Skip to main content Accessibility help
  • Print publication year: 2011
  • Online publication date: April 2011

Chapter 38 - Neuromuscular blocking drugs

Related content

Powered by UNSILO


1. Bernard C. Leçon sur les effets de substances toxiques et medicamenteuses. Bailliere, Paris 1851: 164–190.
2. Bernard C. Etudes physiologiques sur quelques poisons americains. Rev Deux Mondes 1864; 53: 164–190.
3. Griffith HR, Johnson GE. The use of curare in general anesthesia. Anesthesiology 1942; 3: 418–20.
4. Mayrhofer OK. Self-experiments with succinylcholine chloride; a new ultra-short-acting muscle relaxant. Br Med J 1952; 1: 1332–4.
5. Thesleff S. Succinylcholine iodide: studies on its pharmacological properties and clinical use. Acta Physiol Scand Suppl 1952; 27: 1–36.
6. Bovet D. Some aspects of the relationship between chemical structure and curare-like activity. Ann N Y Acad Sci 1951; 54: 407–10.
7. Baird WL, Reid AM. The neuromuscular blocking properties of a new steroid compound, pancuronium bromide: a pilot study in man. Br J Anaesth 1967; 39: 775–80.
8. Martyn JAJ, Fukushima Y, Chon JY, Yang HS. Muscle relaxants in burns, trauma, and critical illness. Int Anesthesiol Clin 2006; 44: 123–43.
9. Fambrough DM. Control of acetylcholine receptors in skeletal muscle. Physiol Rev 1979; 59: 165–227.
10. Martyn JAJ, White DA, Gronert GA, Jaffe R, Ward JM. Up and down regulation of acetylcholine receptors:effects on neuromuscular blockers. Anesthesiology 1992; 76: 822–43.
11. Martyn JAJ, Jonsson-Fagerlund M, Eriksson LI. Basic principles of neuromuscular transmission. Anaesthesia 2009; 64: 1–9.
12. Paton WD, Waud DR. The margin of safety of neuromuscular transmission. J Physiol 1967; 191: 59–90.
13. Lingle CJ, Steinbach JH. Neuromuscular blocking agents. Int Anesthesiol Clin 1988; 26: 288–301.
14. Prince RJ, Sine SM. The ligand binding domains of the nicotinic acetylcholine receptor. In: Barrantes FJ, ed., The Nicotinic Acetylcholine Receptor: Current Views and Future Trends. Berlin: Springer-Verlag, 1998: 32–59.
15. Adams PR, Sakmann B. Decamethonium both opens and blocks endplate channels. Proc Natl Acad Sci U S A 1978; 75: 2994–8.
16. Marshall CG, Ogden DC, Colquhoun D. The actions of suxamethonium (succinyldicholine) as an agonist and channel blocker at the nicotinic receptor of frog muscle. J Physiol 1990; 428: 155–74.
17. Bowmann WC, Rodger IW, Houston J, Marshall RJ, McIndewar I. Structure: action relationships among some desacetoxy analogues of pancuronium and vecuronium in the anesthetized cat. Anesthesiology 1988; 69: 57–62.
18. Kopman AF, Klewicka MM, Kopman DJ, Neuman GG. Molar potency is predictive of the speed of onset of neuromuscular block for agents of intermediate, short, and ultrashort duration. Anesthesiology 1999; 90: 425–31.
19. Szenohradszky J, Trevor AJ, Bickler P, et al. Central nervous system effects of intrathecal muscle relaxants in rats. Anesth Analg 1993; 76: 1304–9.
20. Cardone C, Szenohradszky J, Spencer Y, Bickler P. Activation of brain acetylcholine receptors by neuromuscular blocking drugs. Anesthesiology 1994; 80: 1155–61.
21. Jonsson M, Kim C, Yamamoto Y, et al. Atracurium and vecuronium block nicotine-induced carotid body chemoreceptor responses. Acta Anaesthesiologica Scandinavica 2002; 46: 488–94.
22. Jonsson M, Dabrowski M, Gurley DA, et al. Activation and inhibition of human muscular and neuronal nicotinic acetylcholine receptors by succinylcholine. Anesthesiology 2006; 104: 724–33.
23. Hou VY, Hirshman CA, Emala CW. Neuromuscular relaxants as antagonists for M2 and M3 muscarinic receptors. Anesthesiology 1998; 88: 744–50.
24. Jooste EH, Sharma A, Zhang Y, Emala CW. Rapacuronium augments acetylcholine-induced bronchoconstriction via positive allosteric interactions at the M3 muscarinic receptor. Anesthesiology 2005; 103: 1195–203.
25. Jooste E, Zhang Y, Emala CW. Neuromuscular blocking agents' differential bronchoconstrictive potential in Guinea pig airways. Anesthesiology 2007; 106: 763–72.
26. Lowman MA, Rees PH, Benyon RC, Church MK. Human mast cell heterogeneity: histamine release from mast cells dispersed from skin, lung, adenoids, tonsils, and colon in response to IgE-dependent and nonimmunologic stimuli. J Allergy Clin Immunol 1988; 81: 590–7.
27. Lien CA, Belmont MR, Abalos A, et al. The cardiovascular effects and histamine-releasing properties of 51W89 in patients receiving nitrous oxide/opioid/barbiturate anesthesia. Anesthesiology 1995; 82: 1131–8.
28. Scott RP, Savarese JJ, Basta SJ, et al. Atracurium: clinical strategies for preventing histamine release and attenuating the haemodynamic response. Br J Anaesth 1985; 57: 550–3.
29. Laxenaire MC. [Epidemiology of anesthetic anaphylactoid reactions. Fourth multicenter survey (July 1994-December 1996)]. Ann Fr Anesth Reanim 1999; 18: 796–809.
30. Claudius C, Viby-Mogensen J. Acceleromyography for use in scientific and clinical practice: a systematic review of the evidence. Anesthesiology 2008; 108: 1117–40.
31. Waser PG, Wiederkehr H, Sin-Ren AC, Kaiser-Schonenberger E. Distribution and kinetics of 14C-vecuronium in rats and mice. Br J Anaesth 1987; 59: 1044–51.
32. Savarese JJ, Ali HH, Basta SJ, et al. The Clinical Neuromuscular Pharmacology of Mivacurium Chloride (BW B1090U): A Short-acting Nondepolarizing Ester Neuromuscular Blocking Drug. Anesthesiology 1988; 68: 723–32.
33. Iwasaki H, Igarashi M, Yamauchi M, Namiki A. The effect of cardiac output on the onset of neuromuscular block by vecuronium. Anaesthesia 1995; 50: 361–2.
34. Donati F, Meistelman C, Plaud B. Vecuronium Neuromuscular Blockade at the Diaphragm, the Orbicularis Oculi, and Adductor Pollicis Muscles. Anesthesiology 1990; 73: 870–5.
35. Parker CJ, Hunter JM. Relationship between volume of distribution of atracurium and body weight. Br J Anaesth 1993; 70: 443–5.
36. Goudsouzian NG, Martyn JJ, Liu LM, Ali HH. The dose response effect of long-acting nondepolarizing neuromuscular blocking agents in children. Can Anaesth Soc J 1984; 31: 246–50.
37. Fisher DM, Miller RD. Neuromuscular effects of vecuronium (ORG NC45) in infants and children during N2O, halothane anesthesia. Anesthesiology 1983; 58: 519–23.
38. Courtney J, Steinbach JH. Age changes in neuromuscular junction morphology and acetylcholine receptor distribution on rat skeletal muscle fibres. J Physiol 1981; 320: 435–47.
39. Sanes JR, Lichtman JW. Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat Rev Neurosci 2001; 2: 791–805.
40. Matteo RS, Backus WW, McDaniel DD, et al. Pharmacokinetics and pharmacodynamics of d-tubocurarine and metocurine in the elderly. Anesth Analg 1985; 64: 23–9.
41. Yang HS, Goudsouzian NG, Cheng M, Martyn JA. The influence of the age of the rat on the neuromuscular response to mivacurium in vitro. Paediatr Anaesth 1996; 6: 367–72.
42. Guay J, Grenier Y, Varin F. Clinical pharmacokinetics of neuromuscular relaxants in pregnancy. Clin Pharmacokinet 1998; 34: 483.
43. Smeulers NJ, Wierda JM, van den Broek L, Gallandat Huet RC, Hennis PJ. Hypothermic cardiopulmonary bypass influences the concentration- response relationship and the biodisposition of rocuronium. Eur J Anaesthesiol Suppl 1995; 11: 91–4.
44. Leslie K, Sessler DI, Bjorksten AR, Moayeri A. Mild hypothermia alters propofol pharmacokinetics and increases the duration of action of atracurium. Anesth Analg 1995; 80: 1007–14.
45. Rump AF, Schierholz J, Biederbick W, et al. Pseudocholinesterase-activity reduction during cardiopulmonary bypass: the role of dilutional processes and pharmacological agents. Gen Pharmacol 1999; 32: 65–9.
46. Kalow W, Genest K. A method for the detection of atypical forms of human serum cholinesterase: determination of dibucaine numbers. Can J Biochem. Physiol. 1957; 35: 339–46.
47. Martyn JAJ, Goudsouzian NG, Chang Y, et al. Neuromuscular effects of mivacurium in 2- to 12-yr-old children with burn injury. Anesthesiology 2000; 92: 31–7.
48. Foldes FF, Rendell-Baker L, Birch J. Causes and prevention of prolonged apnea with succinylcholine. Anesthesia and Analgesia 1956; 25: 609.
49. Naguib M, Samarkandi A, Riad W, Alharby SW. Optimal dose of succinylcholine revisited. Anesthesiology 2003; 99: 1045–9.
50. Engbaek J, Howardy-Hansen P, Ording H, Viby-Mogensen J. Precurarization with vecuronium and pancuronium in awake, healthy volunteers: the influence on neuromuscular transmission and pulmonary function. Acta Anaesthesiol Scand 1985; 29: 117–20.
51. Joshi GP, Hailey A, Cross S, Thompson-Bell G, Whitten CC. Effects of pretreatment with cisatracurium, rocuronium, and d-tubocurarine on succinylcholine-induced fasciculations and myalgia: a comparison with placebo. J Clin Anesth 1999; 11: 641–5.
52. Mencke T, Becker C, Schreiber JU, Fuchs-Buder T. A longer pretreatment interval does not improve cisatracurium precurarization. Can J Anaesth 2002; 49: 640–1.
53. Han TH, Martyn JAJ. Onset and effectiveness of rocuronium for rapid onset of paralysis in patients with major burns: priming vs. large bolus. Brit J Anaesth 2009; 102: 55–60.
54. Wald-Oboussier G, Lohmann C, Viell B, Doehn M. [“Self-taming”: an alternative to the prevention of succinylcholine- induced pain]. Anaesthesist 1987; 36: 426–30.
55. Miller RD, Way WL. Inhibition of succinylcholine-induced increased intragastric pressure by nondepolarizing muscle relaxants and lidocaine. Anesthesiology 1971; 34: 185–8.
56. Polarz H, Bohrer H, Fleischer F, et al. Effects of thiopentone/suxamethonium on intraocular pressure after pretreatment with alfentanil. Eur J Clin Pharmacol 1992; 43: 311–3.
57. Kovarik WD, Mayberg TS, Lam AM, Mathisen TL, Winn HR. Succinylcholine does not change intracranial pressure, cerebral blood flow velocity, or the electroencephalogram in patients with neurologic injury. Anesth Analg 1994; 78: 469–73.
58. Vachon CA, Warner DO, Bacon DR. Succinylcholine and the open globe: tracing the teaching. Anesthesiology 2003; 99: 220–3.
59. Thapa S, Brull SJ. Succinylcholine-induced hyperkalemia in patients with renal failure: an old question revisited. Anesth Analg 2000; 91: 237–41.
60. Eriksson LI, Sundman E, Olsson R, et al. Functional assessment of the pharynx at rest and during swallowing in partially paralyzed humans: simultaneous videomanometry and mechanomyography of awake human volunteers. Anesthesiology 1997; 87: 1035–43.
61. Brull SJ, Maguib M, Miller RD. Residual neuromuscular block: rediscovering the obvious. Anesth Analg 2008; 107: 11–14.
62. Hayes AH, Mirakhur RK, Breslin DS, Reid JE, McCourt KC. Postoperative residual block after intermediate-acting neuromuscular blocking drugs. Anaesthesia 2001; 56: 312–18.
63. Murphy GS, Szokol JW, Marymont JH, et al. Residual neuromuscular blockade and critical respiratory events in the postanesthesia care unit. Anesth Analg 2008; 107: 130–7.
64. Berg H, Roed J, Viby-Mogensen J, et al. Residual neuromuscular block is a risk factor for postoperative pulmonary complications. A prospective, randomised, and blinded study of postoperative pulmonary complications after atracurium, vecuronium and pancuronium. Acta Anaesthesiol Scand 1997; 41: 1095–103.
65. Eriksson LI. The effects of residual neuromuscular blockade and volatile anesthetics on the control of ventilation. Anesth Analg 1999; 89: 243–51.
66. Eriksson LI. Reduced hypoxic chemosensitivity in partially paralysed man. A new property of muscle relaxants? Acta Anaesthesiol Scand 1996; 40: 520–3.
67. Eriksson LI, Sato M, Severinghaus JW. Effect of a vecuronium-induced partial neuromuscular block on hypoxic ventilatory response. Anesthesiology 1993; 78: 693–9.
68. Sundman E, Witt H, Olsson R, et al. The incidence and mechanisms of pharyngeal and upper esophageal dysfunction in partially paralyzed humans: pharyngeal videoradiography and simultaneous manometry after atracurium. Anesthesiology 2000; 92: 977–84.
69. Berg H. Is residual neuromuscular block following pancuronium a risk factor for postoperative pulmonary complications? Acta Anaesthesiol Scand Suppl 1997; 110: 156–8.
70. Baillard C, Clec'h C, Catineau J, et al. Postoperative residual neuromuscular block: a survey of management. Br J Anaesth 2005; 95: 622–6.
71. Ryan DW. Preoperative serum cholinesterase concentration in chronic renal failure. Clinical experience of suxamethonium in 81 patients undergoing renal transplant. Br J Anaesth 1977; 49: 945–9.
72. Cook DR, Freeman JA, Lai AA, et al. Pharmacokinetics of mivacurium in normal patients and in those with hepatic or renal failure. Br J Anaesth 1992; 69: 580–5.
73. Martyn JAJ, Chang Y, Goudsouzian NG, Patel SS. Pharmacodynamics of mivacurium chloride in 13- to 18-yr-old adolescents with thermal injury. Br J Anaesth 2002; 89: 580–5.
74. Martyn JA, Richtsfeld M. Succinylcholine-induced hyperkalemia in acquired pathologic states: etiologic factors and molecular mechanisms. Anesthesiology 2006; 104: 158–69.
75. John DA, Tobey RE, Homer LD, Rice CL. Onset of succinylcholine-induced hyperkalemia following denervation. Anesthesiology 1976; 45: 294–9.
76. McArdle JJ. Molecular aspects of the trophic influence of nerve on muscle. Prog Neurobiol 1983; 21: 135–98.
77. Fergusson RJ, Wright DJ, Willey RF, Crompton GK, Grant IW. Suxamethonium is dangerous in polyneuropathy. Br Med J 1981; 282: 298–9.
78. Hogue CW, Itani MS, Martyn JA. Resistance to d-tubocurarine in lower motor neuron injury is related to increased acetylcholine receptors at the neuromuscular junction. Anesthesiology 1990; 73: 703–9.
79. Cooperman LH. Succinylcholine-induced hyperkalemia in neuromuscular disease. Jama 1970; 213: 1867–71.
80. Frankville DD, Drummond JC. Hyperkalemia after succinylcholine administration in a patient with closed head injury without paresis. Anesthesiology 1987; 67: 264–6.
81. Brett RS, Schmidt JH, Gage JS, Schartel SA, Poppers PJ. Measurement of acetylcholine receptor concentration in skeletal muscle from a patient with multiple sclerosis and resistance to atracurium. Anesthesiology 1987; 66: 837–9.
82. Tobey RE. Paraplegia, succinylcholine and cardiac arrest. Anesthesiology 1970; 32: 359–64.
83. Ibebunjo C, Martyn JA. Fiber atrophy, but not changes in acetylcholine receptor expression, contributes to the muscle dysfunction after immobilization. Crit Care Med 1999; 27: 275–85.
84. Ibebunjo C, Nosek MT, Itani MS, Martyn JA. Mechanisms for the paradoxical resistance to d-tubocurarine during immobilization-induced muscle atrophy. J Pharmacol Exp Ther 1997; 283: 443–51.
85. Yanez P, Martyn JAJ. Prolonged d-tubocurarine infusion and/or immobilization cause upregulation of acetylcholine receptors and hyperkalemia to succinylcholine in rats. Anesthesiology 1996; 84: 384–91.
86. Ibebunjo C, Martyn JAJ. Disparate dysfunction of skeletal muscles located near and distant from burn site in the rat. Muscle Nerve 2001; 24: 1283–94.
87. Viby Mogensen J, Hanel HK, Hansen E, Graae J. Serum cholinesterase activity in burned patients. II: anaesthesia, suxamethonium and hyperkalaemia. Acta Anaesthesiol Scand 1975; 19: 169–79.
88. Kim C, Hirose M, Martyn JA. d-Tubocurarine accentuates the burn-induced upregulation of nicotinic acetylcholine receptors at the muscle membrane. Anesthesiology 1995; 83: 309–15.
89. Khan TZ, Khan RM. Changes in serum potassium following succinylcholine in patients with infections. Anesth Analg 1983; 62: 327–31.
90. Kohlschütter B, Baur H, Roth F. Suxamethonium-induced hyperkalaemia in patients with severe intra-abdominal infections. Br J Anaesth 1976; 48: 557–62.
91. Fink H, Luppa P, Mayer B, et al. Systemic inflammation leads to resistance to atracurium without increasing membrane expression of acetylcholine receptors. Anesthesiology 2003; 98: 82–8.
92. Fink H, Helming M, Unterbuchner C, et al. Systemic inflammatory response syndrome increases immobility-induced neuromuscular weakness. Crit Care Med 2008; 36: 910–16.
93. Hoch W, McConville J, Helms S, et al. Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med 2001; 7: 365–8.
94. Grob D, Arsura EL, Brunner NG, Namba T. The course of myasthenia gravis and therapies affecting outcome. Ann N Y Acad Sci 1987; 505: 472–99.
95. Mann R, Blobner M, Jelen-Esselborn S, Busley R, Werner C. Preanesthetic train-of-four fade predicts the atracurium requirement of myasthenia gravis patients. Anesthesiology 2000; 93: 346–50.
96. Baraka A. Suxamethonium block in the myasthenic patient. Correlation with plasma cholinesterase. Anaesthesia 1992; 47: 217–19.
97. Pascuzzi RM. Myasthenia gravis and Lambert-Eaton syndrome. Ther Apher 2002; 6: 57–68.
98. Boonyapisit K, Kaminski HJ, Ruff RL. Disorders of neuromuscular junction ion channels. Am J Med 1999; 106: 97–113.
99. Engel AG. Myasthenia gravis and myasthenic syndromes. Ann Neurol 1984; 16: 519–34.
100. McCarthy G, Mirakhur RK, Elliott P, Wright J. Effect of H2-receptor antagonist pretreatment on vecuronium- and atracurium-induced neuromuscular block. Br J Anaesth 1991; 66: 713–15.
101. Soriano SG, Martyn JAJ. Antiepileptic-induced resistance to neuromuscular blockers: mechanisms and clinical significance. Clin Pharmacokinet 2004; 43: 71–81.
102. Kim CS, Arnold FJ, Itani MS, Martyn JA. Decreased sensitivity to metocurine during long-term phenytoin therapy may be attributable to protein binding and acetylcholine receptor changes. Anesthesiology 1992; 77: 500–6.
103. Soriano SG, Kaus SJ, Sullivan LJ, Martyn JA. Onset and duration of action of rocuronium in children receiving chronic anticonvulsant therapy. Paediatr Anaesth 2000; 10: 133–6.
104. Soriano SG, Sullivan LJ, Venkatakrishnan K, Greenblatt DJ, Martyn JA. Pharmacokinetics and pharmacodynamics of vecuronium in children receiving phenytoin or carbamazepine for chronic anticonvulsant therapy. Br J Anaesth 2001; 86: 223–9.
105. Fuchs-Buder T, Wilder Smith OH, Borgeat A, Tassonyi E. Interaction of magnesium sulphate with vecuronium-induced neuromuscular block. Br J Anaesth 1995; 74: 405–9.
106. Ghoneim MM, Long JP. The interaction between magnesium and other neuromuscular blocking agents. Anesthesiology 1970; 32: 23–7.
107. Fiekers JF. Sites and mechanisms of antibiotic-induced neuromuscular block: a pharmacological analysis using quantal content, voltage clamped end-plate currents and single channel analysis. Acta Physiol Pharmacol Ther Latinoam 1999; 49: 242–50.
108. Scheller M, Bufler J, Schneck H, Kochs E, Franke C. Isoflurane and sevoflurane interact with the nicotinic acetylcholine receptor channels in micromolar concentrations. Anesthesiology 1997; 86: 118–27.
109. Liu M, Kato M, Hashimoto Y. Neuromuscular blocking effects of the aminoglycoside antibiotics arbekacin, astromicin, isepamicin and netilmicin on the diaphragm and limb muscles in the rabbit. Pharmacology 2001; 63: 142–6.
110. Shorten GD, Crawford MW, St. Louis P. The neuromuscular effects of mivacurium chloride during propofol anesthesia in children. Anesth Analg 1996; 82: 1170–5.
111. Fryer JD, Lukas RJ. Antidepressants noncompetitively inhibit nicotinic acetylcholine receptor function. J Neurochem 1999; 72: 1117–24.
112. Scheller M, Bufler J, Hertle I, et al. Ketamine blocks currents through mammalian nicotinic acetylcholine receptor channels by interaction with both the open and the closed state. Anesth Analg 1996; 83: 830–6.
113. Hertle I, Scheller M, Bufler J, et al. Interaction of midazolam with the nicotinic acetylcholine receptor of mouse myotubes. Anesth Analg 1997; 85: 174–81.
114. Krampfl K, Schlesinger F, Dengler R, et al. Pentobarbital has curare-like effects on adult-type nicotinic acetylcholine receptor channel currents. Anesth Analg 2000; 90: 970–4.
115. Driessen JJ, Wuis EW, Gielen MJ. Prolonged vecuronium neuromuscular blockade in a patient receiving orally administered dantrolene. Anesthesiology 1985; 62: 523–4.
116. Ali HH, Savarese JJ, Embree PB, et al. Clinical pharmacology of mivacurium chloride (BW B1090U) infusion: comparison with vecuronium and atracurium. Br J Anaesth 1988; 61: 541–6.
117. Brandom BW, Woelfel SK, Ryan Cook D, et al. Comparison of mivacurium and suxamethonium administered by bolus and infusion. Br J Anaesth 1989; 62: 488–93.
118. McLoughlin C, Nesbitt GA, Howe JP. Suxamethonium induced myalgia and the effect of pre-operative administration of oral aspirin. A comparison with a standard treatment and an untreated group. Anaesthesia 1988; 43: 565–7.
119. Meyers EF, Krupin T, Johnson M, Zink H. Failure of nondepolarizing neuromuscular blockers to inhibit succinylcholine-induced increased intraocular pressure, a controlled study. Anesthesiology 1978; 48: 149–51.
120. Engbaek J, Viby Mogensen J. Precurarization: a hazard to the patient? Acta Anaesthesiol Scand 1984; 28: 61–2.
121. Walts LF, Dillon JB. Clinical studies of the interaction between d-tubocurarine and succinylcholine. Anesthesiology 1969; 31: 39–44.
122. Erkola O, Salmenpera A, Kuoppamaki R. Five non-depolarizing muscle relaxants in precurarization. Acta Anaesthesiol Scand 1983; 27: 427–32.
123. Perry JJ, Lee JS, Sillberg VA, Wells GA. Rocuronium versus succinylcholine for rapid sequence induction intubation. Cochrane Database Syst Rev 2008; (2): CD002788.
124. Puhringer FK, Rex C, Sielenkamper AW, et al. Reversal of profound, high-dose rocuronium-induced neuromuscular blockade by sugammadex at two different time points: an international, multicenter, randomized, dose-finding, safety assessor-blinded, phase II trial. Anesthesiology 2008; 109: 188–97.
125. Jones RK, Caldwell JE, Brull SJ, Soto RG. Reversal of profound rocuronium-induced blockade with sugammadex: a randomized comparison with neostigmine. Anesthesiology 2008; 109: 816–24.
126. Yasukawa T, Kaneki M, Yasuhara S, Lee SL, Martyn JA. Steroidal nondepolarizing muscle relaxants do not simulate the effects of glucocorticoids on glucocorticoid receptor-mediated transcription in cultured skeletal muscle cells. Anesthesiology 2004; 100: 1615–19.
127. DuBois DC, Almon RR. A possible role of steroids in denervation atrophy. Muscle Nerve 1981; 4: 370–3.
128. Murray MJ, Cowen J, DeBlock H, et al. Clinical practice guidelines for sustained neuromuscular blockade in the adult critically ill patient. Crit Care Med 2002; 30: 142–56.