Skip to main content Accessibility help
  • Print publication year: 2013
  • Online publication date: April 2011

Chapter 17 - The generation and propagation of action potentials


1. Hille B. Ionic Channels in Excitable Membranes. Sunderland, MA: Sinauer, 1991.
2. Robertson JD. Structure and Function of Subcellular Components. Cambridge: Cambridge University Press, 1959.
3. Miller C. Annus mirabilis for potassium channels. Science 1992; 252: 1092–6.
4. Hodgkin AL, Huxley AF. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol 1952; 116: 449–72.
5. Hodgkin AL, Huxley AF. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol 1952; 116: 497–506.
6. Hodgkin AL, Huxley AF. The components of membrane conductance in the giant axon of Loligo. J Physiol 1952; 116: 473–96.
7. Baker OS, Larsson HP, Mannuzzu LM, Isacoff EY. Three transmembrane conformations and sequence-dependent displacement of the S4 domain in shaker K+ channel gating. Neuron 1998; 20: 1283–94.
8. Vandenberg CA, Horn R. Inactivation viewed through single sodium channels. J Gen Physiol 1984; 84: 535–64.
9. Hille B. Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol 1977; 69: 497–515.
10. Glynn IM. Sodium and potassium movements in human red cells. J Physiol 1956; 134: 278–310.
11. Franzini-Armstrong C, Protasi F. Ryanodine receptors of striated muscle: a complex channel capable of multiple interactions. Physiol Rev 1997; 77: 699–729.
12. West JW, Patton DE, Scheuer T, et al. A cluster of hydrophobic amino acid residues required for fast sodium channel inactivation. Proc Natl Acad Sci U S A 1992; 89: 10910–14.
13. Catterall WA. Structure and function of voltage-gated ion channels. Annu Rev Neurosci 1995; 64: 493–531.
14. Isom L, De Jongh K, Patton DE, et al. Primary structure and functional expression of the β1–subunit of the rat brain sodium channel. Science 1992; 256: 839–42.
15. Ritchie JM, Straub RW. The hyperpolarization which follows activity in mammalian non-myelinated nerve fibres. J Physiol 1957; 136: 80–97.
16. Hodgkin AL, Rushton WAH. The electrical constants of a crustacean nerve fibre. Proc R Soc Med 1946; 134: 444–79.
17. Huxley AF, Stampfli R. Evidence for saltatory conduction in peripheral myelinated nerve fibres. J Physiol 1949; 108: 315–39.
18. Rasminsky M, Sears TA. Internodal conduction in undissected demyelinated nerve fibres. J Physiol 1972; 227: 323–50.
19. Butterworth JF, Strichartz GR. Molecular mechanism of local anesthesia: a review. Anesthesiology 1990; 72: 711–34.
20. Cohen I, Atwell D, Strichartz G. The dependence of the maximum rate of rise of the action potential upstroke on membrane properties. Proc R Soc Lond B Biol Sci 1981; 214: 85–98.
21. Jack JJB, Noble D, Tsien RW. Electric Current Flow in Excitable Cells. London: Oxford University Press, 1975.
22. Zhou L, Chiu SY. Computer model for action potential propagation through branch point in myelinated nerves. J Neurophysiol 2001; 85: 197–210.