malinow R. Learning mechanisms: the case for CaM-KII. Science 1997; 276: 2001–2.
50. Collingridge GL, Kehl SJ, McLennan H. Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol 1983; 334: 33–46.
51. Lynch G, Larson J, Kelso S, et al. Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature 1983; 305: 719–21.
52. Malenka RC, Kauer JA, Zucker RS, Nicoll RA. Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. Science 1988; 242: 81–4.
53. Barria A, Derkach V, Soderling T. Identification of the CA2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate-type glutamate receptor. J Biol Chem 1997; 272: 32727–30.
54. Nguyen PV, Abel T, Kandel ER. Requirement of a critical period of transcription for induction of a late phase of LTP. Science 1994; 265: 1104–7.
55. Frey U, Krug M, Reymann KG, Matthies H. Anisomycin, an inhibitor of protein synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro. Brain Res 1988; 452: 57–65.
56. Stevens CF, Wang Y. Changes in reliability of synaptic function as a mechanism for plasticity. Nature 1994; 371: 704–7.
57. Raymond CR. LTP forms 1, 2 and 3: different mechanisms for the ‘long’ in long-term potentiation. Trends Neurosci 2007; 30: 167–75.
58. Zakharenko SS, Zablow L, Siegelbaum SA. Visualization of changes in presynaptic function during long-term synaptic plasticity. Nat Neurosci 2001; 7: 711–17.
59. Thiagarajan TC, Lindskog M, Malgaroli A, Tsien RW. LTP and adaptation to inactivity: overlapping mechanisms and implications for metaplasticity. Neuropharmacology 2007; 52: 156–75.
60. Liao D, Hessler NA, Malinow R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 1995; 375: 400–4.
61. Shi SH, Hayashi Y, Petralia RS, et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 1999; 284: 1811–16.
62. Harris EW, Cotman CW. Long-term potentiation of guinea pig mossy fiber responses is not blocked by N-methyl D-aspartate antagonists. Neurosci Lett 1986; 70: 132–7.
63. Weisskopf MG, Castillo PE, Zalutsky RA, Nicoll RA. Mediation of hippocampal mossy fiber long-term potentiation by cyclic AMP. Science 1994; 265: 1878–82.
64. Barnes CA, Jung MW, McNaughton BL, et al. LTP saturation and spatial learning disruption: effects of task variables and saturation levels. J Neurosci 1994; 14: 5793–806.
65. Mulkey RM, Herron CE, Malenka RC. An essential role for protein phosphatases in hippocampal long-term depression. Science 1993; 261: 1051–5.
66. Pittson S, Himmel AM, MacIver MB. Multiple synaptic and membrane sites of anesthetic action in the CA1 region of rat hippocampal slices. BMC Neurosci 2004; 5: 52.
67. Hemmings HC, Akabas MH, Goldstein PA, Trudell JR, Orser BA, Harrison NL. Emerging molecular mechanisms of general anesthetic action. Trends Pharmacol Sci 2005; 26: 503–10.