Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T19:42:57.441Z Has data issue: false hasContentIssue false

3 - Potentiometric Titrations to Characterize the Reactivity of Geomicrobial Surfaces

from Part II - Advanced Analytical Instrumentation

Published online by Cambridge University Press:  06 July 2019

Janice P. L. Kenney
Affiliation:
MacEwan University, Edmonton
Harish Veeramani
Affiliation:
Carleton University, Ottawa
Daniel S. Alessi
Affiliation:
University of Alberta
Get access

Summary

Potentiometric titrations are a widely used technique to quantify proton-active functional groups on microorganisms, their exudates, biominerals, and biofilms. In this chapter, we provide a step-by-step introduction to the preparation of microbial cells for the determination of proton buffering capacity using modern autotitration systems. Following a discussion of how to process titration data and plot titration curves, we review commonly used thermodynamic approaches to model titration curves in order to calculate cell wall functional group acidity constants and corresponding site concentrations. In geomicrobiology, protonation models are primarily used as a basis for the development of surface complexation models that can predict the adsorption of charged species such as metals to biomass. The case example that follows outlines the development of a surface complexation model for the adsorption of cadmium to a species of the marine cyanobacterium Synechococcus, using a protonation model developed from titration data as its basis. In the last section, we introduce the reader to other analytical tools that are complementary to titration results, and discuss a few common complications to the titration approach when it is applied to natural materials.

Type
Chapter
Information
Analytical Geomicrobiology
A Handbook of Instrumental Techniques
, pp. 79 - 92
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

3.6 References

Alam, M. S., Gorman-Lewis, D., Chen, N., et al. (2018) Thermodynamic analysis of nickel(II) and zinc(II) adsorption to biochar. Environ. Sci. Technol. 52(11): 62466255.Google Scholar
Alessi, D. S., Fein, J. B. (2010) Cadmium adsorption to mixtures of soil components: Testing the component additivity approach. Chem. Geol. 270(1–4): 186195.CrossRefGoogle Scholar
Alessi, D. S., Henderson, J. M., Fein, J. B. (2010) Experimental measurement of monovalent cation adsorption onto Bacillus subtilis cells. Geomicrobiol. J 27(5): 464472.Google Scholar
Baker, M. G., Lalonde, S. V., Konhauser, K. O., Foght, J. M. (2010) Role of extracellular polymeric substances in the surface chemical reactivity of Hymenobacter aerophilus, a psychrotolerant bacterium. Appl. Environ. Microbiol. 76(1): 102109.Google Scholar
Bethke, C. M., Brady, P. V. (2000) How the Kd approach undermines ground water cleanup. Ground Water 38(3): 435443.Google Scholar
Beveridge, T. J., Murray, R. G. E. (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J. Bacteriol. 141(2): 876887.Google Scholar
Borrok, D. M., Fein, J. B. (2005) The impact of ionic strength on the adsorption of protons, Pb, Cd, and Sr onto the surfaces of Gram negative bacteria: testing non-electrostatic, diffuse, and triple-layer models. J. Colloid Interface Sci. 286: 110126.Google Scholar
Borrok, D. M., Fein, J. B., Kulpa, C. F. (2004) Proton and Cd adsorption onto natural bacterial consortia: testing universal adsorption behavior. Geochim. Cosmochim. Acta 68: 32313238.Google Scholar
Brassard, P., Kramer, J. R., Collins, P. V. (1990) Binding site analysis using linear programming. Environ. Sci. Technol. 24(2): 195201.Google Scholar
Cox, J. S., Smith, D. S., Warren, L. A., Ferris, F. G. (1999) Characterizing heterogeneous bacterial surface functional groups using discrete affinity spectra for proton binding. Environ. Sci. Technol. 33(24): 45144521.Google Scholar
Davis, J.A., Kent, D. (1990) Surface complexation modeling in aqueous geochemistry. Rev. Mineral. Geochem. 23(1): 177260.Google Scholar
Davis, J. A., Coston, J. A., Kent, D. B., Fuller, C. C. (1998) Application of the surface complexation modeling concept to complex mineral assemblages. Environ. Sci. Technol. 32(19): 28202828.CrossRefGoogle Scholar
Driver, S. J., Perdue, E. M. (2015) Acid-base chemistry of natural organic matter, hydrophobic acids, and transphilic acids from the Suwannee River, Georgia, as determined by direct potentiometric titration. Environ. Engineer. Sci. 32(1): 6670.CrossRefGoogle Scholar
Duc, M., Gaboriaud, F., Thomas, F. (2005a) Sensitivity of the acid-base properties of clays to the method of preparation and measurement: 1. Literature review. J. Colloid Interface Sci. 289: 139147.Google Scholar
Duc, M., Gaboriaud, F., Thomas, F. (2005b) Sensitivity of the acid-base properties of clays to the method of preparation and measurement: 2. Evidence from continuous potentiometric titrations. J. Colloid Interface Sci. 289: 139147.CrossRefGoogle Scholar
Dzombak, D. A., Morel, F. M. M. (1990) Surface Complexation Modeling: Hydrous Ferric Oxide. Wiley-Interscience, New York, NY, 393 pp.Google Scholar
Fein, J. B. (2006) Thermodynamic modeling of metal adsorption onto bacterial cell walls: Current challenges. Adv. Agron. 90: 179202.Google Scholar
Fein, J. B., Delea, D. E. (1999) Experimental study of the effect of EDTA on Cd adsorption by Bacillus subtilis: A test of the chemical equilibrium approach. Chem. Geol. 161: 375383.Google Scholar
Fein, J. B., Daughney, C. J., Yee, N., Davis, T. A. (1997) A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochim. Cosmochim. Acta 61: 33193328.Google Scholar
Fein, J. B., Boily, J.-F., Yee, N., Gorman-Lewis, D., Turner, B. F. (2005) Potentiometric titrations of Bacillus subtilis cells to low pH and a comparison of modeling approaches. Geochim. Cosmochim. Acta 69: 11231132.CrossRefGoogle Scholar
Flynn, S. L., Gao, Q., Robbins, L. J., et al. (2017) Measurements of bacterial mat metal binding capacity in alkaline and carbonate-rich systems. Chem. Geol. 451: 1724.CrossRefGoogle Scholar
Ginn, B. R., Szymanowski, J. S., Fein, J. B. (2008) Metal and proton binding onto the roots of Fescue rubra. Chem. Geol. 253: 130135.Google Scholar
Gorgulho, H. F., Mesquita, J. P., Gonçalves, F., Pereira, M. F. R., Figueiredo, J. L. (2008) Characterization of the surface chemistry of carbon materials by potentiometric titrations and temperature-programmed desorption. Carbon 46(12): 15441555.Google Scholar
Gorman-Lewis, D., Fein, J. B., Jensen, M. P. (2006) Enthalpies and entropies of proton and cadmium adsorption onto Bacillus subtilis bacterial cells from calorimetric measurements. Geochim. Cosmochim. Acta 70: 48624873.CrossRefGoogle Scholar
Hao, W., Flynn, S. L., Alessi, D. S., Konhauser, K. O. (2018) Change of the point of zero net proton charge (pHPZNPC) of clay minerals with ionic strength. Chem. Geol. 493: 458467.Google Scholar
Herbelin, A. L., Westall, J. C. (1999) FITEQL: A Computer Program for Determination of Equilibrium Constants from Experimental Data. Department of Chemistry, Oregon State University, Corvallis, OR, Report 99–01.Google Scholar
Hetzer, A., Daughney, C. J., Morgan, H. W. (2006) Cadmium ion biosorption by the thermophilic bacteria Geobacillus stearothermophilus and G. thermocatenulatus. Appl. Environ. Microbiol, 72(6): 40204027.Google Scholar
Kenney, J. P. L., Fein, J. B. (2011) Importance of extracellular polysaccharides in proton and Cd binding to bacteria: A comparative study. Chem. Geol. 286(3–4): 109117.Google Scholar
Koretsky, C. (2000) The significance of surface complexation reactions in hydrologic systems: A geochemist’s perspective. J. Hydrol. 230(3): 127171.Google Scholar
Lalonde, S. V., Smith, D. S., Owttrim, G. W., Konhauser, K. O. (2008a) Acid-base properties of cyanobacterial cell surfaces. I: Influences of growth phase and nitrogen metabolism on cell surface reactivity. Geochim. Cosmochim. Acta 72: 12571268.Google Scholar
Lalonde, S. V., Smith, D. S., Owttrim, G. W., Konhauser, K. O. (2008b) Acid-base properties of cyanobacterial cell surfaces. II: Silica as a chemical stressor influencing cell surface reactivity. Geochim. Cosmochim. Acta 72: 12691280.Google Scholar
Lalonde, S. V., Dafoe, L., Pemberton, S. G., Gingras, M. K., Konhauser, K. O. (2010) Investigating the geochemical impact of burrowing animals: Proton and cadmium adsorption onto the mucus-lining of Terebellid polychaete worms. Chem. Geol. 271: 4451.Google Scholar
Liu, Y., Alessi, D. S., Owttrim, G. W., et al. (2015) Cell surface reactivity of Synechococcus sp. PCC 7002: Implications for metal sorption from seawater. Geochim. Cosmochim. Acta 169: 3044.Google Scholar
Liu, Y., Alessi, D. S., Owttrim, G. W., et al. (2016) Cell surface acid-base properties of cyanobacterium Synechococcus: Influences of nitrogen source, growth phase, and N:P ratios. Geochim. Cosmochim. Acta 187: 179194.Google Scholar
Lützenkirchen, J., Preočanin, T., Kovačević, D., et al. (2012) Potentiometric titrations as a tool for surface charge determination. Croat. Chem. Acta 85(4): 391417.CrossRefGoogle Scholar
Martinez, R. E., Ferris, F. G. (2001) Chemical equilibrium modeling techniques for the analysis of high-resolution bacterial metal sorption data. J. Colloid Interface Sci. 243: 7380.Google Scholar
Martinez, R. E., Smith, D. S., Kulczycki, E., Ferris, F. G. (2002) Determination of intrinsic bacterial acidity constants using a Donnan shell model and a continuous pKa distribution method. J. Colloid Interface Sci. 253(1): 130139.Google Scholar
Ngwenya, B. T., Sutherland, I. W., Kennedy, L. (2003) Comparison of the acid-base behaviour and metal adsorption characteristics of a gram-negative bacterium with other strains. Appl. Geochem. 18(4): 527538.Google Scholar
Pagnanelli, F., Bornoroni, L., Moscardini, E., Toro, L. (2006) Non-electrostatic surface complexation models for protons and lead(II) sorption onto single minerals and their admixtures. Chemosphere 63(7): 10631073.Google Scholar
Petrash, D. P., Raudsepp, M., Lalonde, S. V., and Konhauser, K. O. (2011a) Assessing the importance of matrix materials in biofilm chemical reactivity: Insights from proton and cadmium adsorption onto the commercially-available biopolymer alginate. Geomicrobiol. J. 28: 266273.Google Scholar
Petrash, D. A., Lalonde, S. V., Gingras, M. K., and Konhauser, K. O. (2011b) A surrogate approach to studying the chemical reactivity of burrow mucus linings. Palaios 26: 595602.Google Scholar
Turner, B. F., Fein, J. B. (2006) Protofit: A program for determining surface protonation constants from titration data. Comput. Geosci. 32: 13441356.CrossRefGoogle Scholar
Warchola, T., Flynn, S. L., Robbins, L. J., et al. (2017) Field- and lab-based potentiometric titrations of microbial mats from the Fairmont Hot Spring, Canada. Geomicrobiol. J. 34(10): 851863.Google Scholar
Westall, J. C., Jones, J. D., Turner, G. D., Zachara, J. M. (1995) Models for association of metal ions with heterogeneous environmental sorbents. 1. Complexation of Co(II) by leonardite humic acid as a function of pH and NaClO4 concentration. Environ. Sci. Technol. 29: 951959.Google Scholar
Yee, N., Fein, J. (2001) Cd adsorption onto bacterial surfaces: A universal adsorption edge? Geochim. Cosmochim. Acta 65: 20372042.Google Scholar
Yu, Q., Fein, J. B. (2016) Sulfhydryl binding sites within bacterial extracellular polymeric substances. Environ. Sci. Technol. 50(11): 54985505.Google Scholar
Zhao, Z., Jia, Y., Xu, L., Zhao, S. (2011) Adsorption and heterogeneous oxidation of As(III) on ferrihydrite. Water Res. 45(19): 64966504.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×