Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T22:59:28.949Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  08 January 2010

Piotr Jaranowski
Affiliation:
University of Bialystok, Poland
Andrzej Krolak
Affiliation:
Polish Academy of Sciences
Get access

Summary

Gravitational waves are predicted by Einstein's general theory of relativity. The only potentially detectable sources of gravitational waves are of astrophysical origin. So far the existence of gravitational waves has only been confirmed indirectly from radio observations of binary pulsars, notably the famous Hulse and Taylor pulsar PSR B1913+16 [1]. As gravitational waves are extremely weak, a very careful data analysis is required in order to detect them and extract useful astrophysical information. Any gravitational-wave signal present in the data will be buried in the noise of a detector. Thus the data from a gravitational-wave detector are realizations of a stochastic process. Consequently the problem of detecting gravitational-wave signals is a statistical one.

The purpose of this book is to introduce the reader to the field of gravitational-wave data analysis. This field has grown considerably in the past years as a result of commissioning a world-wide network of long arm interferometric detectors. This network together with an existing network of resonant detectors collects a very large amount of data that is currently being analyzed and interpreted. Plans exist to build more sensitive laser interferometric detectors and plans to build interferometric gravitational-wave detectors in space.

This book is meant both for researchers entering the field of gravitational-wave data analysis and the researchers currently analyzing the data. In our book we describe the basis of the theory of time series analysis, signal detection, and parameter estimation. We show how this theory applies to various cases of gravitational-wave signals. In our applications we usually assume that the noise in the detector is a Gaussian and stationary stochastic process.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Preface
  • Piotr Jaranowski, University of Bialystok, Poland, Andrzej Krolak, Polish Academy of Sciences
  • Book: Analysis of Gravitational-Wave Data
  • Online publication: 08 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511605482.001
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Preface
  • Piotr Jaranowski, University of Bialystok, Poland, Andrzej Krolak, Polish Academy of Sciences
  • Book: Analysis of Gravitational-Wave Data
  • Online publication: 08 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511605482.001
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Preface
  • Piotr Jaranowski, University of Bialystok, Poland, Andrzej Krolak, Polish Academy of Sciences
  • Book: Analysis of Gravitational-Wave Data
  • Online publication: 08 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511605482.001
Available formats
×