Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Print publication year: 2019
  • Online publication date: July 2019

11 - Bacterial Surfaces in Geochemistry – How Can X-ray Photoelectron Spectroscopy Help?

from Part IV - Spectroscopy


Processes occurring at surfaces and interfaces are very important in environmental systems, necessitating surface-specific characterization tools that can help us understand processes at and specific properties of surfaces and interfaces, and their role in biogeochemical systems. This chapter describes the use and application of X-ray photoelectron spectroscopy (XPS) to study interfacial processes of relevance for geomicrobiology. Examples are given from studies determining cell wall composition, acid–base properties, cell surface charge, metal adsorption onto bacterial cells, and bacterial surface–induced precipitation of secondary minerals. As XPS is an ultrahigh-vacuum technique, several sample preparation methods have been applied to enable analysis of bacterial samples, including analysis of freeze-dried samples as well as frozen bacterial suspensions. These are described and discussed alongside advantages and disadvantages of different approaches, with a special focus on fast-freezing and the cryogenic technique.

Related content

Powered by UNSILO
Ahimou, F., Paquot, M., Jacques, P., Thonart, P. and Rouxhet, P. G. 2001. Influence of electrical properties on the evaluation of the surface hydrophobicity of Bacillus subtilis. J Microbiol Methods, 45, 119–26.
Beamson, G. and Briggs, D. 1992. High Resolution XPS of Organic Polymers: the Scienta ESCA300 Database, Chichester, UK, Wiley.
Beveridge, T. J. 2010. Bacterial Cells, Chichester, UK, Wiley.
Boonaert, C. J. and Rouxhet, P. G. 2000. Surface of lactic acid bacteria: relationships between chemical composition and physicochemical properties. Appl Environ Microbiol, 66, 2548–54.
Brierley, C. L. and Brierley, J. A. 2013. Progress in bioleaching: part B: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol, 97, 7543–52.
Briggs, D. and Grant, J. T. 2003. Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, Trowbridge, UK, The Cromwell Press, IM Publications and SurfaceSpectra Limited.
Burger, K. 1978. Charge correction in XPS-ESCA – bulk solvent as internal standard in study of quick-frozen solutions. J Electron Spectros Relat Phenomena, 14, 405–10.
Burger, K. and Fluck, E. 1974. X-ray-photoelectron spectroscopy (ESCA) investigations in coordination chemistry .1. Solvation of SBCL5 studied in quick-frozen solutions. Inorg Nucl Chem Letters, 10, 171–7.
Burger, K., Fluck, E., Binder, H. and Varhelyi, C. 1975. X-ray photoelectron-spectroscopy (ESCA) investigations in coordination chemistry .2. Study of outer sphere coordination and hydrogen bridge formation in cobalt(III) and nickel(II) complexes. J Inorg Nucl Chem, 37, 5557.
Burger, K., Tschimarov, F. and Ebel, H. 1977. XPS-ESCA applied to quick-frozen solutions .1. Study of nitrogen-compounds in aqueous-solutions. Electron Spectros Relat Phenomena, 10, 461–5.
Busscher, H. J., Bialkowska-Hobrazanska, H., Reid, G., van der Kuijl-Booij, M. and van der Mei, H. C. 1994. Physicochemical characteristics of two pairs of coagulase-negative staphylococcal isolates with different plasmid profiles. Colloids Surf, B, 2, 7382.
Castner, D. G. and Ratner, B. D. 2002. Biomedical surface science: foundations to frontiers. Surf Sci, 500, 2860.
Clayton, C. R., Halada, G. P., Kearns, J. R., Gillow, J. B. and Francis, A. J. 1994. Spectroscopic study of sulfate reducing bacteria-metal ion interactions related to microbiologically influenced corrosion (MIC). ASTM Spec Tech Publ, 1232, 141–52.
Delcroix, M. F., Zuyderhoff, E. M., Genet, M. J. and Dupont-Gillain, C. C. 2012. Optimization of cryo-XPS analyses for the study of thin films of a block copolymer (PS-PEO). Surf Interface Anal, 44, 175–84.
Dufrêne, Y., Van der Wal, A., Norde, W. and Rouxhet, P. 1997. X-ray photoelectron spectroscopy analysis of whole cells and isolated cell walls of Gram-positive bacteria: comparison with biochemical analysis. J Bacteriol, 179, 1023–8.
Ellwood, D. C. and Tempest, D. W. 1972. Influence of culture pH on the content and composition of teichoic acids in the walls of Bacillus subtilis. J Gen Microbiol, 73, 395402.
Genet, M. J., Dupont-Gillain, C. C. and Rouxhet, P. G. 2008. XPS Analysis of Biosystems and Biomaterials, New York, Springer Science+Business Media.
Kalinowski, B. E., Liermann, L. J., Brantley, S. L., Barnes, A. and Pantano, C. G. 2000. X-ray photoelectron evidence for bacteria-enhanced dissolution of hornblende. Geochim Cosmochim Acta, 64, 1331–43.
Kang, C., Wu, P., Li, Y., et al. 2015. Understanding the role of clay minerals in the chromium(VI) bioremoval by Pseudomonas aeruginosa CCTCC AB93066 under growth condition: microscopic, spectroscopic and kinetic analysis. World J Microbiol Biotechnol, 31, 1765–79.
Kemper, M. A., Urrutia, M. M., Beveridge, T. J., Koch, A. L. and Doyle, R. J. 1993. Proton motive force may regulate cell wall-associated enzymes of Bacillus subtilis. J Bacteriol, 175, 5690–6.
Kern, T., Giffard, M., Hediger, S., et al. 2010. Dynamics characterization of fully hydrated bacterial cell walls by solid-state NMR: evidence for cooperative binding of metal ions. J Am Chem Soc, 132, 10911–19.
Khoshkhoo, M., Dopson, M., Shchukarev, A. and Sandström, Å. 2014. Electrochemical simulation of redox potential development in bioleaching of a pyritic chalcopyrite concentrate. Hydrometallurgy, 144–145, 714.
Kolmakov, A., Dikin, D. A., Cote, L. J., et al. 2011. Graphene oxide windows for in situ environmental cell photoelectron spectroscopy. Nat Nanotechnol, 6, 651–7.
Krumbein, W. E. 1983. Microbial Geochemistry, Oxford, Blackwell Scientific Publications.
Leone, L., Ferri, D., Manfredi, C., et al. 2007. Modeling the acid-base properties of bacterial surfaces: a combined spectroscopic and potentiometric study of the Gram-positive bacterium Bacillus subtilis. Environ Sci Technol, 41, 6465–71.
Leone, L., Loring, J., Sjöberg, S., Persson, P. and Shchukarev, A. 2006. Surface characterization of the Gram-positive bacteria Bacillus subtilis – an XPS study. Surf Interface Anal, 38, 202–5.
Li, B., Pan, D., Zheng, J., et al. 2008. Microscopic investigations of the Cr(VI) uptake mechanism of living Ochrobactrum anthropi. Langmuir, 24, 9630–5.
Li, X., Ding, C., Liao, J., et al. 2017. Microbial reduction of uranium (VI) by Bacillus sp dwc-2: a macroscopic and spectroscopic study. J Environ Sci (China), 53, 915.
Lin, D. Q., Zhong, L. N. and Yao, S. J. 2006. Zeta potential as a diagnostic tool to evaluate the biomass electrostatic adhesion during ion-exchange expanded bed application. Biotechnol Bioeng, 95, 185–91.
Lukas, J., Sodhi, R. N. S. and Sefton, M. V. 1995. An XPS study of the surface reorientation of statistical methacrylate copolymers. J Colloid Interface Sci, 174, 421–7.
Mills, A. L. 1998. The role of bacteria in environmental geochemistry, in Mills, A.L. (ed.) The Environmental Geochemistry of Mineral Deposits, Part A: processes, Techniques, and Health Issues, Littleton, CO, USA: Society of Economic Geologists Inc., 125–32.
Mirimanoff, N. and Wilkinson, K. 2000. Regulation of Zn accumulation by a freshwater Gram-positive bacterium (Rhodococcus opacus). Environ Sci Technol, 34, 616–22.
Moulder, J. F., Stickle, W. F., Sobol, P. E. and Bomben, K. D. 1992. Handbook of X-ray Photoelectron Spectroscopy, Eden Prairie, Minnesota, USA, Perkin-Elmer Corporation Physical Electronics Division.
Naumkin, A. V., Kraut-Vass, A., Gaarenstroom, S. W. and Powell, C. J. 2012. NIST X-ray Photoelectron Spectroscopy Database,, U.S. Secretary of Commerce on behalf of the United States of America.
Ojeda, J. J., Romero-Gonzalez, M. E., Bachmann, R. T., Edyvean, R. G. J. and Banwart, S. A. 2008. Characterization of the cell surface and cell wall chemistry of drinking water bacteria by combining XPS, FTIR spectroscopy, modeling, and potentiometric titrations. Langmuir, 24, 4032–40.
Olson, G. J., Brierley, J. A. and Brierley, C. L. 2003. Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol, 63, 249–57.
Ramstedt, M. 2004. Chemical processes at the water-manganite (gamma-MnOOH) interface, Umeå, Sweden, Umeå University, PhD Thesis.
Ramstedt, M., Leone, L., Persson, P. and Shchukarev, A. 2014. Cell wall composition of Bacillus subtilis changes as a function of pH and Zn²⁺ exposure: insights from cryo-XPS measurements. Langmuir, 30, 4367–74.
Ramstedt, M., Nakao, R., Wai, S., Uhlin, B. and Boily, J. 2011. Monitoring surface chemical changes in the bacterial cell wall – multivariate analysis of cryo-X-ray photoelectron spectroscopy data. J Biol Chem, 286, 12389–96.
Ramstedt, M., Norgren, C., Sheals, J., Shchukarev, A. and Sjoberg, S. 2004. Chemical speciation of N-(phosphonomethyl)glycine in solution and at mineral interfaces. Surf Interface Anal, 36, 1074–7.
Ramstedt, M. and Shchukarev, A. 2016. Analysis of bacterial cell surface chemical composition using cryogenic X-ray photoelectron spectroscopy. In: Hong, H.-J. (ed.) Bacterial Cell Wall Homeostasis: Methods and Protocols. New York, NY: Springer New York.
Ramstedt, M., Shchukarev, A. V. and Sjoberg, S. 2002. Characterization of hydrous manganite (gamma-MnOOH) surfaces – an XPS study. Surf Interface Anal, 34, 632–6.
Ratner, B. D. 1995. Advances in the analysis of surfaces of biomedical interest. Surf Interface Anal, 23, 521–8.
Ratner, B. D. and Castner, D. G. 2009. Chapter 3, in Electron Spectroscopy for Chemical Analysis, Wiley.
Ratner, B. D., Weathersby, P. K., Hoffman, A. S., Kelly, M. A. and Scharpen, L. H. 1978. Radiation-grafted hydrogels for biomaterial applications as studied by ESCA technique. J Appl Polym Sci, 22, 643–64.
Rouxhet, P. and Genet, M. 2011. XPS analysis of bio-organic systems. Surf Interface Anal, 43, 1453–70.
Salmeron, M. and Schlögl, R. 2008. Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology. Surf Sci Rep, 63, 169–99.
Seidel, R., Thürmer, S. and Winter, B. 2011. Photoelectron spectroscopy meets aqueous solution: studies from a vacuum liquid microjet. J Phys Chem Lett, 2, 633–41.
Shchukarev, A. 2006a. XPS at solid-aqueous solution interface. Adv Colloid Interface Sci, 122, 149–57.
Shchukarev, A. 2006b. XPS at solid-solution interface: experimental approaches. Surf Interface Anal, 38, 682–5.
Shchukarev, A., Boily, J. F. and Felmy, A. R. 2007. XPS of fast-frozen hematite colloids in NaCl aqueous solutions: I. Evidence for the formation of multiple layers of hydrated sodium and chloride ions induced by the {001} basal plane. J Phys Chem C, 111, 18307–16.
Shchukarev, A. and Ramstedt, M. 2017. Cryo-XPS: probing intact interfaces in nature and life. Surf Interface Anal, 49, 349–56.
Shchukarev, A., Rosenquist, J. and Sjöberg, S. 2004. XPS study of the silica–water interface. J Electron Spectros Relat Phenomena, 137–140, 171–6.
Shchukarev, A. and Sjöberg, S. 2005. XPS with fast-frozen samples: a renewed approach to study the real mineral/solution interface. Surf Sci, 584, 106–12.
Shimizu, K., Shchukarev, A. and Boily, J. F. 2011. X-ray photoelectron spectroscopy of fast-frozen hematite colloids in aqueous solutions. 3. Stabilization of ammonium species by surface (hydr)oxo groups. J Phys Chem C, 115, 6796–801.
Skallberg, A., Brommesson, C. and Uvdal, K. 2017. Imaging XPS and photoemission electron microscopy; surface chemical mapping and blood cell visualization. Biointerphases, 12, 02C408.
Tebo, B. M., Bargar, J. R., Clement, B. G., et al. 2004. Biogenic manganese oxides: properties and mechanisms of formation. Annu Rev Earth Planet Sci, 32, 287328.
van der Mei, H., De Vries, J. and Busscher, H. 2000. X-ray photoelectron spectroscopy for the study of microbial cell surfaces. Surf Sci Rep, 39, 324.
Vollmer, W., Blanot, D. and De Pedro, M. A. 2008. Peptidoglycan structure and architecture. FEMS Microbiol Rev, 32, 149–67.
Winter, B. and Faubel, M. 2006. Photoemission from liquid aqueous solutions. Chem Rev, 106, 1176–211.
Yee, N. and Fein, J. 2001. Cd adsorption onto bacterial surfaces: A universal adsorption edge? Geochim et Cosmochim Acta, 65, 2037–42.
Yee, N. and Fein, J. 2003. Quantifying metal adsorption onto bacteria mixtures: a test and application of the surface complexation model. Geomicrobiol J, 20, 4360.
Young, K. D. 2010. Bacterial Cell Wall, Chichester, Wiley.